首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Landslides are common natural hazards in the seismically active North Anatolian Fault Zone of Turkey. Although seismic activity, heavy rainfall, channel incisions, and anthropogenic effects are commonly the main triggers of landslides, on March 17, 2005, a catastrophic large landslide in Sivas, northeastern of Turkey, the Kuzulu landslide, was triggered by snowmelt without any other precursor. The initial failure of the Kuzulu landslide was rotational. Following the rotational failure, the earth material in the zone of accumulation exhibited an extremely rapid flow caused by steep gradient and high water content. The Agnus Creek valley, where Kuzulu village is located, was filled by the earth-flow material and a landslide dam was formed on the upper part of Agnus Creek. The distance from the toe of the rotational failure down to the toe of the earth flow measured more than 1800 m, with about 12.5 million m3 of displaced earth material. The velocity of the Kuzulu landslide was extremely fast, approximately 6 m/s. The main purposes of this study are to describe the mechanism and the factors conditioning the Kuzulu landslide, to present its environmental impacts, and to produce landslide-susceptibility maps of the Kuzulu landslide area and its near vicinity. For this purpose, a detailed landslide inventory map was prepared and geology, slope, aspect, elevation, topographic-wetness index and stream-power index were considered as conditioning factors. During the susceptibility analyses, the conditional probability approach was used and a landslide-susceptibility map was produced. The landslide-susceptibility map will help decision makers in site selection and the site-planning process. The map may also be accepted as a basis for landslide risk-management studies to be applied in the study area.  相似文献   

2.
Koyulhisar located in a slope of hilly region and constructed in the side of a mountain along the North Anatolian Fault Zone is frequently subject to landslides. A catastrophic landslide occurred on the morning of 17 March 2005 in the North of the Kuzulu district of Koyulhisar (Sivas, Turkey). This landslide caused widespread loss of life, and damage to buildings, and lifelines. Fifteen people were dead and five were injured, 21 houses and a minaret were covered and damaged severely. The case study presented in this paper describes and analyses the results of the detailed surveys of an interesting landslide in Kuzulu district of Koyulhisar (Sivas, Turkey), based on field and laboratory measurements and monitoring of the slide area. Landslide initiated as a collapse, and developed into debris avalanches in the valley. This phenomenon caused a disaster in the Kuzulu district. The importance of this landslide in particular has been recognized both in terms of its consequence for the people and structures and in terms of its role in allowing an understanding of process and properties of landslide triggered by a collapse in limestone karst. In view of the potential for such events to occur again in this area and environs, understanding of the failure mechanism is very crucial.  相似文献   

3.
Gimbarzevsky (1988) collected an exceptional landsliding inventory for Haida Gwaii, British Columbia that included over 8,000 landsliding vectors covering an area of approximately 10,000 km2. This database was never published in the referred literature, despite its regional significance. It was collected prior to widespread application of GIS technologies in landsliding studies, limiting the analyses undertaken at the time. Gimbarzevsky identified landslides using 1:50,000 aerial photographs, and transferred the information to NTS map sheets. In our study, we digitized the landslide vectors from these original map sheets and connected each landslide to a digital elevation model. Lengths of landslide vectors are compared to the landsliding inventory for Haida Gwaii analyzed in Rood (1984), Martin Y et al. BC Can J Earth Sci 39:289–305 (2002); the latter inventory is based on larger-scale aerial photographs (~1:12,000). Rood’s database contains a more complete record of smaller landslides, while the inventory of Gimbarzevsky provides improved statistical representation of less frequent, medium to large landslides. It is suggested that combined landslide delineation at different scales could provide a more complete landslide record. Discriminant analysis was undertaken to assess which of nine predictor variables, chosen on the basis of mechanical theory, best predict failed versus unfailed locations. Seven of the nine variables were found to be statistically significant in discriminating amongst failed and unfailed locations. Results show that 81.7% of original grouped cases were correctly classified.  相似文献   

4.
5.
From September 16 to September 20, 2010, a cold weather front went across Slovenia. A heavy 4-day rainfall totaling between 300 and 520 mm caused large floods and triggered numerous rainfall-induced landslides. The damage due to the floods and landslides is estimated over 250 million Euros. One of the largest landslides covering the area of approximately 15 ha was triggered on flysch bedrock, just below a limestone overthrust zone. The sliding material properties, the inclinations of the slope, and the water catchment area indicate that the landslide may transform into a fast moving debris flow. The necessary protective measures were taken to protect inhabitants and the infrastructure against the disaster. The Stogovce landslide is one of the numerous rainfall-induced landslides that have occurred in Slovenia on flysch bedrock in the last 10 years. It proves that landslide risk on flysch territory is increasing. Special program of monitoring and protective measures will have to be developed in near future to protect densely populated areas against landslides as a consequence of weather extremes.  相似文献   

6.
In this study, we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models. We created a geographic information system database, and our analysis results were used to prepare a landslide inventory map containing 359 landslide events identified from Google Earth, aerial photographs, and other validated sources. A support vector regression (SVR) machine-learning model was used to divide the landslide inventory into training (70%) and testing (30%) datasets. The landslide susceptibility map was produced using 14 causative factors. We applied the established gray wolf optimization (GWO) algorithm, bat algorithm (BA), and cuckoo optimization algorithm (COA) to fine-tune the parameters of the SVR model to improve its predictive accuracy. The resultant hybrid models, SVR-GWO, SVR-BA, and SVR-COA, were validated in terms of the area under curve (AUC) and root mean square error (RMSE). The AUC values for the SVR-GWO (0.733), SVR-BA (0.724), and SVR-COA (0.738) models indicate their good prediction rates for landslide susceptibility modeling. SVR-COA had the greatest accuracy, with an RMSE of 0.21687, and SVR-BA had the least accuracy, with an RMSE of 0.23046. The three optimized hybrid models outperformed the SVR model (AUC = 0.704, RMSE = 0.26689), confirming the ability of metaheuristic algorithms to improve model performance.  相似文献   

7.
The Yushu County, Qinghai Province, China, April 14, 2010, earthquake triggered thousands of landslides in a zone between 96°20′32.9″E and 97°10′8.9″E, and 32°52′6.7″N and 33°19′47.9″N. This study examines the use of geographic information system (GIS) technology and Bayesian statistics in creating a suitable landslide hazard-zone map of good predictive power. A total of 2,036 landslides were interpreted from high-resolution aerial photographs and multi-source satellite images pre- and post-earthquake, and verified by selected field checking before a final landslide-inventory map of the study area could be established using GIS software. The 2,036 landslides were randomly partitioned into two subsets: a training dataset, which contains 80 % (1,628 landslides), for training the model; and a testing dataset 20 % (408 landslides). Twelve earthquake triggered landslide associated controlling parameters, such as elevation, slope gradient, slope aspect, slope curvature, topographic position, distance from main surface ruptures, peak ground acceleration, distance from roads, normalized difference vegetation index, distance from drainages, lithology, and distance from all faults were obtained from variety of data sources. Landslide hazard indices were calculated using the weight of evidence model. The landslide hazard map was compared with training data and testing data to obtain the success rate and predictive rate of the model, respectively. The validation results showed satisfactory agreement between the hazard map and the existing landslide distribution data. The success rate is 80.607 %, and the predictive rate is 78.855 %. The resulting landslide hazard map showed five classes of landslide hazard, i.e., very high, high, moderate, low and very low. The landslide hazard evaluation map should be useful for environmental recovery planning and reconstruction work.  相似文献   

8.
Limbe town and surrounding areas, on the SE foot slopes of the active Mt Cameroon Volcano, have experienced numerous small-scale shallow landslides within the last 20 years. These resulted in the loss of ~30 lives and significant damage to farmland and properties. Landslides and their scars are identified in the field, and their geometry systematically measured to construct a landslide inventory map for the study area. Specific landslides are investigated in detail to identify site-specific controlling and triggering factors. This is to constrain key input parameters and their variability for subsequent susceptibility and risk modeling, for immediate local and regional applications in land-use planning. It will also enable a rapid exploration of remediation strategies that are currently lacking in the SW and NW regions of Cameroon. Typical slides within the study area are small-scale, shallow, translational earth, and debris slides though some rotational earth slides were also documented. The depletion zones have mean widths of 22 m ± 16.7 m and lengths of 25 ± 23 standard deviation. Estimated aerial extents of landslide scars and volume of generated debris range from 101 to 104 m2 and 2 to 5 × 104 m3, respectively. A key finding is that most slope instabilities within the study area are associated with and appear to be exacerbated by man-made factors such as excavation, anarchical construction, and deforestation of steep slopes. High intensity rainfall notably during localized storms is the principal triggering factor identified so far. The findings from this case study have relevance to understanding some key aspects of locally devastating slope instabilities that commonly occur on intensely weathered steep terrains across subtropical Africa and in the subtropics worldwide and affecting an ever denser and most vulnerable population.  相似文献   

9.
The northern Kyushu-Palau Ridge (KPR), remnant conjugate arc of the Izu-Ogasawara (Bonin)-Mariana (IBM) active arc, is dominated by basalt-andesite except for the Komahashi-Daini Seamount where acidic plutonic rocks of 38 Ma were recovered. These mafic to intermediate volcanics are produced by the rifting volcanism in the proto-IBM arc associated with spreading of the Shikoku Basin. The HFSE and HREE contents and ratios of these volcanics indicate enriched source mantle composition compared to recent volcanic front. The LILE ratios exhibit similar characteristics to reararc volcanism of the recent Izu arc, and some enriched volcanics exhibit high abundance of sediment melt inputs. Based on these observations and compilations of the published data set, the replacement event of the wedge mantle under the IBM arc occurred two times. The first event occurred between 45 and 38 Ma, with Pacific type mantle being replaced by depleted Indian type mantle. The second event occurred between 36 and 25 Ma, enriched mantle flowed from reararc side. The slab component during the proto-IBM arc rifting was a similar characteristic to recent reararc volcanism of the Izu arc, and sediment melt added in a local area.  相似文献   

10.
 Steep terrain and the high frequency of tropical rainstorms make landslide occurrence on natural terrain a common phenomenon in Hong Kong. For example, more than 800 slope failures were triggered by a rainstorm in November 1993 on Lantau Island, Hong Kong. Maps of recent landslides interpreted from aerial photographs, in combination with a geographical information system, were used to evaluate the frequency and distribution of landslides, with particular reference to such physical parameters as lithology, slope gradient, slope aspect, elevation, vegetation cover, and proximity to drainage line, all of which are considered to be influential in the occurrence of landslides. A stepwise logistic regression model was obtained between landslide susceptibility and the above mentioned physical parameters. The study area has been classified into five classes of relative landslide susceptibility, namely, very low, low, moderate, high, and very high, based on this methodology. Received: 17 December 1999 · Accepted: 21 March 2000  相似文献   

11.
The district of Mahawiyah in the Proterozoic shield of Arabia contains a group of Zn-Cu-Au-Ag-Ba mineral prospects in folded meta-sedimentary, volcanoclastic and volcanic rocks, ranging in composition from basalt to rhyolite. The mineralization occurs in veins and as strata-bound, disseminated orebodies associated with intense argillic alteration of adjacent rocks. An intrusive rhyolite dome or laccolith is situated at the centre of an eight square kilometre area of slight but pervasive alteration whose outline can be traced from aerial photographs and within which many of the ore mineral occurrences lie. A model is proposed to explain the pattern of alteration in the volcano-sedimentary pile and formation of the volcanogenic mineralization, based on a concept of the dome acting as a heat source to drive a geothermal "cell". Circulating connate-hydrothermal fluids could have caused alteration and redistribution of trace metals within the volcanics and sediments which mantle the sub-volcanic, rhyolite intrusion. The ore genetic model implies that clusters of veins, disseminated strata-bound and stratiform massive sulphide orebodies occur in distinct areas of the shield, marked by tracts of pervasive alteration which can be identified in aerial photographs and satellite images.  相似文献   

12.
A seasonal rain front (Baiu front) accompanied a long-term accumulation of precipitation propagated over the wide areas of the main island of Japan during 15–24 July 2006. In Okaya City, Nagano Prefecture, several flow-type landslides occurred in the early morning of 19 July 2006, claiming eight lives. Among these landslides, a most peculiar complex earth slide–earth flow occurred on a north gentle slope of the upstream portion of the Motosawagawa River. In the source area, volcanoclastic soils overlying tuffaceous rocks at about 4-m depth slid due to the prolonged precipitation that raised the water table level in the soil. Along with the travel path, the failed materials fluidized causing the liquefaction of the volcanoclastic soils underlain by volcanic black ash soils. The resulting flow spread over a wide area up to the final deposition. Constant volume box-shear tests on undisturbed volcanoclastic soil specimens taken from the source area showed effective normal stress tended to decrease during shearing. The ring shear tests on saturated disturbed specimens produced the large loss of shear resistance, which may explain the fluidized motion of the complex landslide.  相似文献   

13.
The Ms 8.0 Wenchuan earthquake of May 12, 2008 is one of the most disastrous earthquakes in China. The earthquake triggered tens of thousands of landslides over a broad area, including shallow, disrupted landslides, rock falls, deep-seated landslides, and rock avalanches, some of which buried large sections of some towns and dammed the rivers. The purpose of this study is to investigate correlations between the occurrence of landslides with geologic and geomorphologic conditions, and seismic parameters. Over 56,000 earthquake-triggered landslides, with a total area of 811 km2, are interpreted using aerial photographs and remote sensing images taken following the earthquake. The spatial distribution of these landslides is analyzed statistically using both landslide-point density (LPD), defined as the number of landslides per square kilometer, and landslide-area density (LAD), the percentage of the area affected by landslides, to determine how the occurrence of landslides correlates with distance from the epicenter, distance from the major surface rupture, seismic intensity and peak ground acceleration (PGA), slope angle, slope aspect, elevation, and lithology. It is found that both LAD and LPD have strong positive correlations with slope steepness, distance from the major surface rupture and seismic intensity, and that Pre-Sinian schist, and Cambrian sandstone and siltstone intercalated with slate have the most concentrated landslide activities, followed by the Permian limestone intercalated with shale, and Devonian limestone. Statistical analyses also indicate that the major surface rupture has influence on the spatial distribution of landslides, because LAD and LPD are relatively higher on the hanging wall than on the footwall. However, the correlation between the occurrence of landslides with distance from the epicenter of the earthquake is complicated, rather than a relatively simple negative correlation as found from other reported cases of earthquakes. This is possibly due to complicated rupture processes of the earthquake.  相似文献   

14.
The site investigation of low-gradient slopes composed by marly rocks usually focuses on shallow slides in weathered mantling material as it is assumed that the underlying bedrock has higher strength, but deeper investigations may reveal larger, active, deep-seated movements. A typical example of this is found in Montemartano (Perugia, Central Italy). Here aerial photo interpretation and field observations indicate that active movements involve the shallower portion of the slope, formed by a very old and large landslide body extending over an area of about 0.5 km2. Borehole core logging and probe inclinometer monitoring reveal that the area corresponding to the deep-seated landslide is moving at a maximum rate of 70 mm/year down to a maximum depth of 40 m. A comparison of inclinometer and piezometer data indicates that the movement seasonally reactivates even when rainfall and piezometer levels are below average values and suggests that structural setting of the whole slope influences both groundwater flow and movement kinematics. This hypothesis is reinforced by seepage analyses and stability analyses yielding a mobilized shear strength close to residual strength of the clayey interbeds of the marly limestone formations. This implies that instability occurs along bedding over a large part of the slide. The importance of these phenomena in land management policy is discussed and the critical aspects of their investigation and monitoring are addressed. The reconstruction of landslide geometry/stratigraphy and geotechnical characterization of the materials is closely considered, particularly as these are complicated by the limited representativeness of field and laboratory investigations in this type of material.  相似文献   

15.
For landslide susceptibility mapping, this study applied, verified and compared the Bayesian probability model, the weights-of-evidence to Panaon Island, Philippines, using a geographic information system. Landslide locations were identified in the study area from the interpretation of aerial photographs and field surveys, and a spatial database was extracted from SRTM (Shuttle Radar Topographic Mission) DEM (Digital Elevation Model) imagery, aerial photograph, topographic map, and geological map. The factors that influence landslide occurrence, such as slope, aspect, curvature, topographic wetness index and stream power index of topography, were calculated from SRTM imagery. Distance from drainage was extracted from topographic database. Lithology and distance from fault were extracted and calculated from geological database. Terrain mapping unit was classified from aerial photographs. The spatial association between the factors and the landslides was calculated as the contrast values, W + and W using the weights-of-evidence model. Tests of conditional independence were performed for the selection of the factors, allowing the large number of combinations of factors to be analyzed. For each factor rating, the contrast values, W + and W were overlaid for landslide susceptibility mapping. The results of the analysis showed that contrast rating (78.60%) for each factor’s multiclass had better accuracy of 5.90% than combinations of factor assigned to binary class with W + and W (72.70%).  相似文献   

16.
On 19 February 2007, a landslide occurred on the Alaard?ç Slope, located 1.6 km south of the town of Yaka (Gelendost, Turkey.) Subsequently, the displaced materials transformed into a mud flow in E?lence Creek and continued 750 m downstream towards the town of Yaka. The mass poised for motion in the Yaka Landslide source area and its vicinity, which would be triggered to a kinetic state by trigger factors such as heavy or sustained rainfall and/or snowmelt, poise a danger in the form of loss of life and property to Yaka with its population of 3,000. This study was undertaken to construct a susceptibility mapping of the vicinity of the Yaka Landslide’s source area and to relate it to movement of the landslide mass with the goal of prevention or mitigation of loss of life and property. The landslide susceptibility map was formulated by designating the relationship of the effecting factors that cause landslides such as lithology, gradient, slope aspect, elevation, topographical moisture index, and stream power index to the landslide map, as determined by analysis of the terrain, through the implementation of the conditional probability method. It was determined that the surface area of the Goksogut formation, which has attained lithological characteristics of clayey limestone with a broken and separated base and where area landslides occur, possesses an elevation of 1,100–1,300 m, a slope gradient of 15 °–35 ° and a slope aspect between 0 °–67.5 ° and 157 °–247 °. Loss of life and property may be avoided by the construction of structures to check the debris mass in E?lence Creek, the cleaning of the canal which passes through Yaka, the broadening of the canal’s base area, elevating the protective edges along the canal and the establishment of a protective zone at least 10-m wide on each side of the canal to deter against damage from probable landslide occurrence and mud flow.  相似文献   

17.
Kita-Uebaru natural rock slope failure and its back analysis   总被引:3,自引:2,他引:1  
A large landslide occurred in Kita-Uebaru (or Asato) area of Nakagusuku village in Okinawa Island (Japan) on 10 June 2006 after a rainy period of about 9 days. The total rainfall was 126 mm from June 8 till the time of the landslide this period. This landslide destroyed several buildings and roads, and the total travel distance of the landslide was about 110 m. In this article, the authors were concerned with the initiation conditions of Kita-Uebaru landslide and post-failure motions of the landslide body. The observations made in the landslide area, structural geology analyses and outcomes of geotechnical investigations are described first. Then, possible causes of the landslide are investigated through back analyses using as inputs the geological structure and the strength properties of planes of discontinuities involved in the sliding processes. The final part of the article is concerned with the simulation of post-failure motions of the landslide body. The results of the investigations and back analyses indicate that the failure plane was bi-planar and the heavy torrential rainy period for about 3 days was the main cause of initiation of the landslide. The mechanical model presented in this article was capable of capturing the overall features of the landslide body following the initiation of the failure.  相似文献   

18.
The Shengli River-Changshe Mountain oil shale zone, located in the North Qiangtang depression, northern Tibet plateau, represents a potentially large marine oil shale resource in China. Twenty-eight samples including oil shale, micritic limestone and marl were collected from the Shengli River area to determine the contents and distribution patterns of rare earth elements (REEs) in marine oil shale. Oil shale samples from the Shengli River area have high ash yield (61.86–67.48%) and TOC content (8.02–13.67%) with low total sulfur (St,d) content (0.76–1.39%) and intermediate shale oil content (3.60–16.30%). The total rare earth element (ΣREE) content in oil shale samples is notably depleted (46.79–67.90 μg/g), approximately one third of the mean value of the North American Shale Composite (NASC), and lower than that of world-wide black shales and Chinese coals, but higher than that of world-wide coals and micritic limestone samples (29.21 μg/g) from the Shengli River area. The oil shale samples from the Shengli River area exhibit shale-like Chondrite or NASC-normalized REE patterns similar to those of micritic limestone and marl samples from this area, indicating that REEs of these different lithological samples may have been derived from a similar terrigenous source.REE contents of oil shale samples are highly positive correlated with ash yield and show a positive correlation with Fe and a weakly positive correlation with organic sulfur, and the vertical variations of REEs mainly follow those of Si, Al, K and Ti. All these facts indicate that the REE contents in oil shale seams are mainly controlled by clay minerals and, to a lesser extent, by pyrite, as well as partly associated with oil shale organic constituents. Rare earth elements in the Shengli River oil shale have originated from two sources: a felsic volcanic rock source and a clastic or/and limestone source.  相似文献   

19.
This case study paper is about a large rotational rock and earth slide—earth flow located in the Secchia River Valley, in the Northern Apennines of Italy, that has displayed multiple reactivation phases between 2002 and 2004. The main geological constraints of the mass movement are related to the overlap of flysch rock masses over clayey complexes that allows rock slides to take place in the source area. The disarrangement and weathering of rock masses following slope movements causes large amount of fine-grained debris to be accumulated on the slope and mobilised by earth sliding and flowing. Analysis of rainfall data at the onset of reactivation events has proved that they occurred after periods with cumulated values higher than the averages of the last 30 years. The quantification of the morphological modifications induced by these reactivations has been made possible by comparing pre- and post-event digital elevation models. Depletion and accumulation has been in the range of 30 m in different parts of the slope. In particular, an advancement of the landslide toe of more than 400 m, which caused a 30-m thick landslide tip to deposit, has been clearly seen. Monitoring data regarding subsurface movements and surface tension crack widening (tension cracks so large as to be properly described at trenches) has shown that sliding surfaces as deep as 43 m exist in the upper part of the landslide, while the accumulation lobe has moved by sliding and flowing over surfaces as deep as some 10 m. Velocities of cm/day have been recorded in the deep surfaces and in widening trenches of the source area, while the advancement of the accumulation lobe has been estimated as having velocities of up to 10 m/day. Groundwater in the landslide body has been observed at depths of 5–15 m in the upper areas, while it is estimated as being at the ground level in the toe. On this basis, it is concluded that the landslide still has a high potential for further development, both in the upper landslide zone and in the toe area.  相似文献   

20.
This paper presents landslide hazard analysis at Cameron area, Malaysia, using a geographic information system (GIS) and remote sensing data. Landslide locations were identified from interpretation of aerial photographs and field surveys. Topographical and geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. The factors chosen that influence landslide occurrence are topographic slope, topographic aspect, topographic curvature, and distance to rivers, all from the topographic database; lithology and distance to faults were taken from the geologic database; land cover from TM satellite image; the vegetation index value was taken from Landsat images; and precipitation distribution from meteorological data. Landslide hazard area was analyzed and mapped using the landslide occurrence factors by frequency ratio and bivariate logistic regression models. The results of the analysis were verified using the landslide location data and compared with the probabilistic models. The validation results showed that the frequency ratio model (accuracy is 89.25%) is better in prediction of landslide than bivariate logistic regression (accuracy is 85.73%) model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号