首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Doklady Earth Sciences - The issue of the stability of carbonate matter (CaCO3) in subduction zones under reduced conditions remains topical. In addition, carbonates may be one of the key sources...  相似文献   

2.
The partitioning of Fe2+ and Mn2+ between (Fe, Mn)TiO3 and (Fe, Mn)2SiO4 solid solutions in the system FeO-MnO-TiO2-SiO2 has been experimentally investigated at 1100 C and pressures of 1 bar and 25 kbar, over a wide range of Fe/Mn ratios, using electron microprobe analysis of quenched run products. The ilmenite solid solution in this system is within analytical uncertainty a simple binary between FeTiO3 and MnTiO3, but the olivine solid solution appears to contain up to 2.5 wt% TiO2. The Fe-Mn partitioning results constrain precisely the difference in the thermodynamic mixing properties of the two solid solutions. If the mixing properties of (Fe, Mn)2SiO4 solid solutions are assumed to be ideal, as experimentally determined by Schwerdtfeger and Muan (1966), then the ilmenite is a regular, symmetric solution with W ilm Fe-Mn=1.8±0.1 kJ mol−1. The quoted uncertainty does not include the contribution from the uncertainty in the mixing properties of the olivine solution, which is estimated to be ±1.8 kJ mol−1, and which therefore dominates the uncertainty in the present results. Nevertheless, this result is in good agreement with the previous experimental study of O'Neill et al. (1989), who obtained W ilm Fe-Mn=2.2±0.3 kJ mol−1 from an independent method. The results provide another item of empirical evidence supporting the proposition that solid solutions between isostructural end-members, in which order-disorder effects are not important, generally have simple thermodynamic mixing properties, with little asymmetry, modest excess entropies, and excess enthalpies approximately proportional to the difference in the molar volumes of the end-members. Received: 11 February 1998 / Accepted: 29 June 1998  相似文献   

3.
Parts of the Fe–C–N system were studied in experiments at 7.8 GPa and 1350°C. It was shown that the admixture of nitrogen extends considerably the domain of melt stability in the system at temperatures close to the Fe–Fe3C eutectic temperatures. Nitrogen solubility in cementite in equilibrium with the nitrogen- rich melt is below the detection limit of the EMPA technique applied. The metal melt is the only nitrogen concentrator (up to 4 wt % of N) in the range of compositions considered. The data obtained permit the conclusion that, in the case of complete dissolution of carbon and nitrogen, which might occur in the enriched mantle, native iron at ~250 km depth should either be completely molten or consist of a melt and carbide of iron.  相似文献   

4.
The sound velocity (V P) of liquid Fe–10 wt% Ni and Fe–10 wt% Ni–4 wt% C up to 6.6 GPa was studied using the ultrasonic pulse-echo method combined with synchrotron X-ray techniques. The obtained V P of liquid Fe–Ni is insensitive to temperature, whereas that of liquid Fe–Ni–C tends to decrease with increasing temperature. The V P values of both liquid Fe–Ni and Fe–Ni–C increase with pressure. Alloying with 10 wt% of Ni slightly reduces the V P of liquid Fe, whereas alloying with C is likely to increase the V P. However, a difference in V P between liquid Fe–Ni and Fe–Ni–C becomes to be smaller at higher temperature. By fitting the measured V P data with the Murnaghan equation of state, the adiabatic bulk modulus (K S0) and its pressure derivative (K S ) were obtained to be K S0 = 103 GPa and K S  = 5.7 for liquid Fe–Ni and K S0 = 110 GPa and K S  = 7.6 for liquid Fe–Ni–C. The calculated density of liquid Fe–Ni–C using the obtained elastic parameters was consistent with the density values measured directly using the X-ray computed tomography technique. In the relation between the density (ρ) and sound velocity (V P) at 5 GPa (the lunar core condition), it was found that the effect of alloying Fe with Ni was that ρ increased mildly and V P decreased, whereas the effect of C dissolution was to decrease ρ but increase V P. In contrast, alloying with S significantly reduces both ρ and V P. Therefore, the effects of light elements (C and S) and Ni on the ρ and V P of liquid Fe are quite different under the lunar core conditions, providing a clue to constrain the light element in the lunar core by comparing with lunar seismic data.  相似文献   

5.
6.
The Fe M 2,3-edge spectra of solid solutions of garnets (almandine-skiagite Fe3(Al1–xFex)2[SiO4]3 and andradite-skiagite (Fe1–xCax)3Fe2[SiO4]3), pyroxenes (acmite-hedenbergite (Ca1–xNax)(Fe2+ 1−xFe3+ x)Si2O6), and spinels (magnetite-hercynite Fe(Al1–xFex)2O4) have been measured using the technique of parallel electron energy-loss spectroscopy (EELS) conducted in a transmission electron microscope (TEM). The Fe M 2,3 electron energy-loss near-edge structures (ELNES) of the minerals exhibit a characteristic peak located at 4.2 eV and 2.2 eV for trivalent and divalent iron, respectively, prior to the main maximum at about 57 eV. The intensity and energy of the pre-edge feature varies depending on Fe3+/ΣFe. We demonstrate a new quantitative method to extract the ferrous/ferric ratio in minerals. A systematic relationship between Fe3+/ΣFe and the integral intensity ratio of the main maximum and the pre-edge peak of the Fe M 2,3 edge is observed. Since the partial cross sections of the Fe M 2,3 edges are some orders of magnitude higher than those of the Fe L 2,3 edges, the Fe M 2,3 edges are interesting for valence-specific imaging of Fe. The possibility of iron valence-specific imaging is illustrated by Fe M 2,3-ELNES investigations with high lateral resolution from a sample of ilmenite containing hematite exsolution lamellae that shows different edge shapes consistent with variations in the Fe3+/ΣFe ratio over distances on the order of 100 nm. Received: 14 April 1998 / Revised, accepted: 8 March 1999  相似文献   

7.
8.
The article presents the results of observations of the blazar 3C 454.3 (J2253+1608), obtained in 2010–2017 on the RATAN-600 radio telescope of the Special Astrophysical Observatory at 4.6, 8.2, 11.2, and 21.7 GHz and on the 32-m Zelenchuk and Badary radio telescopes of the Quasar VLBI Network of the Institute of Applied Astronomy at 4.84 and 8.57 GHz. Long-term variability of the radio emission is studied, as well as variability on time scales of several days and intraday variability (IDV). Two flares were observed in the long-term light curve, in 2010 and in 2015–2017. The flux density at 21.7 GHz increased by a factor of ten during these flares. The delay in the maximum of the first flare at 4.85 GHz relative to the maximum at 21.7 GHz was six months. The time scale for variability on the descending branch of the first flare at 21.7 GHz was τvar = 1.2 yrs, yielding an upper limit on the linear size of the emitting region of 0.4 pc, corresponding to an angular size of 0.06 mas. The brightness temperature during the flare exceeded the Compton limit, implying a Doppler factor δ = 3.5, consistent with the known presence of a relativistic jet oriented close to the line of sight. No significant variability on time scales from several days to several weeks was found in five sets of daily observations carried out over 120 days. IDV was detected at 8.57 GHz on the 32-m telescopes in 30 of 61 successful observing sessions, with the presence of IDV correlated with the maxima of flares. The characteristic time scale for the IDV was from two to ten hours. A number of IDV light curves show the presence of a time delay in the maxima in the light curves for simultaneous observations carried out on the Badary and Zelenchuk antennas, which are widely separated in longitude. This demonstrates that the IDV most like arises in the interstellar medium.  相似文献   

9.
The postperovskite phase transition of Fe and Al-bearing MgSiO3 bridgmanite, the most aboundant mineral in the Earth's lower mantle, is believed to be a key to understanding seismological observations in the D″ layer, e.g., the discontinuous changes in seismic wave velocities. Experimentally reported phase transition boundaries of Fe and Al-bearing bridgmanite are currently largely controversial and generally suggest wide two-phase coexistence domains. Theoretical simulations ignoring temperature effects cannot evaluate correctly two-phase coexistence domains under high-temperature. We show high-pressure and high-temperature phase transition boundaries for various compositions with geophysically relevant impurities of Fe2+SiO3, Fe3+Fe3+O3, Fe3+Al3+O3, and Al3+Al3+O3 derived from the ab initio finite-temperature free energies calculated combining the internally consistent LSDA + U method and a lattice dynamics approach. We found that at ~ 2500 K, incorporations accompanied by Fe3+ expand the two-phase coexistence domains distinctly, implying that D″ seismic discontinuities likely arise from the phase transition of Fe2+-bearing bridgmanite.  相似文献   

10.
Two synthetic series of spinels, MgCr2O4–Fe2+Cr2O4 and MgCr2O4–MgFe2 3+O4 have been studied by Raman spectroscopy to investigate the effects of Fe2+ and Fe3+ on their structure. In the first case, where Fe2+ substitutes Mg within the tetrahedral site, there is a continuous and monotonic shift of the Raman modes A1g and Eg toward lower wavenumbers with the increase of the chromite component into the spinel, while the F2g modes remain nearly in the same position. In the second series, for low Mg-ferrite content, Fe3+ substitutes for Cr in the octahedral site; when the Mg-ferrite content nears 40 %, a drastic change in the Raman spectra occurs as Fe3+ starts entering the tetrahedral site as well, consequently pushing Mg to occupy the octahedral one. The Raman spectral region between 620 and 700 cm?1 is associated to the octahedral site, where three peaks are present and it is possible to observe the Cr–Fe3+ substitution and the effects of order–disorder in the tetrahedral site. The spectral range at 500–620 cm?1 region shows that there is a shift of modes toward lower values with the increase of the Mg-ferrite content. The peaks in the region at 200–500 cm?1, when observed, show little or negligible Raman shift.  相似文献   

11.
Doklady Earth Sciences - Based on atomistic modeling data, various schemes of the isomorphic incorporation of K+ and Na+ ions into the crystal structures of CaSiO3 and MgSiO3 in the pressure range...  相似文献   

12.
Results are presented of multicolor observations of the blazar 3C 454.3 carried out at the Astronomical Institute of St. Petersburg State University and the Central Astronomical Observatory of the Russian Academy of Sciences in 2007–2010. The color variability of the blazar is analyzed. Several outbursts were observed. The existence of two variable synchrotron sources is inferred. The first is responsible for the small-amplitude flux variability, and the second for flares. In each flare, the relative spectral energy distribution (SED) of the variable source is found to be constant. All the SEDs are power laws, but with different spectral indexes in different flares. This indicates the impossibility of explaining the global variability only via a difference in Doppler boosting due to variations of the angle between the line of sight and the velocity of the electrons responsible for the synchrotron radiation. The polarimetric and photometric observations are used to derive the absolute SED of constant component. A comparison of the observed SEDs for different brightness levels with the SED of the constant componentmakes it possible to explain the observed color variability as due to the superposition of a bluer variable source with a constant SED and variable flux onto the constant component.  相似文献   

13.
《Applied Geochemistry》1995,10(4):391-405
Extensive NO3 contamination of groundwater in the Abbotsford aquifer to levels above drinking water limits is a major problem in the Fraser Lowlands of southwestern British Columbia, Canada. Nitrate concentrations in the aquifer ranged from 0 to 151 mg/l NO3, with a median concentration of 46 mg/l NO3. Of 117 wells sampled, 54% had NO3 concentrations exceeding the drinking water limit of 45 mg/1. Approximately 80% of the study area had groundwater NO3 concentrations exceeding 40 mg/1 NO3. Potential NO3 source materials were poultry manure N and synthetic NH4 based fertilizers. Theδ15N of solid poultry manure samples ranged between + 7.9 and + 8.6‰ (AIR). Four brands of synthetic fertilizers commonly used hadδ15N values between −1.5 and −0.6‰. Ammonia volatilization caused theδ15N of groundwater NO3 produced from poultry manure N to range between +8 and +16‰. Theδ18O values of groundwater NO3, by contrast, mostly ranged between +2 and +5‰ (SMOW). This narrow range ofδ18O values fell within the expected range of NO3 produced by nitrification of reduced N forms such as poultry manure N and NH4 fertilizers, and had a similar range ofδ18O values as NO3 in the upper part of the unsaturated zone below raspberry fields and beneath former manure piles. Theδ15N-NO3 andδ18O-NO3 data confirmed that NO3 in the aquifer was predominantly derived from poultry manure and to a lesser extent from synthetic fertilizers. Theδ18O-NO3 data further suggested the nitrification process occurred mainly in the summer months, with the soil NO3 produced subsequently flushed into the aquifer during fall recharge. Theδ15N-NO3andδ18O-NO3 data conclusively indicated that no significant bacterial denitrification is taking place in the Abbotsford aquifer.  相似文献   

14.
We present a model of the global biogeochemical cycle of silicon (Si) that emphasizes its linkages to the carbon cycle and temperature. The Si cycle is a crucial part of global nutrient biogeochemistry regulating long-term atmospheric CO2 concentrations due to silicate mineral weathering reactions involving the uptake of atmospheric CO2 and production of riverine dissolved silica, cations and bicarbonate. In addition and importantly, the Si cycle is strongly coupled to the other nutrient cycles of N, P, and Fe; hence siliceous organisms represent a significant fraction of global primary productivity and biomass. Human perturbations involving land-use changes, burning of fossil fuel, and inorganic N and P fertilization have greatly altered the terrestrial Si cycle, changing the river discharge of Si and consequently impacting marine primary productivity primarily in coastal ocean waters.  相似文献   

15.
This study describes the adsorption features of cadmium on Fe2O3 and MnO2 in alkaline saline conditions. The adsorption reached equilibrium in 6 hours under alkaline conditions. The absorption of cadmium on Fe2O3 and MnO2 was consistent with Freundlich absorption isotherms, and the corresponding adsorption capacities were 16.3 and 16.7 mg·g-1, respectively. Moreover, the adsorption quantity of cadmium on Fe2O3 and MnO2 rose with increasing pH from acidic to neutral, and reached the maximum at pH= 9. The coexisting chlorides reduced the adsorption capacity of Fe2O3 and MnO2. The influence intensities of different cations follow the order of CaCl2>>KCl>NaCl. However, the influence of sodium salts on the capacities of Fe2O3 and MnO2 to adsorb cadmium appeared more complicated: the relatively low concentrations of sodium salts could reduce the adsorption capacity; with increasing concentrations of sodium salts, e.g. NaCl and NaNO3. The adsorption capacity decreased continually. Moreover, due to the competition adsorption and precipitation effects, the adsorption capabilities of Na2CO3, NaH2PO4 and Na2HSO4 could also be reduced and cadmium concentrations in the solution were reduced as well.  相似文献   

16.
Doklady Earth Sciences - The liquid phases are represented by immiscible Fe–S and Fe–C melts under partial melting of the graphite-saturated Fe–S–C system at P = 0.5 GPa and...  相似文献   

17.
The paper presents original authors' data on the O, H, C, S, and Sr isotopic composition of water and sediments from the basins into which the Aral Sea split after its catastrophic shoaling: Chernyshev Bay (CB), the basin of the Great Aral in the north, Lake Tshchebas (LT), and Minor Sea (MS). The data indicate that the δ18О, δD, δ13C, and δ34S of the water correlate with the mineralization (S) of the basins (as of 2014): for CB, S = 135.6‰, δ18О = 4.8 ± 0.1‰, δD = 5 ± 2‰, δ13C (dissolved inorganic carbon, DIC) = 3.5 ± 0.1‰, δ34S = 14.5‰; for LT, S = 83.8‰, δ18О = 2.0 ± 0.1‰, δD =–13.5 ± 1.5‰, δ13C = 2.0 ± 0.1‰, δ34S = 14.2‰; and for MS, S = 9.2‰, δ18О =–2.0 ± 0.1‰, δD =–29 ± 1‰, δ13C =–0.5 ± 0.5‰, δ34S = 13.1‰. The oxygen and hydrogen isotopic composition of the groundwaters are similar to those in MS and principally different from the artesian waters fed by atmospheric precipitation. The mineralization, δ13С, and δ34S of the groundwaters broadly vary, reflecting interaction with the host rocks. The average δ13С values of the shell and detrital carbonates sampled at the modern dried off zones of the basins are similar: 0.8 ± 0.8‰ for CB, 0.8 ± 1.4‰ for LT, and –0.4 ± 0.3‰ for MS. The oxygen isotopic composition of the carbonates varies much more broadly, and the average values are as follows: 34.2 ± 0.2‰ for CB, 32.0 ± 2.2‰ for LT, and 28.2 ± 0.9‰ for MS. These values correlate with the δ18O of the water of the corresponding basins. The carbonate cement of the Late Eocene sandstone of the Chengan Formation, which makes up the wave-cut terrace at CB, has anomalously low δ13С up to –38.5‰, suggesting origin near a submarine methane seep. The δ34S of the mirabilite and gypsum (11.0 to 16.6‰) from the bottom sediments and young dried off zone also decrease from CB to MS in response to increasing content of sulfates brought by the Syr-Darya River (δ34S = 9.1 to 9.9‰) and weakening sulfate reduction. The 87Sr/86Sr ratio in the water and carbonates of the Aral basins do not differ, within the analytical error, and is 0.70914 ± 0.00003 on average. This value indicate that the dominant Sr source of the Aral Sea is Mesozoic–Cenozoic carbonate rocks. The Rb–Sr systems of the silicate component of the bottom silt (which is likely dominated by eolian sediments) of MS and LT plot on the Т = 160 ± 5 Ma, I0 = 0.7091 ± 0.0001, pseudochron. The Rb–Sr systems of CB are less ordered, and the silt is likely a mixture of eolian and alluvial sediments.  相似文献   

18.
19.
The phase and melting relations of the C-saturated C–Mg–Fe–Si–O system were investigated at high pressure and temperature to understand the role of carbon in the structure of the Earth, terrestrial planets, and carbon-enriched extraterrestrial planets. The phase relations were studied using two types of experiments at 4 GPa: analyses of recovered samples and in situ X-ray diffractions. Our experiments revealed that the composition of metallic iron melts changes from a C-rich composition with up to about 5 wt.% C under oxidizing conditions (ΔIW = ?1.7 to ?1.2, where ΔIW is the deviation of the oxygen fugacity (fO2) from an iron-wüstite (IW) buffer) to a C-depleted composition with 21 wt.% Si under reducing conditions (ΔIW < ?3.3) at 4 GPa and 1,873 K. SiC grains also coexisted with the Fe–Si melt under the most reducing conditions. The solubility of C in liquid Fe increased with increasing fO2, whereas the solubility of Si decreased with increasing fO2. The carbon-bearing phases were graphite, Fe3C, SiC, and Fe alloy melt (Fe–C or Fe–Si–C melts) under the redox conditions applied at 4 GPa, but carbonate was not observed under our experimental conditions. The phase relations observed in this study can be applicable to the Earth and other planets. In hypothetical reducing carbon planets (ΔIW < ?6.2), graphite/diamond and/or SiC exist in the mantle, whereas the core would be an Fe–Si alloy containing very small amount of C even in the carbon-enriched planets. The mutually exclusive nature of C and Si may be important also for considering the light elements of the Earth’s core.  相似文献   

20.
The paper presents results of experiments aimed at diamond synthesis in the Fe–C–S system at 5.3–5.5 GPa and temperatures of 1300–1370°C and detailed data on the microtextures of the experimental samples and the composition of the accompanying phases (Fe3C and Fe7C3 carbides, graphite, and FeS). It is demonstrated that diamond can be synthesized after temperatures at which carbides are formed are overcome and can crystallize within the temperature range of 1300°C (temperature of the peritectic reaction melt + diamond = Fe7C3) to 1370°C (of thermodynamically stable graphite) under the appearance experimental pressure. The possible involvement of natural metal- and sulfur-bearing compounds in the origin of natural diamond is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号