首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boundary-layer measurements conducted at the Marsta site in Sweden from a winter-time situation (23–25 Feb.) with stable stratification have been analysed. The data comprise wind and temperature profile measurements up to 30 m, turbulence measurements at 2, 6 and 30 m and Doppler acoustic sounder data up to about 150 m. The upwind fetch at the site is flat and free from obstacles to a distance of ca 5 km for the particular sector chosen for the experiment.During the night, a two-layer vertical structure developed. Analysis of power spectra, co-spectra and variances in a shallow and very stable turbulent boundary layer near the ground show that the turbulence is fully developed and follow the universal behaviour.Above, at a height of 30 m, another turbulent layer is produced by increased wind shear near a low-level jet. This turbulent upper layer can be regarded as a layer of free shear flow. At this height, there also exist wave-turbulence interactions at low frequencies which sometimes cause a countergradient heat flux.  相似文献   

2.
Abstract

Airborne measurements of mean wind velocity and turbulence in the atmospheric boundary layer under wintertime conditions of cold offshore advection suggest that at a height of 50 m the mean wind speed increases with offshore distance by roughly 20% over a horizontal scale of order 10 km. Similarly, the vertical gust velocity and turbulent kinetic energy decay on scales of order 3.5 km by factors of 1.5 and 3.2, respectively. The scale of cross‐shore variations in the vertical fluxes of heat and downwind momentum is also 10 km, and the momentum flux is found to be roughly constant to 300 m, whereas the heat flux decreases with height. The stability parameter, z/L (where z = 50 m and L is the local Monin‐Obukhov length), is generally small over land but may reach order one over the warm ocean. The magnitude and horizontal length scales associated with the offshore variations in wind speed and turbulence are reasonably consistent with model results for a simple roughness change, but a more sophisticated model is required to interpret the combined effects of surface roughness and heat flux contrasts between land and sea.

Comparisons between aircraft and profile‐adjusted surface measurements of wind speed indicate that Doppler biases of 1–2 m s?1 in the aircraft data caused by surface motions must be accounted for. In addition, the wind direction measurements of the Minimet anemometer buoy deployed in CASP are found to be in error by 25 ± 5°, possibly due to a misalignment of the anemometer vane. The vertical fluxes of heat and momentum show reasonably good agreement with surface estimates based on the Minimet data.  相似文献   

3.
Ground-based flux measurements of carbon dioxide and water vapor integrate physiological processes taking place on a field scale. Aircraft flux measurements have recently been undertaken to attempt to widen the scope of applicability of such measurements. However, because of the intermittency of turbulent transfer, flux measurements must be averaged over long periods of time or long distances to give reproducible results. This requirement makes it difficult to relate aircraft flux measurements to local surface processes. Flux measurements of CO2, latent and sensible heat obtained from repeated passes in four directions and at three elevations over a homogeneous wheat-growing area are compared with ground-based measurements. Averages based on four runs of 4 km in length gave results consistent with ground-based measurements. The largest percentage differences were in the sensible heat flux. Cospectral analyses showed no significant high frequency losses for the data from flight levels of 25 and 50 m, but an underestimation of approximately 10% resulted at 10 m. Flight direction with respect to wind direction was relatively unimportant at 10 and 25 m but some effects were observed at 50 m. It was also shown that at 25 m, over a relatively smooth and homogeneous surface, the means of either three or four runs 4 km in length were similar to the means of 12–16 km runs. This confirms that at this altitude, most of the flux contribution is contained at wavelengths less than 4 km and that the mean of 3 to 4 passes accounts for most of the intermittency of turbulent transfer.  相似文献   

4.
利用长白山森林生态系统定位研究站观测资料,及2003年8月和9月涡旋相关资料,分析和比较了该地区近地层包括风速、风向、大气稳定度在内的平均场特征,以及湍流强度、无量纲化风脉动方差相似性和地表通量变化特征。结果表明:(1)8月和9月稳定度都基本集中在0附近;(2)风速2 m·s-1的环境中,湍流发展最为旺盛,随着风速的增大湍流强度先迅速减小,当风速增大到3 m·s-1后,湍流强度偏离0值变大了一些,再继续增大到一定风速大小以后,湍流强度基本不随风速变化;(3)无量纲化三维风脉动方差符合Monin-Obukhov相似理论的"1/3"定律,其最佳通用相似函数在稳定和不稳定条件下都可以拟合得到;(4)地表通量均表现出明显的日变化特征,8月以潜热为主,感热较小;9月仍以潜热为主,但是相比8月明显偏小,感热变化不大。  相似文献   

5.
The formation of cold air drainage flows in a shallow gully is studied during CASES-99 (Cooperative Atmosphere-Surface Exchange Study). Fast and slow response wind and temperature measurements were obtained on an instrumented 10-m tower located in the gully and from a network of thermistors and two-dimensional sonic anemometers, situated across the gully. Gully flow formed on clear nights even with significant synoptic flow. Large variations in surface temperature developed within an hour after sunset and in situ cooling was the dominant factor in wind sheltered locations. The depth of the drainage flow and the height of the down-gully wind speed maximum were found to be largest when the external wind speed above the gully flow is less than 2 m s-1. The shallow drainage current is restricted to a depth of a few metres, and is deepest when the stratification is stronger and the external flow is weaker. During the night the drainage flow breaks down, sometimes on several occasions, due to intermittent turbulence and downward fluxes of heat and momentum. The near surface temperature may increase by 6 ° C in less than 30 min due to the vertical convergence of downward heat flux. The mixing events are related to acceleration of the flow above the gully flow and decreased Richardson number. These warming events also lead to warming of the near surface soil and reduction of the upward soil heat flux. To examine the relative importance of different physical mechanisms that could contribute to the rapid warming, and to characterize the turbulence generated during the intermittent turbulent periods, the sensible heat budget is analyzed and the behaviour of different turbulent parameters is discussed.  相似文献   

6.
纳木错(湖)地区湍流数据质量控制和湍流通量变化特征   总被引:1,自引:0,他引:1  
利用中国科学院纳木错多圈层综合观测研究站2009年全年的大气湍流观测资料,应用Foot-print模型分析了青藏高原非均匀下垫面湍流观测数据的数据质量、质量评价及不同下垫面对湍流通量的贡献。结果表明:纳木错(湖)地区因不同土地利用类型的差别,导致地表通量分布不均匀,草地对地表通量的贡献最大;对不同大气层结状态,观测站周围200m范围内的地表通量贡献各不相同,上风向通量贡献源区较大,湍流发展较充分。在不稳定状态和中性状态下,纳木错地区地表通量数据质量较高,即白天观测的通量数据质量较高;在稳定状态下数据质量较低,即夜间的通量数据质量较差;纳木错地区的湍流通量受湖陆风和大气稳定性影响较大。  相似文献   

7.
An investigation into high Reynolds number turbulent flow over a ridge top in New Zealand is described based on high-resolution in-situ measurements, using ultrasonic anemometers for two separate locations on the same ridge with differing upwind terrain complexity. Twelve 5-h periods during neutrally stratified and weakly stable atmospheric conditions with strong wind speeds were sampled at 20 Hz. Large (and small) turbulent length scales were recorded for both vertical and longitudinal velocity components in the range of 7–23 m (0.7–3.3 m) for the vertical direction and 628–1111 m (10.5–14.5 m) for the longitudinal direction. Large-scale eddy sizes scaled to the WRF (Weather Research and Forecasting) numerical model simulated boundary-layer thickness for both sites, while small-scale turbulent features were a function of the complexity of the upwind terrain. Evidence of a multi-scale turbulent structure was obtained at the more complex terrain site, while an assessment of the three-dimensional isotropy assumption in the inertial subrange of the spectrum showed anisotropic turbulence at the less complex site and evidence of isotropic turbulence at the more complex site, with a spectral ratio convergence deviating from the 4/3 or unity values suggested by previous theory and practice. Existing neutral spectral models can represent locations along the ridge top with simple upwind complexity, especially for the vertical wind spectra, but sites with more orographic complexity and strong vertical wind speeds are often poorly represented using these models. Measured spectra for the two sites exhibited no significant diurnal variation and very similar large-scale and small-scale turbulent length scales for each site, but the turbulence energy measured by the variances revealed a strong diurnal difference.  相似文献   

8.
Two levels of triple-hot-film and sonic anemometers were deployed on a 5.5-m towerduring the Cooperative Atmospheric Surface Exchange Study (CASES-99) in October1999. Each triple-hot-film probe was collocated 50 mm from the sonic sensing path ona common boom. Various problems with using triple-hot-films in the atmosphere toresolve wind components are addressed including the derivation of a yaw angle correction using the collocated sensors. It was found that output voltage drift due to changes in environmental temperature could be monitored and corrected using an automated system. Non-unique solutions to heat transfer equations can be resolved using a collocated sonic anemometer. Multi-resolution decomposition of the hot-film data was used to estimate appropriate day and night averaging periods for turbulent flux measurements in and near the roughness sub-layer. Finally, triple-hot-film measurements of mean wind magnitude (M), turbulent kinetic energy (TKE), sensible heat flux (H), and local friction velocity (u*) are compared to those of the collocated CSAT3 sonic anemometers. Overall, the mean wind magnitudes measured by the triple-hot-film and the collocated sonic sensorswere close, consistent and independent of stability or proximity to the ground. The turbulent statistics, TKE, u*, and H, measured by the two sensor systems were reasonably close together at z = 5 m. However, the ratio of sonic measurement/hot-film measurement decreased toward the ground surface, especially during stable conditions.  相似文献   

9.
10.
From September 2006 to September 2007, the intersite variability of turbulence characteristics and turbulent heat fluxes was analysed at two urban stations in Essen, Germany. One site was situated within an urban residential setting while the other was located at the border of an urban park and suburban/urban residential housing. Therefore, the surroundings at both sites contributing to surface–atmosphere exchange differed in terms of surface cover and surface morphology. During the 1-year measurement period, 19% of data were characterised by stable atmospheric stratification. Since observations of urban turbulence characteristics under stable stratification are scarce, so far, this work adds additional input to this discussion. Turbulence characteristics, i.e. normalised standard deviations of wind components, were in agreement to empirical fits from other urban observations under both instable and stable atmospheric stratification. However, differences in magnitude of turbulence characteristics between sites were observable. Comparison of turbulent heat fluxes indicated typical urban features in the site located in the urban setting with increased surface heating and higher surface heat fluxes by about 30%. Also the temporal evolution of heat fluxes on the diurnal course was affected. Differences in momentum flux were of minor magnitude with about 6% variation on average between sites. Findings indicate that multiple urban flux measurements within one city may be characterised by general similarities in terms of turbulent characteristics but are still significantly influenced by differences in the surface cover of the flux footprint.  相似文献   

11.
Sonic anemometer and profile mast measurements made in Wahlenbergfjorden, Svalbard Arctic archipelago, in May 2006 and April 2007 were employed to study the atmospheric boundary layer over sea-ice. The turbulent surface fluxes of momentum and sensible heat were calculated using eddy correlation and gradient methods. The results showed that the literature-based universal functions underestimated turbulent mixing in strongly stable conditions. The validity of the Monin-Obukhov similarity theory was questionable for cross-fjord flow directions and in the presence of mesoscale variability or topographic effects. The aerodynamic roughness length showed a dependence on the wind direction. The mean roughness length for along-fjord wind directions was (2.4 ± 2.6) × 10−4 m, whereas that for cross-fjord directions was (5.4 ± 2.8) × 10−3 m. The thermal stratification and turbulent fluxes were affected by the synoptic situation with large differences between the 2 years. Channelling effects and drainage flows occurred especially during a weak large-scale flow. The study periods were simulated applying the Weather Research and Forecasting (WRF) model with 1-km horizontal resolution in the finest domain. The results for the 2-m air temperature and friction velocity were good, but the model failed to reproduce the spatial variability in wind direction between measurement sites 3 km apart. The model suggested that wind shear above the stable boundary layer provided a non-local source for the turbulence observed.  相似文献   

12.
The present study investigates the characteristics of turbulent transfer and the conditions for dust emission and transport using the dust concentration and micrometeorological data obtained during dust events occurring in the spring of 2004 over the Hunshandake desert area. The turbulent exchange coefficients and turbulent fluxes of momentum and heat are calculated. The relationships between dust flux, friction velocity, and wind speed are also explored. The results show that thermal turbulence is dominant during daytime of non-dusty days. The dynamic turbulence increases obviously and the sensible heat flux reduces by different degrees during dust events. There is an efficient downward transfer of momentum before duststorm occurrence, and both the dynamic turbulence and the thermal turbulence are important in the surface layer. The dynamic turbulence even exceeds the thermal turbulence during severe duststorm events. The values of dust flux vary in the range of -5 5, -30 30, and -200-300 μg m^-2 s^-1 during non-dusty days, blowing dust, and duststorm events, respectively. A slight upward transport of dust is observed during non-dusty days. The dust flux gradually varies from positive to negative during duststorm periods, which indicates the time evolution of dust events from dust rising to stably suspending and then deposition. The dust flux is found to be proportional to u*^3. The threshold values of wind speed and friction velocity are about 6 and 0.4 m s^-1, respectively.  相似文献   

13.
In this paper, turbulent data obtained from the Damxung site during the Secondary Tibetan Plateau Science Experiment (TIPEX) in 1998 are used to study the characteristics of the turbulent spectra, turbulence transport, and the dissipation rates of turbulent kinetic energy, temperature variance, and humidity variance in the middle area of the Tibetan Plateau. The turbulent spectra of wind velocity, potential temperature, and humidity satisfy the-2/3 power law in the high frequency range. Horizontal transportation of heat and water vapor is negligible compared with vertical transportation under strong unstable conditions, and as the stability parameter z/L increases (where z is the observational height, and L is the Monin Obukhov length), horizontal transportation becomes dominant under near-neutral, neutral, and stable conditions. The non-dimensional temperature and humidity variances are 20% less than the temperature and humidity gradient variances. These deficits appear to increase as the absolute stability parameter increases. Moreover, the effects of turbulence transportation and pressure variance exist throughout the entire stability region.  相似文献   

14.
强风天气下边界层结构特征   总被引:2,自引:0,他引:2  
近地层观测的强风运动表明,叠加在平均流动之上的脉动通常有两种,一种是随机的湍流脉动,还有一种具有相干结构的阵风扰动。分析表明,上层强风的剪切运动产生阵风,并向下传递能量,对近地层的通量传输起到重要作用。本文利用北京325 m气象塔、位于海拔1257 m的妙峰山测风塔和位于海拔1688 m的灵山测风塔的资料,分析了强风天气下,边界层上层出现阵风并向下传递的过程,进一步证实无论在近地层还是边界层上层,强风期间,叠加在平均流动上除了高频湍流脉动之外,还有周期为1~10分钟的阵风,即相干结构。阵风峰期有下沉运动,阵风谷期有上升运动。这些相干结构在边界层上层产生,向下运动和传播过程中受到平均气流梯度的切变作用和地面摩擦,破碎为湍流结构。边界层上层的阵风和湍流产生的动量通量向下传递,使得强风期间,边界层中阵风和湍流对通量具有同样的输送能力,对边界层中沙尘、污染物等气溶胶的传输具有重要作用。本研究为模式中进行通量输送参数化方案的修正提供了观测和理论依据。  相似文献   

15.
The boundary layer in the warm sector of a moderately deepening winter cyclone during the Experiment on Rapidly Intensifying Cyclones over the Atlantic (ERICA) is studied near the cold front. Data from the National Center for Atmospheric Research Electra research aircraft are used to examine mean and turbulence quantities. The aircraft data and supplemental data from ships, drifting buoys and moored buoys reveal an equivalent-barotropic pressure field. The area is found to be dominated by gradients in temperature and in turbulent fluxes, with changes occurring over 100 km horizontally being comparable to changes over 350 m vertically. The horizontal components of the gradients are found to be a maximum in a direction perpendicular to the front. Cross-sections perpendicular to the front are used to illustrate boundary-layer structure. Profiles of wind speed, stress, wind direction and stress direction are estimated from an Ekman model that is modified to take into account the equivalent-barotropic pressure field. Comparison of profiles from the model to the aircraft-measured data show reasonable agreement far from the front (100 km) when the model uses a constant eddy viscosity of approximately 6 kg m–1 s–1. Near the front there is less agreement with the model. Profiles of turbulent fluxes of momentum, heat and latent heat are divergent, with along-wind momentum flux negative and decreasing upward, cross-wind momentum flux positive and increasing upward, and heat flux and latent heat flux small, positive and decreasing upward. Far from the front, the turbulent kinetic energy budget shows that dissipation balances shear production. However, near-front behavior has an imbalance at low altitude, with shear production appearing as a TKE sink.  相似文献   

16.
大理近地层山谷盆地湖陆风及湍流特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
研究湖陆风特征不仅能够为提高天气气候的预测能力奠定基础,而且对风能资源的开发利用等具有重要的实用意义。利用大理国家气候观象台近地面通量观测系统的2007年3月-2008年5月资料,采用涡动相关法等分析了大理近地层中湖陆风、峡谷风特征及形成原因和影响因素。结果表明:大理地区白天以东风和东南风为主,夜间以西风和西南风为主。进一步对湍流和湍流通量特征分析发现,大理地区白天不稳定层结多于夜间;湍流强度白天强于夜间,并且随着风速的增大而减小;湍流通量具有明显的日变化特征,热量交换形式以潜热为主。  相似文献   

17.
Aircraft turbulence data from the Autonomous Ocean Sampling Network project were analyzed and compared to the Coupled Ocean–Atmosphere Response Experiment (COARE) bulk parametrization of turbulent fluxes in an ocean area near the coast of California characterized by complex atmospheric flow. Turbulent fluxes measured at about 35 m above the sea surface using the eddy-correlation method were lower than bulk estimates under unstable and stable atmospheric stratification for all but light winds. Neutral turbulent transfer coefficients were used in this comparison because they remove the effects of mean atmospheric conditions and atmospheric stability. Spectral analysis suggested that kilometre-scale longitudinal rolls affect significantly turbulence measurements even near the sea surface, depending on sampling direction. Cross-wind sampling tended to capture all the available turbulent energy. Vertical soundings showed low boundary-layer depths and high flux divergence near the sea surface in the case of sensible heat flux but minimal flux divergence for the momentum flux. Cross-wind sampling and flux divergence were found to explain most of the observed discrepancies between the measured and bulk flux estimates. At low wind speeds the drag coefficient determined with eddy correlation and an inertial dissipation method after corrections were applied still showed high values compared to bulk estimates. This discrepancy correlated with the dominance of sea swell, which was a usually observed condition under low wind speeds. Under stable atmospheric conditions measured sensible heat fluxes, which usually have low values over the ocean, were possibly affected by measurement errors and deviated significantly from bulk estimates.  相似文献   

18.
An urban canopy model is incorporated into the Nanjing University Regional Boundary Layer Model. Temperature simulated by the urban canopy model is in better agreement with the observation, especially in the night time, than that simulated by the traditional slab model. The coupled model is used to study the effects of building morphology on urban boundary layer and meteorological environment by changing urban area, building height, and building density.It is found that when the urban area is expanded, the urban boundary layer heat flux, thermal turbulence, and the turbulent momentum flux and kinetic energy all increase or enhance, causing the surface air temperature to rise up. The stability of urban atmospheric stratification is affected to different extent at different times of the day.When the building height goes up, the aerodynamic roughness height, zero plane displacement height of urban area, and ratio of building height to street width all increase. Therefore, the increase in building height results in the decrease of the surface heat flux, urban surface temperature, mean wind speed, and turbulent kinetic energy in daytime. While at night, as more heat storage is released by higher buildings, thermal turbulence is more active and surface heat flux increases, leading to a higher urban temperature.As the building density increases, the aerodynamic roughness height of urban area decreases, and the effect of urban canopy on radiation strengthens. The increase of building density results in the decrease in urban surface heat flux, momentum flux, and air temperature, the increase in mean wind speed, and the weakening of turbulence in the daytime. While at night, the urban temperature increases due to the release of more heat storage.  相似文献   

19.
北京北郊冬季大风过程湍流通量演变特征的分析研究   总被引:4,自引:0,他引:4  
张宏升  刘新建  朱好 《大气科学》2010,34(3):661-668
利用中国科学院大气物理研究所325 m气象观测塔1993年12月~1994年1月大气边界层实验资料, 计算分析了大风过境过程中47 m和120 m高度湍流通量演变特征及其影响因子, 以及与风速、 稳定度等参数的关系。结果表明: 大风过程对近地面层的物质能量输送有着重要影响, 大风之前出现短时间动量上传和热量下传; 大风过程中的湍流通量数值明显高于过境后, 水平方向湍流通量数值和能量增加幅度大于垂直方向; 当风速大于临界值5 m/s时, 湍流通量与风速、 湍流动能的相关迅速增大; 湍流谱特征表现为湍流能量的低频部分增加、 湍流谱曲线变宽; 大风能强烈影响近地面层的能量收支。  相似文献   

20.
The kinetic energy variations of mean flow and turbulence at three levels in the surface layer were calculated by using eddy covariance data from observations at Jinta oasis in 2005 summer.It is found that when the mean horizontal flow was stronger,the turbulent kinetic energy was increased at all levels,as well as the downward mean wind at the middle level.Since the mean vertical flow on the top and bottom were both negligible at that time,there was a secondary circulation with convergence in the upper half and divergence in the lower half of the column.After consideration of energy conversion,it was found that the interaction between turbulence and the secondary circulation caused the intensification of each other.The interaction reflected positive feedback between turbulence and the vertical shear of the mean flow.Turbulent sensible and latent heat flux anomaly were also analyzed.The results show that in both daytime and at night,when the surface layer turbulence was intensified as a result of strengthened mean flow,the sensible heat flux was decreased while the latent heat flux was increased.Both anomalous fluxes contributed to the cold island effect and the moisture island effect of the oasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号