首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bulk-rock geochemical compositions of hypabyssal kimberlites,emplaced through the Archaean Kaapvaal craton and ProterozoicNamaqua–Natal belt, are used to estimate close-to-primarymagma compositions of Group I kimberlites (Mg-number = 0·82–0·87;22–28 wt % MgO; 21–30 wt % SiO2; 10–17 wt% CaO; 0·2–1·7 wt % K2O) and Group II kimberlites(Mg-number = 0·86–0·89; 23–29 wt %MgO; 28–36 wt % SiO2; 8–13 wt % CaO; 1·6–4·6wt % K2O). Group I kimberlites are distinguished from GroupII by their lower Ba/Nb (<12), Th/Nb (<1·1) andLa/Nb (<1·1) but higher Ce/Pb (>22) ratios. Thedistinct rare earth element patterns of the two types of kimberlitesindicate a more highly metasomatized source for Group II kimberlites,with more residual clinopyroxene and less residual garnet. Thesimilarity of Sr and Nd isotope ratios and diagnostic traceelement ratios (Ce/Pb, Nb/U, La/Nb, Ba/Nb, Th/Nb) of Group Ikimberlites to ocean island basalts (OIB), but more refractoryMg-numbers and Ni contents, are consistent with derivation ofGroup I kimberlites from subcontinental lithospheric mantle(SCLM) that has been enriched by OIB-like melts or fluids. Sourceenrichment ages and plate reconstructions support a direct associationof these melts or fluids with Mesozoic upwelling beneath southernAfrica of a mantle plume(s), at present located beneath thesouthern South Atlantic Ocean. In contrast, the geochemicalcharacteristics of both on- and off-craton Group II kimberlitesshow strong similarity to calc-alkaline magmas, particularlyin their Nb and Ta depletion and Pb enrichment. It is suggestedthat Group II kimberlites are derived from both Archaean andProterozoic lithospheric mantle source regions metasomatizedby melts or fluids associated with ancient subduction events,unrelated to mantle plume upwelling. The upwelling of mantleplumes beneath southern Africa during the Mesozoic, at the timeof Gondwana break-up, may have acted as a heat source for partialmelting of the SCLM and the generation of both Group I and GroupII kimberlite magmas. KEY WORDS: kimberlite; geochemistry; petrogenesis; mantle plumes; South Africa  相似文献   

2.
The Origin and Evolution of the Kaapvaal Cratonic Lithospheric Mantle   总被引:5,自引:0,他引:5  
A detailed petrological and geochemical study of low-temperatureperidotite xenoliths from Kimberley and northern Lesotho ispresented to constrain the processes that led to the magmaphileelement depletion of the Kaapvaal cratonic lithospheric mantleand its subsequent re-enrichment in Si and incompatible traceelements. Whole-rocks and minerals have been characterized forRe–Os isotope compositions, and major and trace elementconcentrations, and garnet and clinopyroxene for Lu–Hfand Sm–Nd isotope compositions. Most samples are characterizedby Archaean Os model ages, low Al, Fe and Ca contents, highMg/Fe, low Re/Os, very low (< 0·1 x chondrite) heavyrare earth element (HREE) concentrations and a decoupling betweenNd and Hf isotope ratios. These features are most consistentwith initial melting at 3·2 Ga followed by metasomatismby hydrous fluids, which may have also caused additional meltingto produce a harzburgitic residue. The low HREE abundances ofthe peridotites require that extensive melting occurred in thespinel stability field, possibly preceded by some melting inthe presence of garnet. Fractional melting models suggest that30% melting in the spinel field or 20% melting in the garnetfield followed by 20% spinel-facies melting are required toexplain the most melt-depleted samples. Garnet Nd–Hf isotopecharacteristics indicate metasomatic trace element enrichmentduring the Archaean. We therefore suggest a model includingshallow ridge melting, followed by metasomatism of the Kaapvaalupper mantle in subduction zones surrounding cratonic nuclei,probably during amalgamation of smaller pre-existing terranesin the Late Archaean (2·9 Ga). The fluid-metasomatizedresidua have subsequently undergone localized silicate meltinfiltration that led to clinopyroxene ± garnet enrichment.Calculated equilibrium liquids for clinopyroxene and their Hf–Ndisotope compositions suggest that most diopside in the xenolithscrystallized from an infiltrating kimberlite-like melt, eitherduring Group II kimberlite magmatism at 200–110 Ma (Kimberley),or shortly prior to eruption of the host kimberlite around 90Ma (northern Lesotho). KEY WORDS: Kaapvaal craton; lithospheric mantle; metasomatism; Nd–Hf isotopes; Re–Os isotopes  相似文献   

3.
BAKER  A. J. 《Journal of Petrology》1990,31(1):243-260
Stable isotope compositions of Ivrea Zone marbles and associatedlithologies are in general heterogeneous. The oxygen isotopecomposition of quartz in pelites ranges from 18O +9 to + 17(SMOW) and does not vary systematically with metamorphic grade.Peridotites retain oxygen isotope signatures close to mantlevalues. Marble calcites vary in isotopic composition from 13C + 2(PDB),180 +24(SMOW)to 13C –6(PDB), 18O + 13 (SMOW).Depletions in 18O and 13C may be explained dominantly by interactionwith fluids derived from within the observed metasedimentarysequence during prograde metamorphism. 18O and 13C show gradients of greater than 5/m across marblemargins and within marbles. The preservation of such isotopicgradients is not consistent with the long-term presence of grain-boundary-scaleinterconnected fluid films in and around marbles. There is ageneral lowering of 18O within individual marble bodies althoughlarge carbon and oxygen isotopic gradients are present. Calcitein marbles may attain oxygen isotope equilibrium, but rarelycarbon isotope equilibrium, with surrounding metapelites. Infiltrationof marbles must involve a component of channelized fluid flow. The general lack of isotopic equilibration within the sequencerequires channelized fluid flow and limited fluid-rock ratios.Large pervasive mantle to crust fluid fluxes are not consistentwith the observations. *Present address: Natural Environment Research Council, Polaris House, North Star Avenue, Swindon SN2 1EU, England  相似文献   

4.
Marbles and metapelites from the Reynolds Range Group (centralAustralia) were regionally metamorphosed at low pressure duringM2 at 1.6 Ga, M2 ranged in grade from greenschist to granulitefacies along the length of the Reynolds Range, and overprinted1.78 Ga granites and their contact aureoles in the ReynoldsRange Group metasediments. At all M2 grades the marbles andmetapelites have highly variable oxygen isotope ratios [marbles:18O(carb) 14–20%; metapelites: 18O 6–14%). Similarly, 1.78 Ga granites have highly variable oxygen isotope ratios(18O 5–13%), with the lowest values occurring at thegranite margins. In all rock types, the lowest oxygen isotopevalues are consistent with the infiltration of channelled magmaticand/or meteoric fluids. The variable lowering of oxygen isotopevalues resulted from pre-M2 contact metamorphism and fluid—rockinteraction around the 1.78 Ga granites. In contrast, mineralassemblages in the marbles define a trend of increasing XCO2with increasing grade from <0.05 (greenschist facies) to0.7–1.0 (granulite facies). This, together with the lackof regionally systematic resetting of oxygen isotope ratios,implies that there was little fluid—rock interaction duringprograde regional metamorphism. KEY WORDS: low pressure; polymetamorphism; fluids; stable isotopes; petrology *Corresponding author Fax: 61–3–94791272. e-mail: geoisb{at}lure.latrobe.edu.au  相似文献   

5.
A suite of dolerite dykes from the Ahlmannryggen region of westernDronning Maud Land (Antarctica) forms part of the much moreextensive Karoo igneous province of southern Africa. The dykecompositions include both low- and high-Ti magma types, includingpicrites and ferropicrites. New 40Ar/39Ar age determinationsfor the Ahlmannryggen intrusions indicate two ages of emplacementat 178 and 190 Ma. Four geochemical groups of dykes have beenidentified in the Ahlmannryggen region based on analyses of60 dykes. The groups are defined on the basis of whole-rockTiO2 and Zr contents, and reinforced by rare earth element (REE),87Sr/86Sr and 143Nd/144Nd isotope data. Group 1 were intrudedat 190 Ma and have low TiO2 and Zr contents and a significantArchaean crustal component, but also evidence of hydrothermalalteration. Group 2 dykes were intruded at 178 Ma; they havelow to moderate TiO2 and Zr contents and are interpreted tobe the result of mixing of melts derived from an isotopicallydepleted source with small melt fractions of an enriched lithosphericmantle source. Group 3 dyke were intruded at 190 Ma and formthe most distinct magma group; these are largely picritic withsuperficially mid-ocean ridge basalt (MORB)-like chemistry (flatREE patterns, 87Sr/86Sri 0·7035, Ndi 9). However, theyhave very high TiO2 (4 wt %) and Zr (500 ppm) contents, whichis not consistent with melting of MORB-source mantle. The Group3 magmas are inferred to be derived by partial melting of astrongly depleted mantle source in the garnet stability field.This group includes several high Mg–Fe dykes (ferropicrites),which are interpreted as high-temperature melts. Some Group3 dykes also show evidence of contamination by continental crust.Group 4 dykes are low-K picrites intruded at 178 Ma; they havevery high TiO2–Zr contents and are the most enriched magmagroup of the Karoo–Antarctic province, with ocean-islandbasalt (OIB)-like chemistry. Dykes of Group 1 and Group 3 aresub-parallel (ENE–WSW) and both groups were emplaced at190 Ma in response to the same regional stress field, whichhad changed by 178 Ma, when Group 2 and Group 4 dykes were intrudedalong a dominantly NNE–SSW strike. KEY WORDS: flood basalt; depleted mantle; enriched mantle; Ahlmannryggen; Karoo dyke  相似文献   

6.
The ascent history of the Horoman peridotite complex, Hokkaido,northern Japan, is revised on the basis of a detailed studyof large ortho- and clinopyroxene grains 1 cm in size (megacrysts)in the Upper Zone of the complex. The orthopyroxene megacrystsexhibit distinctive M-shaped Al zoning patterns, which werenot observed in porphyroclastic grains less than 5 mm in sizedescribed in previous studies. Moreover, the Al and Ca contentsof the cores of the orthopyroxene megacrysts are lower thanthose of the porphyroclasts. The Upper Zone is inferred to haveresided not only at a higher temperature than previously suggestedbut also at a higher pressure (1070°C, 2·3 GPa) thanthe Lower Zone (950°C, 1·9 GPa), in the garnet stabilityfield, before the ascent of the two zones. The Horoman complexprobably represents a 12 ± 5 km thick section of lithosphericmantle with an 10 ± 8°C/km vertical thermal gradient.The current thickness of the Horoman complex is 3 km, whichis a result of shortening of the lithospheric mantle by 0·25± 0·1 during its ascent. The Upper Zone appearsto have experienced a heating event during its ascent throughthe spinel stability field, with a peak temperature as highas 1200°C. The effect of heating decreases continuouslytowards the base of the complex, and the lowermost part of theLower Zone underwent very minor heating at a pressure higherthan 0·5 GPa. The uplift and associated deformation,as well as heating, was probably driven by the ascent of a hotasthenospheric upper-mantle diapir into the Horoman lithosphere. KEY WORDS: Horoman; PT trajectory; thermal history; Al diffusion in pyroxene; geothermobarometry  相似文献   

7.
Pan-African high-grade metamorphism in the Kerala KhondaliteBelt (South India) led to the in situ formation of garnet-bearingleucosomes (L1) in sodic quartz—alkali feldspar—biotitegneisses. Microtextures, mineralogy and the geochemical characteristicsof in situ leucosomes (L1) and gneiss domains (GnD) indicatethat the development of leucosomes was mainly controlled bythe growth of garnet at the expense of biotite. This is documentedby the selective transfer of FeO, MgO, , Sm and the heavy rareearth elements into the L1 domains. P-T constraints (T>800C,P>6kbar, aH2O0.3) suggest that the leucosomes were formedthrough complete melting of biotite in fluid-absent conditions,following the model reaction Biotite+Alkali feldspar+QuartzlGarnet+Ilmenite+Melt.The fraction of melt generated during this process was low (<10vol.%). The identical size of the leucosomes as well as theirhomogeneous and isotropic distribution at outcrop scale, whichlacks any evidence for melt segregation, suggest that the migmatiteremained a closed system. Subsequent to migmatization, the leptyniticgneisses were intruded by garnet-bearing leucogranitic melts(L2), forming veins parallel and subperpendicular to the foliation.The leucogranites are rich in potassium (K2O5.5 wt%), (Ba400p.p.m.) and Sr (300 p.p.m.), and exhibit low concentrationsof Zr (40 p.p.m.), Th (<1 p.p.m.) and (<10 p.p.m.). Thechondrite-normalized REE spectra show low abundances (LaN20,LuN3) and are moderately fractionated (LaN/LuN7). An Eu anomalyis absent or weakly negative. The higher 87Sr/86Sr ratio at550 Ma (0.7345) compared with the migmatite (0.7164) precludesa direct genetic relationship between leptynitic gneisses andleucogranites at Manali.Nevertheless, the chemical and mineralogicalcompositions of the leuocogranites strongly favour a derivationthrough fluid-absent biotite melting of isotopically distinctbut chemically comparable Manali-type gneisses. The undersaturationof Zr, Th and REE, a typical feature of leucogranitic meltsgenerated during granulite facies anatexis of psammo-peliticlithologies and attributed to disequilibrium melting with incompletedissolution of accessory phases (zircon, monazite), is weaklydeveloped in the leucogranites of Manali.It is concluded thatthis is mainly due to the sluggish migration of the melts instatic conditions, which facilitated equilibration with therestitic gneisses. *Fax: 0228-732763; e-mail: ingo.braun{at}uni-bonn.de  相似文献   

8.
Zircon Hf isotopic data from a zoned pluton of the Moonbi supersuite,New England batholith, eastern Australia, are consistent withmagma mixing between two silicic melts, each derived from isotopicallydistinct sources. Although zircons from three zones within theWalcha Road pluton give a U–Pb crystallization age of249 ± 3 Ma, zircon populations from each zone have arange in Hf. Zircons from the mafic hornblende–biotitemonzogranite pluton margin and intermediate zones have Hf +5to +11, whereas those from the more felsic centre of the plutonhave Hf +7 to +16, representing a total variation of 11 Hfunits. The Lu–Hf depleted mantle model ages range from650 to 250 Ma, with the younger zircons present only in thefelsic pluton centre. The variation in Hf indicates the involvementof silicic melts from at least two sources, one a crustal componentwith a Neoproterozoic model age and the other a primitive mantle-derivedcomponent with model ages similar to the U–Pb crystallizationage of the pluton. The zircons reflect the isotopic compositionsof the different proportions of crustal-derived silicic melt,relative to mantle-derived silicic melt, between melt generationand final pluton construction. The Walcha Road pluton is consideredto have formed by incremental assembly of progressively morefelsic melt batches resulting from mixing, replenishment andcrystal–melt separation, with final pluton constructioninvolving mechanical concentration as zones of crystal mush.The zoned pluton and, more broadly, the Moonbi supersuite provideexamples of magma mixing by which the more silicic units havemore juvenile isotopic compositions as a result of increasingproportions of residual melt from basalt fractionation, relativeto crustal partial melt. KEY WORDS: Australia; granite magma mixing; zircon; zoned pluton; Hf isotopes  相似文献   

9.
Melt Generation by Plumes: A Study of Hawaiian Volcanism   总被引:18,自引:9,他引:9  
The mantle plume underlying the Hawaiian Swell has been modellednumerically using a stationary steady axisymmetric plume undera solid conducting lid. A method of calculating the rate ofmelt production from the plume has been developed, and the totalmelt production rate, the residual depth anomaly and the geoidanomaly have been used to constrain the model. The plume hasa central potential temperature of 1558 ?C and the mechanicalboundary layer is 72 km thick. An average of 6?6% melting occursin a melt-producing region which has a vertical extent of 55km and a radial extent of 130 km to produce 0?16 km3/y of melt.A parameterization of melt composition has been developed thatis consistent with laboratory experiments, with models of MORBgeneration, and with primitive Hawaiian tholeiites containing 16% MgO. There is no evidence that the major and minor elementconcentrations in the source region of Hawaiian tholeiites differfrom those in the source region of MORB. The model is consistentwith the REE contents of Kilauean tholeiites if the source regionhas primitive REE contents. The viscosity of the low-viscositylayer is constrained to be 1016m2/s.  相似文献   

10.
Leucocratic and Gabbroic Xenoliths from Hualalai Volcano, Hawai'i   总被引:1,自引:0,他引:1  
A diverse range of crustal xenoliths is hosted in young alkalibasalt lavas and scoria deposits (erupted 3–5 ka) at thesummit of Huallai. Leucocratic xenoliths, including monzodiorites,diorites and syenogabbros, are distinctive among Hawaiian plutonicrocks in having alkali feldspar, apatite, zircon and biotite,and evolved mineral compositions (e.g. albitic feldspar, clinopyroxeneMg-number 67–78). Fine-grained diorites and monzodioritesare plutonic equivalents of mugearite lavas, which are unknownat Huallai. These xenoliths appear to represent melt compositionsfalling along a liquid line of descent leading to trachyte—amagma type which erupted from Huallai as a prodigious lava flowand scoria cone at 114 ka. Inferred fractionating assemblages,MELTS modeling, pyroxene geobarometry and whole-rock norms allpoint to formation of the parent rocks of the leucocratic xenolithsat 3–7 kbar pressure. This depth constraint on xenolithformation, coupled with a demonstrated affinity to hypersthene-normativebasalt and petrologic links between the xenoliths and the trachyte,suggests that the shift from shield to post-shield magmatismat Huallai was accompanied by significant deepening of the activemagma reservoir and a gradual transition from tholeiitic toalkalic magmas. Subsequent differentiation of transitional basaltsby fractional crystallization was apparently both extreme—culminatingin >5·5 km3 of trachyte—and rapid, at 2·75x 106 m3 magma crystallized/year. KEY WORDS: geothermobarometry; magma chamber; xenolith; cumulate; intensive parameters  相似文献   

11.
The formation, age and trace element composition of zircon andmonazite were investigated across the prograde, low-pressuremetamorphic sequence at Mount Stafford (central Australia).Three pairs of inter-layered metapelites and metapsammites weresampled in migmatites from amphibolite-facies (T 600°C)to granulite-facies conditions (T 800°C). Sensitive high-resolutionion microprobe U–Pb dating on metamorphic zircon rimsand on monazite indicates that granulite-facies metamorphismoccurred between 1795 and 1805 Ma. The intrusion of an associatedgranite was coeval with metamorphism at 1802 ± 3 Ma andis unlikely to be the heat source for the prograde metamorphism.Metamorphic growth of zircon started at T 750°C, well abovethe pelite solidus. Zircon is more abundant in the metapelites,which experienced higher degrees of partial melting comparedwith the associated metapsammites. In contrast, monazite growthinitiated under sub-solidus prograde conditions. At granulite-faciesconditions two distinct metamorphic domains were observed inmonazite. Textural observations, petrology and the trace elementcomposition of monazite and garnet provide evidence that thefirst metamorphic monazite domain grew prior to garnet duringprograde conditions and the second in equilibrium with garnetand zircon close to the metamorphic peak. Ages from sub-solidus,prograde and peak metamorphic monazite and zircon are not distinguishablewithin error, indicating that heating took place in less than20 Myr. KEY WORDS: accessory phases; anatexis; trace element partitioning; U–Pb dating  相似文献   

12.
Metapelitic migmatites at Brattstrand Bluffs, East Antarctica,preserve granulite assemblages and a complex deformational history.Crystallized granitic melt accounts for 25% of exposed rocks,and was produced by biotite dehydration-melting reactions inthe host metapelite. Variable degrees of melt production andextraction resulted in a range of bulk compositions in the residualmetapelite, from quartz-rich migmatites to restitic quartz-absentpelite. Decompressional reaction textures indicate 11 km ofexhumation after peak metamorphism at P—T conditions of6 kbar and 860C Decompression occurred during a single cycleof partial melting and melt crystallization at 500 Ma, and wassynchronous with tectonic unroofing of the Brattstrand Bluffsmigmatites along ductile shear zones. Exhumation has been proposedas a cause of dehydration melting in the Himalaya and elsewhere,but melting at Brattstrand Bluffs was ultimately driven by thetectonic perturbation and subsequent thermal relaxation responsiblefor high metamorphic temperatures. Exhumation did not drivemelting reactions, but it is likely that the presence of meltfocused deformation in the migmatites and thus promoted exhumation. KEY WORDS: decompression; exhumation; granulite; melting; migmalite *Corresponding author.  相似文献   

13.
Komatiites from the 2 Ga Jeesiörova area in Finnish Laplandhave subchondritic Al2O3/TiO2 ratios like those in Al-depletedkomatiites from Barberton, South Africa. They are distinct inthat their Al abundances are higher than those of the Al-depletedrocks and similar to levels in Al-undepleted komatiites. Moderatelyincompatible elements such as Ti, Zr, Eu, and Gd are enriched.Neither majorite fractionation nor hydrous melting in a supra-subductionzone setting could have produced these komatiites. Their highconcentrations of moderately incompatible elements may haveresulted from contamination of their parental melt through interactionwith metasomatic assemblages in the lithospheric mantle or enrichmentof their mantle source in basaltic melt components. Re–Osisotope data for chromite from the Jeesiörova rocks yieldan average initial 187Os/188Os of 0·1131 ± 0·0006(2), Os(I) = 0·1 ± 0·5. These data, coupledwith an initial Nd of +4, indicate that melt parental to thekomatiites interacted minimally with ancient lithospheric mantle.If their mantle source was enriched in a basaltic component,the combined Os–Nd isotopic data limit the enrichmentprocess to within 200 Myr prior to the formation of the komatiites.Their Os–Nd isotopic composition is consistent with derivationfrom the contemporaneous convecting upper mantle. KEY WORDS: Finnish Lapland; Jeesiörova; komatiites; mantle geochemistry; petrogenesis; redox state; Re/Os isotopes; Ti enrichment  相似文献   

14.
The anhydrous phase relations of an uncontaminated (primitive),ferropicrite lava from the base of the Early Cretaceous Paraná–Etendekacontinental flood basalt province have been determined between1 atm and 7 GPa. The sample has high contents of MgO (14·9wt %), FeO* (14·9 wt %) and Ni (660 ppm). Olivine phenocrystshave maximum Fo contents of 85 and are in equilibrium with thebulk rock, assuming a of 0·32. A comparison of our results with previous experimental studiesof high-Mg rocks shows that the high FeO content of the ferropicritecauses an expansion of the liquidus crystallization field ofgarnet and clinopyroxene relative to olivine; orthopyroxenewas not observed in any of our experiments. The high FeO contentalso decreases solidus temperatures. Phase relations indicatethat the ferropicrite melt last equilibrated either at 2·2GPa with an olivine–clinopyroxene residue, or at 5 GPawith a garnet–clinopyroxene residue. The low bulk-rockAl2O3 content (9 wt %) and high [Gd/Yb]n ratio (3·1)are consistent with the presence of residual garnet in the ferropicritemelt source and favour high-pressure melting of a garnet pyroxenitesource. The garnet pyroxenite may represent subducted oceaniclithosphere entrained by the upwelling Tristan starting mantleplume head. During adiabatic decompression, intersection ofthe garnet pyroxenite solidus at 5 GPa would occur at a mantlepotential temperature of 1550°C and yield a ferropicriteprimary magma. Subsequent melting of the surrounding peridotiteat 4·5 GPa may be restricted by the thickness of theoverlying sub-continental lithosphere, such that dilution ofthe garnet pyroxenite melt component would be significantlyless than in intra-oceanic plate settings (where the lithosphereis thinner). This model may explain the limited occurrence offerropicrites at the base of continental flood basalt sequencesand their apparent absence in ocean-island basalt successions. KEY WORDS: continental flood basalt; ferropicrite; mantle heterogeneity; mantle melting; phase relations; pyroxenite  相似文献   

15.
Staurolite Stability in a Part of the System Fe-Al-Si-O-H   总被引:1,自引:0,他引:1  
The following reactions, believed to be analogous to those whichdefine the maximum extent of staurolite-quartz compatibilityat moderate oxygen fugacity in metamorphic rocks, have beendetermined in terms of hydrous fluid pressure and temperature.The O: H composition ratio of the fluid was controlled withthe quartz-fayalite-magnetite (QFM) buffer assemblage. (I) Fe-staurolitequartz almandine+sillimanite+water. (II) Fe-staurolitequartz Fe-cordierite+sillimanite+water. (III) Fe-chloritoid+sillimanite Fe-staurolite+quartz+water. In addition, two reactions which delineate part of the stabilitylimits of Fe-cordierite have been investigated: (IV) Fe-cordierite almandine+sillimanite+quartz. (V) Fe-cordierite hercynite+sillimanite+quartz. The experimental information has been used to predict boundariesto the PT fields of all quartz and QFM-buffered fluid-bearingassemblages involving Fe-staurolite, Fe-cordierite, Fe-chloritoid,almandine, and sillimanite. Using information from this andother studies, three mineral assemblages are recognized whichare stable at similar temperatures but different fluid pressures.In order of decreasing pressure they are: (a) Above 5 kb: staurolite, quartz, kyanite, fluid; (b) Between 1.5 and 8.5 kb (outer limits; in natural rocks thisfield will have a much narrower pressure range) staurolite,quartz, cordierite, fluid. (c) Below 3.5 kb: Fe-cordierite, andalusite, fluid of oxygenfugacity equivalent to the quartz-fayalite-magnetite assemblage. These phase assemblages may be the equivalents of naturallyoccurring mineral facies, but this must be proven in the field.In addition the absence of cordierite from rocks of appropriatecomposition and temperature of formation betokens total pressuresgreater than 3–5 kb. 1Present address: Grant Institute of Geology, West Mains Road, Edinburgh 9, Scotland.  相似文献   

16.
Coronas in anorthosites have resulted from reactions betweenplagioclase and olivine. The general types are: (I) Olivine-Opx-Cpx II-Gnt-Cpx I+Spinel. (II) Olivine-Opx-Cpx II-Hbl-Gnt with inclusions of Cpx I+Spinel. (III) Opx-Cpx II-Hbl-Gnt. The evolutionary sequence appears to be Type I II III. CpxI has low Jd/Ts, whereas Cpx II has lower Al and higher Jd/Ts.The orthopyroxenes are low in Al and appear to be in equilibriumwith Cpx II. The garnets resemble those of eclogites; the amphiboleis pargasite. A two-stage reaction sequence is suggested: (1) Oliv+Plag Al-Opx+Al-Cpx+Spinel. (2) AI-Opx+Al-Cpx+Spinel+Plag Gnt÷low-Al Opx+low-AlCpx. Formation of amphibole followed reaction (2) in all cases. Comparisons of the mineralogy with experimental work suggestthat the anorthosites crystallized below 8 kb, and that pressureincreased to at least 10 kb during slow cooling. Symplectiticbreakdown of garnet to orthopyroxene+plagioclase+spinel±clinopyroxeneindicates a rapid drop in P at relatively high T. This decompressionis probably related to the formation of the Jotun Nappes.  相似文献   

17.
Melt-Solid Dihedral Angles of Common Minerals in Natural Rocks   总被引:3,自引:0,他引:3  
The melt–solid dihedral angle has been measured in a rangeof igneous rock types, ranging in composition from picrite,through basalt, phonolite, andesite and rhyolite, for the mineralsquartz, leucite, plagioclase, olivine, amphibole and clinopyroxene.Populations of up to 104 true 3-D angles were measured in eachsample using a universal stage mounted on an optical microscope.The median and standard deviation of the angle populations foreach mineral are distinct (plagioclase 25°, with standarddeviation (SD) 11°; clinopyroxene 38°, with SD 14°;olivine 29°, with SD 13°; quartz 18°, with SD 9°;leucite 20°, with SD 11°), with no control by eithermelt composition or degree of approach of the grains to theirequilibrium shapes. KEY WORDS: dihedral angle; textural equilibrium; universal stage  相似文献   

18.
Numerous dykes of ultramafic lamprophyre (aillikite, mela-aillikite,damtjernite) and subordinate dolomite-bearing carbonatite withU–Pb perovskite emplacement ages of 590–555 Ma occurin the vicinity of Aillik Bay, coastal Labrador. The ultramaficlamprophyres principally consist of olivine and phlogopite phenocrystsin a carbonate- or clinopyroxene-dominated groundmass. Ti-richprimary garnet (kimzeyite and Ti-andradite) typically occursat the aillikite type locality and is considered diagnosticfor ultramafic lamprophyre–carbonatite suites. Titanianaluminous phlogopite and clinopyroxene, as well as comparativelyAl-enriched but Cr–Mg-poor spinel (Cr-number < 0.85),are compositionally distinct from analogous minerals in kimberlites,orangeites and olivine lamproites, indicating different magmageneses. The Aillik Bay ultramafic lamprophyres and carbonatiteshave variable but overlapping 87Sr/86Sri ratios (0·70369–0·70662)and show a narrow range in initial Nd (+0·1 to +1·9)implying that they are related to a common type of parentalmagma with variable isotopic characteristics. Aillikite is closestto this primary magma composition in terms of MgO (15–20wt %) and Ni (200–574 ppm) content; the abundant groundmasscarbonate has 13CPDB between –5·7 and –5,similar to primary mantle-derived carbonates, and 18OSMOW from9·4 to 11·6. Extensive melting of a garnet peridotitesource region containing carbonate- and phlogopite-rich veinsat 4–7 GPa triggered by enhanced lithospheric extensioncan account for the volatile-bearing, potassic, incompatibleelement enriched and MgO-rich nature of the proto-aillikitemagma. It is argued that low-degree potassic silicate to carbonatiticmelts from upwelling asthenosphere infiltrated the cold baseof the stretched lithosphere and solidified as veins, therebycrystallizing calcite and phlogopite that were not in equilibriumwith peridotite. Continued Late Neoproterozoic lithosphericthinning, with progressive upwelling of the asthenosphere beneatha developing rift branch in this part of the North Atlanticcraton, caused further veining and successive remelting of veinsplus volatile-fluxed melting of the host fertile garnet peridotite,giving rise to long-lasting hybrid ultramafic lamprophyre magmaproduction in conjunction with the break-up of the Rodinia supercontinent.Proto-aillikite magma reached the surface only after coatingthe uppermost mantle conduits with glimmeritic material, whichcaused minor alkali loss. At intrusion level, carbonate separationfrom this aillikite magma resulted in fractionated dolomite-bearingcarbonatites (13CPDB –3·7 to –2·7)and carbonate-poor mela-aillikite residues. Damtjernites maybe explained by liquid exsolution from alkali-rich proto-aillikitemagma batches that moved through previously reaction-lined conduitsat uppermost mantle depths. KEY WORDS: liquid immiscibility; mantle-derived magmas; metasomatism, Sr–Nd isotopes; U–Pb geochronology  相似文献   

19.
The Ni-S System and Related Minerals   总被引:1,自引:0,他引:1  
The system Ni-S has been studied systematically from 200? to1, 030? C by means of evacuated, sealed silica-glass tube experimentsand differential thermal analyses. Compounds in the system areNi3S2 (and a high temperature, non-quenchable Ni3?S2 phase),Ni7S6, Ni1–S4 Ni3S4, and NiS2. The geologic occurrenceof the minerals heazlewoodite (Ni2S2), millerite (ßSNi1-2S),polydymite (Ni3S4), and vaesite (NiS2) can now be describedin terms of the stability ranges of their synthetic equivalents. Hexagonal heazlewoodite, which is stoichiometric within thelimit of error of the experiments, inverts on heating to a tetragonalor pseudotetragonal phase at 556? C. This high-temperature phase(Ni3 has a wide field of stability, from 23.5 to 30.5 wt percent sulfur at 600? C, and melts incongruently at 806??3? C.The ßNi7S6 phase inverts to Ni78 at 397? C6 when inequilibrium with Ni3S2, and at 400? C when in equilibrium withNiS. Crystals of Ni7S6 break down to Ni3-S2+NiS at 573??3?C.The low-temperature form of Ni1-S1 corresponding to the mineralmillerite, is rhombohedral, and the high-temperature form hasthe hexagonal NiAs structure. Stoichiometric NiS inverts at379??3?C, whereas Ni1-S with the maximum nickel deficiency invertsat 282??5OC. The Ni1-alphS-NiS2 solvus was determined to 985??3?C,the eutectic temperature of these phases. Stoichiometric NiSis stable at 600?C but breaks down to Ni2-S2 and Ni1-S below797?C, whereas Ni1-S with 38.2 wt per cent sulfur melts congruentlyat 992??3?C. Vaesite does not vary measurably from stoichiometricNiS2 composition, and melts congruently at 1.007?5?C. Polydymitebreaks down to aNi-S? vaesite at 356??3?C. Differential thermalanalyses showed the existence of a two-liquid field in the sulfur-richportion of the system above 991?C and over a wide compositionalrange.  相似文献   

20.
Dehydration-melting experiments from 10 to 20 kbar were performedon a metavolcanoclastic rock containing (in vol. %) biotite(16), amphibole (15) and epidote (13) in addition to plagioclaseand quartz. At 10 and 12.5 kbar traces of biotite and epidoteremain at 850C, amphibole becomes more abundant, and the meltfraction is 5–10 vol. %. These relationships reflect thatthe thermal stability of biotite is lowered in the presenceof epidote through the dehydration-melting reaction biotite+epidote+quartz=amphibole+garnet+alkalifeldspar+melt. Amphibole dehydration-melting produces an additional25 vol. % melt between 875 and 925C. At 15 kbar and 875C themelt fraction is 22 vol. %, amphibole is present in trace amounts,and biotite constitutes 8 vol. %. These relationships suggestthat the curves marking biotite- and amphibole-out intersectclose to 15 kbar, and that the fertility of the rock increasesfrom 10 to 15 kbar at 850C. At 20 kbar the melt fraction isonly 5 vol. % at 850C, amphibole is transformed to omphaciteand biotite constitutes 5% of the mode. This result shows thatthe fertility decreases from 15 to 20 kbar at 850C, mainlybecause much Na is locked up in omphacite. Along active continentalmargins, intrusion of hot mantle-derived magmas is common, andmelting of metavolcanoclastic rocks may be an important granitoid-formingprocess. Intersection of the amphibole- and biotite-out reactionsbetween 12.5 and 15 kbar suggests that fusion of biotite- andhornblende-bearing rocks can produce magmas ranging in compositionfrom granitic (biotite dehydration-melting) to granodioritic(amphibole dehydration-melting) in either order depending onpressure. KEY WORDS: amphibole; biotite; dehydration-melting; epidote; metavolcanoclastic rock *Corresponding author.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号