首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  国内免费   1篇
大气科学   1篇
地球物理   1篇
地质学   8篇
海洋学   1篇
  2009年   1篇
  2005年   3篇
  1996年   3篇
  1994年   1篇
  1989年   1篇
  1979年   1篇
  1968年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
2.
The amplitude of the horizontal magnetic field in the ground between two parallel wires, both carrying an alternating current in the same direction, is likely to have a saddle point if the separation between the wires is small and the frequency is low. The amplitude has a maximum in the vertical direction and a minimum in the horizontal. Rectangular geological structures in the ground which are centered between the wires have a varying effect on the magnetic fields at the surface. In general, the vertical magnetic field “crosses over” at the center of the structure. A shallow and flat lying conductor displays a broad flat type of profile when the horizontal magnetic field between the wires is measured. Changing the structure to a narrower but more conducting one at depth will provide a more pointed but still broad profile. The phase of the horizontal field is also increased. When the structure is a thin vertical dyke, the amplitude of the horizontal magnetic field anomaly due to the dyke rapidly decreases as the depth of the dyke is increased. The phase of the horizontal field is less sensitive to changes in depth of the dyke but is more sensitive to the conductivity ratio of the dyke and the half-space. The amplitude of the vertical magnetic field anomaly due to the dyke is only slightly influenced by conductivity contrast or the depth of the dyke. The phase of the vertical magnetic field, however, is strongly influenced by the conductivity contrast, particularly if the conductivity frequency product is greater than hundred. In essence, the field behaves like that of the conventional vertical loop source, but the fields are uniform over much larger areas. This suggests the possibility of using dip angle measurements for rapid reconnaissance.  相似文献   
3.
Augustine Volcano, a Quaternary volcanic centre of the easternAleutian Arc, produces predominantly andesites and dacites oflow- to medium-K calc-alkaline composition. Mineralogical andmajor element characteristics of representative lavas suggestthat magmatic evolution has been influenced by both crystalfractionation and magma-mixing processes. However, incompatibletrace element variations (e.g. K/Rb) indicate that these evolvedlavas have been contaminated by the mafic arc crust of the underlyingTalkeetna accreted terrane. The limited range of isotope compositionsalso supports the assimilation of non-radiogenic mafic crust(e.g. 87Sr/86Sr = 0.7032–0.7034; 143Nd/144 Nd = 0.51301–0.5130).In addition, Pb-isotope compositions parallel the North Pacificmean oceanic trend (206Pb/204 Pb = 18.3–18.8; 207Pb/204Pb= 15.5–15.6; 208Pb/204Pb = 38.2–38.3) and do notrequire a subducted sediment component in the source. Relativelyhigh (Ba/La) N (0.79–18.10) and B/Be (14.5) ratios do,however, suggest a metasomatic fluid component derived fromthe dehydration of the subducting plate. The thickened continental crust (35 km) of the eastern AleutianArc prevents the ascent of basaltic melts, which fractionateand assimilate at various depths to produce andesitic magmas.These andesites evolve towards more silicic compositions byfractional crystallization. The absence of evidence for a largehigh-level crustal magma chamber implies that the magmatic systembeneath the volcano is young and at an immature stage of evolution. KEY WORDS: Augustine Volcano; Aleutians; assimilation; melasomatism; geochemistry *Corresponding author. Present address: Department of Geology and Geophysics, University of New Orleans, New Orleans, LA 70148, USA  相似文献   
4.
Staurolite Stability in a Part of the System Fe-Al-Si-O-H   总被引:1,自引:0,他引:1  
The following reactions, believed to be analogous to those whichdefine the maximum extent of staurolite-quartz compatibilityat moderate oxygen fugacity in metamorphic rocks, have beendetermined in terms of hydrous fluid pressure and temperature.The O: H composition ratio of the fluid was controlled withthe quartz-fayalite-magnetite (QFM) buffer assemblage. (I) Fe-staurolitequartz almandine+sillimanite+water. (II) Fe-staurolitequartz Fe-cordierite+sillimanite+water. (III) Fe-chloritoid+sillimanite Fe-staurolite+quartz+water. In addition, two reactions which delineate part of the stabilitylimits of Fe-cordierite have been investigated: (IV) Fe-cordierite almandine+sillimanite+quartz. (V) Fe-cordierite hercynite+sillimanite+quartz. The experimental information has been used to predict boundariesto the PT fields of all quartz and QFM-buffered fluid-bearingassemblages involving Fe-staurolite, Fe-cordierite, Fe-chloritoid,almandine, and sillimanite. Using information from this andother studies, three mineral assemblages are recognized whichare stable at similar temperatures but different fluid pressures.In order of decreasing pressure they are: (a) Above 5 kb: staurolite, quartz, kyanite, fluid; (b) Between 1.5 and 8.5 kb (outer limits; in natural rocks thisfield will have a much narrower pressure range) staurolite,quartz, cordierite, fluid. (c) Below 3.5 kb: Fe-cordierite, andalusite, fluid of oxygenfugacity equivalent to the quartz-fayalite-magnetite assemblage. These phase assemblages may be the equivalents of naturallyoccurring mineral facies, but this must be proven in the field.In addition the absence of cordierite from rocks of appropriatecomposition and temperature of formation betokens total pressuresgreater than 3–5 kb. 1Present address: Grant Institute of Geology, West Mains Road, Edinburgh 9, Scotland.  相似文献   
5.
6.
The interference of rubidium on the determination of barium in the international geostandard Zinnwaldite ZW-C, an alkali-rich Li mica, has been investigated.  相似文献   
7.
Contact metamorphism caused by the Glenmore plug in Ardnamurchan, a magma conduit active for 1 month, resulted in partial melting, with melt now preserved as glass. The pristine nature of much of the aureole provides a natural laboratory in which to investigate the distribution of melt. A simple thermal model, based on the first appearance of melt on quartz–feldspar grain boundaries, the first appearance of quartz paramorphs after tridymite and a plausible magma intrusion temperature, provides a time‐scale for melting. The onset of melting on quartz–feldspar grain boundaries was initially rapid, with an almost constant further increase in melt rim thickness at an average rate of 0.5–1.0 × 10?9 cm s?1. This rate was most probably controlled by the distribution of limited amounts of H2O on the grain boundaries and in the melt rims. The melt in the inner parts of the aureole formed an interconnected grain‐boundary scale network, and there is evidence for only limited melt movement and segregation. Layer‐parallel segregations and cross‐cutting veins occur within 0.6 m of the contact, where the melt volume exceeded 40%. The coincidence of the first appearance of these signs of the segregation of melt in parts of the aureole that attained the temperature at which melting in the Qtz–Ab–Or system could occur, suggests that internally generated overpressure consequent to fluid‐absent melting was instrumental in the onset of melt movement.  相似文献   
8.
Settling rates of natural sand-size particles are influenced, to some extent, by their shapes and this may be an important factor in using settling rates to estimate grain size. In order to gauge the sensitivity of this influence, two natural sand populations from the Mesozoic Nubian Sandstones of Southern Israel, with a high probability of being similar in their bulk shape characteristics, were examined in ¼φ sieved fractions for their shape characteristics and settling rates. Fine surface features (roundness and surface roughness) were evaluated using Fourier shape analytical methods. Significant differences in bulk shape were detected and their influence on settling rates was measured empirically in a settling tube. The most marked differences were in the coarse grain sizes and, to a lesser extent, in the intermediate sizes. Sampling of raw settling data at closely-spaced time intervals yielded high-resolution grain size frequency plots which were usually polymodal in nature. Subtle shape contrasts, which are an important influence on settling rates, are thus an important consideration when working at this level of sensitivity. Natural sand populations which have followed a more varied provenance or process pathway could be expected to have even greater contrasts in settling rates than the samples analysed here. Thus it is recommended that the bulk shape factor should be taken into account in order to minimize errors in the conversion of settling times to grain size. An easy method, outlined in this paper, is through the establishment of an empirically derived calibration curve for each individual suite of sand undergoing analysis. Sieved ¼φ samples, derived from a split of the total composite sample undergoing analysis, forms the basis of the calibration and hence a correction factor converting sieve diameters to true diameters must be applied. In this research, nominal section diameters were obtained optically through an image analyser.  相似文献   
9.
10.
龙门山地震带的地质背景与汶川地震的地表破裂   总被引:17,自引:0,他引:17  
龙门山位于青藏高原与扬子地台之间, 系由一系列大致平行的叠瓦状冲断带构成, 自西向东发育汶川茂汶断裂、映秀北川断裂和彭县灌县断裂,并将龙门山划分为3个构造地层带,分别为变形变质构造地层带(主要由志留系泥盆系浅变质岩和前寒武系杂岩构成)、变形变位构造地层带(主要由上古生界三叠系沉积岩构成)、变形构造地层带(主要由侏罗系至第三系红层和第四纪松散堆积构成)。 龙门山断裂带属地震危险区,3条主干断裂皆具备发生7级左右地震的能力,其中映秀北川断裂是引发地震的最主要断层,据对彭县灌县断裂青石坪探槽场地的研究结果表明,在该断裂带上最晚的一次强震发生在93040a.B.P.左右,据此,可以初步判定,这3条主干断裂的单条断裂上的强震复发间隔至少应在1000a左右,表明龙门山构造带及其内部断裂属于地震活动频度低但具有发生超强地震的潜在危险的特殊断裂,以逆冲-右行走滑为其主要运动方式。 汶川地震属于逆冲走滑型的地震,地表破裂分布于映秀北川断裂带和彭县灌县断裂带上。根据近南北向的断裂(小鱼洞断层、擂鼓断层和邓家坝断层)和地表断距可将映秀北川断层的地表破裂带划分为两个高值区和两个低值区,两个高值区分别位于南段的映秀-虹口一带和位于中北段的擂鼓北川县城邓家坝一带;两个低值区分别位于中南段的白水河茶坪一带和北段的北川黄家坝至平武石坎子一带,两个高值区分别与小鱼洞断层和擂鼓断层相关。根据保存于破裂面上的擦痕,可将该地震破裂过程划分为两个阶段,早期为逆冲作用,晚期为斜向走滑作用,其与地壳增厚构造模式和侧向挤出摸式在青藏高原东缘的推论具有不吻合性。鉴于龙门山的表层运动速率与深部构造运动速率具有不一致性,初步探讨了龙门山地区的地表过程与下地壳流之间的地质动力模型,认为下地壳物质在龙门山近垂向挤出和垂向运动,从而造成导致龙门山向东的逆冲运动、龙门山构造带抬升和汶川特大地震。在此基础上,根据汶川地震所引发的地质灾害,对地震灾后重建提出了的几点建议。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号