首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Symplectic integration methods conserve the Hamiltonian quite well because of the existence of the modified Hamiltonian as a formal conserved quantity. For a first integral of a given Hamiltonian system, the modified first integral is defined to be a formal first integral for the modified Hamiltonian. It is shown that the Runge-Lenz vector of the Kepler problem is not well conserved by symplectic methods, and that the corresponding modified first integral does not exist. This conclusion is given for a one-parameter family of symplectic methods including the symplectic Euler method and the Störmer/Verlet method.  相似文献   

2.
We consider Sundman and Poincaré transformations for the long-time numerical integration of Hamiltonian systems whose evolution occurs at different time scales. The transformed systems are numerically integrated using explicit symplectic methods. The schemes we consider are explicit symplectic methods with adaptive time steps and they generalise other methods from the literature, while exhibiting a high performance. The Sundman transformation can also be used on non-Hamiltonian systems while the Poincaré transformation can be used, in some cases, with more efficient symplectic integrators. The performance of both transformations with different symplectic methods is analysed on several numerical examples.  相似文献   

3.
In this paper, following the idea of constructing the mixed symplectic integrator (MSI) for a separable Hamiltonian system, we give a low order mixed symplectic integrator for an inseparable, but nearly integrable, Hamiltonian system, Although the difference schemes of the integrators are implicit, they not only have a small truncation error but, due to near integrability, also a faster convergence rate of iterative solution than ordinary implicit integrators, Moreover, these second order integrators are time-reversible.  相似文献   

4.
For a Hamiltonian that can be separated into N+1(N\geq 2) integrable parts, four algorithms can be built for a symplectic integrator. This research compares these algorithms for the first and second order integrators. We found that they have similar local truncation errors represented by error Hamiltonian but rather different numerical stability. When the computation of the main part of the Hamiltonian, H 0, is not expensive, we recommend to use S * type algorithm, which cuts the calculation of the H 0 system into several small time steps as Malhotra(1991) did. As to the order of the N+1 parts in one step calculation, we found that from the large to small would get a slower error accumulation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
6.
This paper deals mainly with the application of the mixed leapfrog symplectic integrators with adaptive timestep to a conservative post-Newtonian Hamiltonian formulation with canonical spins for spinning compact binaries. The adaptive timestep depends on the two body separation r and the magnitude of the spins. Various numerical tests including a chaotic high-eccentricity orbit show that the fixed step symplectic integrators lost drastically the good long term behaviour in the test cases with large eccentricity, the adaptive timestep integrator is always superior to the constant step in the integral precision.  相似文献   

7.
The splitting of eh(A+B) into a single product of e h A and e hB results in symplectic integrators when A and B are classical Lie operators. However, at high orders, a single product splitting, with exponentially growing number of operators, is very difficult to derive. This work shows that, if the splitting is generalized to a sum of products, then a simple choice of the basis product reduces the problem to that of extrapolation, with analytically known coefficients and only quadratically growing number of operators. When a multi-product splitting is applied to classical Hamiltonian systems, the resulting algorithm is no longer symplectic but is of the Runge-Kutta-Nyström (RKN) type. Multi-product splitting, in conjunction with a special force-reduction process, explains why at orders p = 4 and 6, RKN integrators only need p ? 1 force evaluations.  相似文献   

8.
A recurrent method of solving the formal integrals of symplectic integrators is given. The special examples show that there are no long-term variations in all integrals of the Hamiltonian system in addition to the energy one when symplectic integrators are used in the numerical studies of the system. As an application of the formal integrals, the relation between them and the linear stability of symplectic integrators is discussed.  相似文献   

9.
The symplectic integrator has been regarded as one of the optimal tools for research on qualitative secular evolution of Hamiltonian systems in solar system dynamics. An integrable and separate Hamiltonian system H = H0 + Σi=1N εiHi (εi ≪ 1) forms a pseudo third order symplectic integrator, whose accuracy is approximately equal to that of the first order corrector of the Wisdom-Holman second order symplectic integrator or that of the Forest-Ruth fourth order symplectic integrator. In addition, the symplectic algorithm with force gradients is also suited to the treatment of the Hamiltonian system H = H0(q,p) + εH1(q), with accuracy better than that of the original symplectic integrator but not superior to that of the corresponding pseudo higher order symplectic integrator.  相似文献   

10.
A systematic study of the main asteroidal resonances of the third and fourth order is performed using mapping techniques. For each resonance one-parameter family of surfaces of section is presented together with a simple energy graph which helps to understand and predict the changes in the surfaces of section within the family. As the truncated Hamiltonian for the planar, elliptic, restricted three-body problem is used for the mapping, the method is expected to fail for high eccentricities. We compared, therefore, the surfaces of section with trajectories calculated by symplectic integrators of the fourth and six order employing the full Hamiltonian. We found a good agreement for small eccentricities but differences for the higher eccentricities (e 0.3).  相似文献   

11.
辛方法的校正公式   总被引:5,自引:5,他引:0  
伍歆  黄天衣  万晓生 《天文学报》2002,43(4):391-402
1996年Wisdom等提出了对辛方法进行校正的概念和实践,现在继续对辛校正进行详尽讨论和数值比较,尤其对哈密顿函数可分解为一个主要部分和多个次要部分的一般情形,用Lie级数推导任意阶的各种辛算法的一次和二次辛校正公式并对一些算法给出具体的辛校正公式。又以日、木、土三体问题为模型进行数值实验,结果表明一次辛校正能提高精度,改善数值稳定性。计算效率也比较高,因而值得推荐使用,辛方法通常用大步长数值积分,这时二次辛校正并没有显著提高结果的精度,却大大增加了计算时间,不应予以推荐。  相似文献   

12.
Orbit propagation algorithms for satellite relative motion relying on Runge–Kutta integrators are non-symplectic—a situation that leads to incorrect global behavior and degraded accuracy. Thus, attempts have been made to apply symplectic methods to integrate satellite relative motion. However, so far all these symplectic propagation schemes have not taken into account the effect of atmospheric drag. In this paper, drag-generalized symplectic and variational algorithms for satellite relative orbit propagation are developed in different reference frames, and numerical simulations with and without the effect of atmospheric drag are presented. It is also shown that high-order versions of the newly-developed variational and symplectic propagators are more accurate and are significantly faster than Runge–Kutta-based integrators, even in the presence of atmospheric drag.  相似文献   

13.
An operator associated with third-order potential derivatives and a force gradient operator corresponding to second-order potential derivatives are used together to design a number of new fourth-order explicit symplectic integrators for the natural splitting of a Hamiltonian into both the kinetic energy with a quadratic form of momenta and the potential energy as a function of position coordinates.Numerical simulations show that some new optimal symplectic algorithms are much better than their non-optimal c...  相似文献   

14.
In this paper we consider almost integrable systems for which we show that there is a direct connection between symplectic methods and conventional numerical integration schemes. This enables us to construct several symplectic schemes of varying order. We further show that the symplectic correctors, which formally remove all errors of first order in the perturbation, are directly related to the Euler—McLaurin summation formula. Thus we can construct correctors for these higher order symplectic schemes. Using this formalism we derive the Wisdom—Holman midpoint scheme with corrector and correctors for higher order schemes. We then show that for the same amount of computation we can devise a scheme which is of order O(h 6)+(2 h 2), where is the order of perturbation and h the stepsize. Inclusion of a modified potential further reduces the error to O(h 6)+(2 h 4).This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

15.
We obtain thex - p xPoincare phase plane for a two dimensional, resonant, galactic type Hamiltonian using conventional numerical integration, a second order symplectic integrator and a map based on the averaged Hamiltonian. It is found that all three methods give good results, for small values of the perturbation parameter, while the symplectic integrator does a better job than the mapping, for large perturbations. The dynamical spectra are used to distinguish between regular and chaotic motion.  相似文献   

16.
This paper reviews various mapping techniques used in dynamical astronomy. It is mostly dealing with symplectic mappings. It is shown that used mappings can be usually interpreted as symplectic integrators. It is not necessary to introduce any functions it is just sufficient to split Hamiltonian into integrable parts. Actually it may be shown that exact mapping with function in the Hamiltonian may be non-symplectic. The application to the study of asteroid belt is emphasised but the possible use of mapping in planetary evolution studies, cometary and other problems is shortly discussed.  相似文献   

17.
We review the implementation of individual particle time-stepping for N-body dynamics. We present a class of integrators derived from second order Hamiltonian splitting. In contrast to the usual implementation of individual time-stepping, these integrators are momentum conserving and show excellent energy conservation in conjunction with a symmetrized time step criterion. We use an explicit but approximate formula for the time symmetrization that is compatible with the use of individual time steps. No iterative scheme is necessary. We implement these ideas in the HUAYNO1 code and present tests of the integrators and show that the presented integration schemes shows good energy conservation, with little or no systematic drift, while conserving momentum and angular momentum to machine precision for long term integrations.  相似文献   

18.
The global validity of the symplectic integration method or mapping approach is discussed in this paper. The results show that in the regions of phase space where symplectic integration schemes and the Hamiltonian system possess the same topology, they are effective; but in the regions where the schemes possess some other fixed points than those of the Hamiltonian system, their topologies are different from that of the actual system, thus the symplectic integration method or mapping approach is not effective globally.Supported by the National Natural Science Foundation of China and a grant from the Ph.D. Foundation.  相似文献   

19.
当史瓦西黑洞周围存在渐近均匀的外部磁场时, 描述带电粒子在史瓦西黑洞附近运动的哈密顿系统会变为不可积系统. 类似于这样的相对论哈密顿系统不存在有显式分析解的2部分分离形式, 给显式辛算法的构建和应用带来困难. 近一年以来的系列工作提出将相对论哈密顿系统分解为具有显式分析解的2个以上分离部分形式, 成功解决了许多相对论时空构建显式辛算法的难题. 最近的工作回答了哈密顿系统显式可积分离数目对长期数值积分精度有何影响、哪种显式辛算法有最佳长期数值性能这两个问题, 指出哈密顿有最小可积分离数目即3部分分裂解形式并且应用于优化的4阶分段龙格库塔显式辛算法可取得最好精度. 由此选择上述数值积分方法并利用庞加莱截面、最大李雅普诺夫指数和快速李雅普诺夫指标研究在磁化史瓦西黑洞附近运动的带电粒子轨道动力学. 结果显示: 针对某特定的粒子能量和角动量, 较小的外部磁场很难形成混沌轨道; 较大的正磁场参数容易使轨道产生混沌, 并且随着磁场的增大, 轨道的混沌程度也随之加强; 粒子能量适当变大也可以加剧混沌程度, 但负磁场参数和粒子角动量变大都会减弱混沌.  相似文献   

20.
In this paper, we analyze the linear stabilities of several symplectic integrators, such as the first-order implicit Euler scheme, the second-order implicit mid-point Euler difference scheme, the first-order explicit Euler scheme, the second-order explicit leapfrog scheme and some of their combinations. For a linear Hamiltonian system, we find the stable regions of each scheme by theoretical analysis and check them by numerical tests. When the Hamiltonian is real symmetric quadratic, a diagonalizing by a similar transformation is suggested so that the theoretical analysis of the linear stability of the numerical method would be simplified. A Hamiltonian may be separated into a main part and a perturbation, or it may be spontaneously separated into kinetic and potential energy parts, but the former separation generally is much more charming because it has a much larger maximum step size for the symplectic being stable, no matter this Hamiltonian is linear or nonlinear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号