首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The main regularities of hydrological and hydrological-environmental processes occurring within the complex estuary, the Chesapeake Bay and the mouths of its tributaries, are discussed. The peculiarities of the estuary morphological structure, including the structures of tidal and net currents, salinity and water turbidity fields and their variability, the environmental conditions, and their human-induced changes. Using the Chesapeake Bay as an example, it became possible to reveal the basic features of classical estuaries subject to a considerable impact of river runoff and featuring mixing of river and sea water and moderate stratification of the water mass. It is shown that the regularities of hydrological processes in the Chesapeake Bay are typical of many mouth water bodies of estuarine type (inlets, drowned river valleys, lagoons, and tidal estuaries proper).  相似文献   

2.
The validation and subsequent application of the current three-dimensional numerical hydrodynamic model of Chesapeake Bay is presented. The numerical model solves conservation equations for water mass, momentum, salinity, and heat on a boundary-fitted grid in the horizontal plane and a Cartesian z-grid in the vertical. A generalized ADI finite difference scheme is employed in conjunction with mode splitting technique, solving external and the internal modes. The 10-year boundary conditions including tide, slinity, temperature, wind, heat exchange coefficient, river and non-point source flows were constructed. Model validation was accomplished by demonstrating the model's ability to reproduce observed data over time scales ranging from tidal to seasonal periods. The major parameters compared include tidal elevation, intra-tidal and residual velocities, salinity, temperature, stratification, and flux calculated through the Bay mouth.After validation, the model was applied to simulate bay hydrodynamics for the 10 years of 1985–94. These results were used to drive the three-dimensional water quality model of Chesapeake Bay, which is discussed in a companion paper.  相似文献   

3.
Long-term trends in macrobenthic communities of the lower Chesapeake Bay, USA, were examined using data collected quarterly (March, June, September and December) from 1985 to 1991 at 16 stations along a salinity gradient from tidal freshwater regions of the major tributaries (James, York and Rappahannock rivers) to the polyhaline region of the main-stem of Chesapeake Bay. A non-parametric trend analysis procedure was applied to five parameters characterizing macrobenthic community structure: community biomass, species richness, abundance of individuals, proportion of biomass composed of opportunistic species (opportunistic biomass composition) and proportion of biomass composed of equilibrium species (equilibrium biomass composition). For the parameters tested 36 trends were detected. For community biomass, five trends were significant; all had positive slopes and occurred in the James and York rivers. For species richness, six trends were significant; all had positive slopes with three trends in the James River, two trends in the York River and one trend in the main-stem of Chesapeake Bay. For abundance of individuals, 17 trends were detected; all abundance trends were seasonally dependent, had positive slopes and occurred at 12 of the 16 stations. For opportunistic biomass composition, four trends were significant; all had positive slopes with one trend in the lower Rappahannock River and three trends in the main-stem of Chesapeake Bay. For equilibrium biomass composition four trends were significant; two trends had positive slopes (one in the James River and one in the York River) and two trends had negative slopes (one in the Rappahannock River and one in the main-stem of Chesapeake Bay). Trends in the James and York rivers were considered to indicate improving conditions for the benthos, while trends in the lower Rappahannock River and the main-stem of the Chesapeake Bay were considered to indicate deteriorating conditions. Deteriorating conditions for the benthos were associated with regions exposed to summer, low dissolved oxygen events. The trends in the indicators of benthic biological community health were inferentially related to trends observed in water quality conditions in the tributaries and main-stem of Chesapeake Bay. All major water quality and biotic trends appeared to correspond in an ecologically meaningful manner.  相似文献   

4.
位于美国弗吉尼亚东海岸直径85 km的Chesapeake湾撞击坑,是十几年前发现的由一颗陨星撞击形成的一个复杂撞击坑. 该坑的研究经历四个阶段:地下水调查、撞击坑的发现、美国多学科多部门的综合研究和即将进行的国际钻探取心项目. 钻井岩心中的角砾成份和微体化石,提示撞击坑的存在,并确定撞击发生在35 Ma前,即始新始晚期. 地震反射剖面资料帮助寻找到撞击坑的具体位置,确定撞击坑的结构和形态特征. Chesapeake湾撞击坑埋藏在新生界沉积层之下,是全球已知最大的、保存最好的撞击坑之一. Chesapeake湾撞击坑主要形态像一顶倒置的宽边大草帽,包括外缘、环状洼地、峰环(内缘)、内盆和中央峰. 撞击坑的形成破坏了原来的含水层,撞击坑当时即被富含咸水的抛射角砾岩和海啸角砾岩充填,再被后来的沉积层覆盖. Chesapeake湾撞击坑导致地面沉降、河流变向、海岸含水层的中断、内陆咸水楔的出现、地震,决定Chesapeake湾本身的位置,至今仍然影响当地居民的生活. 了解Chesapeake湾撞击坑对我国撞击坑研究具有借鉴作用.  相似文献   

5.
A three-dimensional hydrodynamic model is used to investigate intra-tidal and spring–neap variations of turbulent mixing, stratification and residual circulation in the Chesapeake Bay estuary. Vertical profiles of salinity, velocity and eddy diffusivity show a marked asymmetry between the flood and ebb tides. Tidal mixing in the bottom boundary layer is stronger and penetrates higher on flood than on ebb. This flood–ebb asymmetry results in a north–south asymmetry in turbulent mixing because tidal currents vary out of phase between the lower and upper regions of Chesapeake Bay. The asymmetric tidal mixing causes significant variation of salinity distribution over the flood–ebb tidal cycle but insignificant changes in the residual circulation. Due to the modulation of tidal currents over the spring–neap cycle, turbulent mixing and vertical stratification show large fortnightly and monthly fluctuations. The stratification is not a linear function of the tidal-current amplitude. Strong stratification is only established during those neap tides when low turbulence intensity persists for several days. Residual circulation also shows large variations over the spring–neap cycle. The tidally averaged residual currents are about 50% stronger during the neap tides than during the spring tides.  相似文献   

6.
Eutrophic depletion of dissolved oxygen (DO) and its consequences for ecosystem dynamics have been a central theme of research, assessment and management policies for several decades in the Chesapeake Bay. Ongoing forecast efforts predict the extent of the summer hypoxic/anoxic area due to nutrient loads from the watershed. However, these models neither predict DO levels nor address the intricate interactions among various ecological processes. The prediction of spatially explicit DO levels in the Chesapeake Bay can eventually lead to a reliable depiction of the comprehensive ecological structure and functioning, and can also allow the quantification of the role of nutrient reduction strategies in water quality management. In this paper, we describe a three dimensional empirical model to predict DO levels in the Chesapeake Bay as a function of water temperature, salinity and dissolved nutrient concentrations (TDN and TDP). The residual analysis shows that predicted DO values compare well with observations. Nash–Sutcliffe efficiency (NSE) and root mean square error-observations standard deviation ratio (RSR) are used to evaluate the performance of the empirical model; the scores demonstrate the usability of model predictions (NSE, surface layer = 0.82–0.86; middle layer = 0.65–0.82; bottom layer = 0.70–0.82; RSR surface layer = 0.37–0.44; middle layer = 0.43–0.58 and bottom layer = 0.43–0.54). The predicted DO values and other physical outputs from downscaling of regional weather and climate predictions, or forecasts from hydrodynamic models, can be used to forecast various ecological components. Such forecasts would be useful for both recreational and commercial users of the Chesapeake Bay.  相似文献   

7.
Regression-based methods are commonly used for riverine constituent concentration/flux estimation, which is essential for guiding water quality protection practices and environmental decision making. This paper developed a multivariate adaptive regression splines model for estimating riverine constituent concentrations (MARS-EC). The process, interpretability and flexibility of the MARS-EC modelling approach, was demonstrated for total nitrogen in the Patuxent River, a major river input to Chesapeake Bay. Model accuracy and uncertainty of the MARS-EC approach was further analysed using nitrate plus nitrite datasets from eight tributary rivers to Chesapeake Bay. Results showed that the MARS-EC approach integrated the advantages of both parametric and nonparametric regression methods, and model accuracy was demonstrated to be superior to the traditionally used ESTIMATOR model. MARS-EC is flexible and allows consideration of auxiliary variables; the variables and interactions can be selected automatically. MARS-EC does not constrain concentration-predictor curves to be constant but rather is able to identify shifts in these curves from mathematical expressions and visual graphics. The MARS-EC approach provides an effective and complementary tool along with existing approaches for estimating riverine constituent concentrations.  相似文献   

8.
Polychaete feeding guilds have recently been examined as potentially useful parameters in environmental impact assessment. Densities of polychaete species from three studies in the lower Chesapeake Bay were classified into feeding guilds and correlated with water depth, median phi size and percent silt-clay of the sediment. Polychaete densities were also grouped randomly and correlated with environmental variables. For two of the three studies a feeding guild classification did not give significantly more correlations than expected from random groupings. Problems associated with using polychaete feeding guilds as composite biological variables are discussed.  相似文献   

9.
Data are presented on long-term salinity behaviour in San Francisco Bay, California. A two-level, width averaged model of the tidally averaged salinity and circulation has been written in order to interpret the long-term (days to decades) salinity variability. The model has been used to simulate daily averaged salinity in the upper and lower levels of a 51 segment discretization of the Bay over the 22-yr period 1967–1988. Monthly averaged surface salinity from observations and monthly-averaged simulated salinity are in reasonable agreement. Good agreement is obtained from comparison with daily averaged salinity measured in the upper reaches of North Bay.The salinity variability is driven primarily by freshwater inflow with relatively minor oceanic influence. All stations exhibit a marked seasonal cycle in accordance with the Mediterranean climate, as well as a rich spectrum of variability due to extreme inflow events and extended periods of drought. Monthly averaged salinity intrusion positions have a pronounced seasonal variability and show an approximately linear response to the logarithm of monthly averaged Delta inflow. Although few observed data are available for studies of long-term salinity stratification, modelled stratification is found to be strongly dependent on freshwater inflow; the nature of that dependence varies throughout the Bay. Near the Golden Gate, stratification tends to increase up to very high inflows. In the central reaches of North Bay, modelled stratification maximizes as a function of inflow and further inflow reduces stratification. Near the head of North Bay, lowest summer inflows are associated with the greatest modelled stratification. Observations from the central reaches of North Bay show marked spring-neap variations in stratification and gravitational circulation, both being stronger at neap tides. This spring-neap variation is simulated by the model. A feature of the modelled stratification is a hysteresis in which, for a given spring-neap tidal range and fairly steady inflows, the stratification is higher progressing from neaps to springs than from springs to neaps.The simulated responses of the Bay to perturbations in coastal sea salinity and Delta inflow have been used to further delineate the time-scales of salinity variability. Simulations have been performed about low inflow, steady-state conditions for both salinity and Delta inflow perturbations. For salinity perturbations a small, sinusoidal salinity signal with a period of 1 yr has been applied at the coastal boundary as well as a pulse of salinity with a duration of one day. For Delta inflow perturbations a small, sinusoidally varying inflow signal with a period of 1 yr has been superimposed on an otherwise constant Delta inflow, as well as a pulse of inflow with a duration of one day. Perturbations in coastal salinity dissipate as they move through the Bay. Seasonal perturbations require about 40–45 days to propagate from the coastal ocean to the Delta and to the head of South Bay. The response times of the model to perturbations in freshwater inflow are faster than this in North Bay and comparable in South Bay. In North Bay, time-scales are consistent with advection due to lower level, up-estuary transport of coastal salinity perturbations; for inflow perturbations, faster response times arise from both upper level, down-estuary advection and much faster, down-estuary migration of isohalines in response to inflow volume continuity. In South Bay, the dominant time-scales are governed by tidal dispersion.  相似文献   

10.
In examining ship-mediated biological invasions, most research and treatment development has focused on ballast water. Another vector that has gained attention recently is vessels arriving in a "no ballast on board" (NOBOB) condition. Such ships retain relatively small, unpumpable volumes of water and sediment in their ballast tanks. Nonetheless, these unpumpable portions can represent great ecological risk. This scenario is relevant in the Great Lakes, which have experienced a dramatic series of introductions, despite most vessels arriving there as NOBOBs since 1994. We examined shipping patterns of NOBOBs arriving to lower Chesapeake Bay to begin evaluating their risk of biopollution. Only 14% of ships arrive as NOBOBs, and of those, 17% depart to another port in the upper bay. Most NOBOBs arrive from or leave for other US ports; proximate trans-Atlantic crossings are few. Given the nature of their operations, we conclude NOBOBs may represent a risk for aquatic nuisance species invasions to Chesapeake Bay.  相似文献   

11.
Cross-Media Models of the Chesapeake Bay Watershed and Airshed   总被引:1,自引:0,他引:1  
A continuous, deterministic watershed model of the Chesapeake Bay watershed, linked to an atmospheric deposition model is used to examine nutrient loads to the Chesapeake Bay under different management scenarios. The Hydrologic Simulation Program - Fortran, Version 11 simulation code is used at an hourly time-step for ten years of simulation in the watershed. The Regional Acid Deposition Model simulates management options in reducing atmospheric deposition of nitrogen. Nutrient loads are summed over daily periods and used for loading a simulation of the Chesapeake estuary employing the Chesapeake Bay Estuary Model Package. Averaged over the ten-year simulation, loads are compared for scenarios under 1985 conditions, forecasted conditions in the year 2000, and estimated conditions under a limit of technology scenario. Limit of technology loads are a 50%, 64%, and 42% reduction from the 1985 loads in total nitrogen, total phosphorus, and total suspended solids, respectively. Urban loads, which include point source, on-site wastewater disposal systems, combined sewer overflows, and nonpoint source loads have the highest flux of nutrient loads to the Chesapeake, followed by crop land uses.on assignment from NOAA Air Resources Laboratory  相似文献   

12.
IHISTORICALRECORDSSoilerosioniscloselyrelatedtorainfallandgreatlyenhancedbydeforestationforagricultUreandurbansuburbandevelopment.Amongtheeffectsofsoilerosionarethelossoftopsoilandaconsequentdecreaseincropproductivity.Erodedsoilisalsodepositedintoaquaticsystems,thuslesseningwaterqualityandleadingtodepletionoftheaquaticfoodresource.Italsocausessiltationofwaterwaysmakingthemineffectiveforcommercialtransportaswellasincreasingtheriskoffloods.Theimpactofsedimenterosionanddepositiononhumanso…  相似文献   

13.
《Continental Shelf Research》2008,28(18):2565-2573
A numerical model is used to determine the resonant period and quality factor Q of Chesapeake Bay and explore physical mechanisms controlling the resonance response in semi-enclosed seas. At the resonant period of 2 days, the mouth-to-head amplitude gain is 1.42 and Q is 0.9, indicating that Chesapeake Bay is a highly dissipative system. The modest amplitude gain results from strong frictional dissipation in shallow water. It is found that the spatial distribution of energy dissipation varies with forcing frequency. While energy at tidal frequencies is dissipated around topographic hotspots distributed throughout the Bay, energy dissipation at subtidal frequencies is mainly concentrated in the shallow-water lower Bay. An analytic calculation shows that the bottom friction parameter is much larger in Chesapeake Bay than in other coastal systems with strong resonance response. The model-predicted amplitude gains and phase changes agree well with the observations at semidiurnal and diurnal tidal frequencies. However, the predicted amplitude gain in the resonant frequency band (34–54 h period) falls below that inferred from band-passed sea level observations. This discrepancy can be attributed to the local wind forcing which amplifies the sea level response in the upper Bay. The model is also used to show that rising sea levels associated with global warming will shift the resonance period of Chesapeake Bay closer to the diurnal tides and thus exacerbate flooding problems by causing an increase in tidal ranges.  相似文献   

14.
Hydrographic variability on the Alabama shelf just outside of Mobile Bay, a major source of river discharge into the Gulf of Mexico, is examined using time series of water column temperature and surface and bottom salinity from a mooring site with a depth of 20 m in conjunction with a series of across-shelf CTD surveys. The time series data show variability in a range of time scales. The density variation is affected by both salinity and temperature, with its relatively strong annual signal mostly determined by temperature and its year to year variability mostly determined by salinity. Seasonal mean structures of temperature, salinity, and density show a transition from estuarine to shelf conditions in which three regions with distinct seasonal characteristics in their horizontal and vertical gradient structures are identified. Correlation analysis with the available forcing functions demonstrates the influence of Mobile Bay on the variability at the mooring site. At low frequencies, river discharge from Mobile Bay has a varying influence on salinity, which is absent during the periods with unusually low discharge. At shorter synoptic time scales, both the estuarine response to the across-shelf wind stress and the shelf response to the along-shelf wind stress are significantly correlated with temperature/salinity variability: the former becoming important for the surface layer during winter whereas the latter for the bottom layer during both winter and summer. These forcing functions are important players in determining the estuarine-shelf exchange, which in turn is found to contribute to the shelf hydrographic structure.  相似文献   

15.
A model predicting suspension-feeding bivalve biomass and its interactions with water quality has been developed and coupled with the Chesapeake Bay Eutrophication Model. This coupling included deposition of filtered particulate matter to the sediments and the recycling of inorganic nutrients back to the water column. Because individual size is a crucial determinant of bivalve filtration and respiration rates, an empirical function, was developed from data, relating computed areal biomass to size, which was then used to adjust these rates during the simulation. Biomass was strongly related to the eutrophication model's predictions of organic and total solids distributions, as well as to bottom water dissolved oxygen. The tight coupling between seasonal organic matter concentration and biomass suggested that food, or the ability of suspension feeders to ingest it given present total solids loadings, is a limiting factor baywide. Hypoxia and anoxia also reduced benthic biomass in affected locations. High site-specific temporal variability observed in the data may contain a large component of spatial patchiness, on scales below which the present estuarine eutrophication model could resolve. Further insights will be needed to incorporate the effects of patchiness, as well as other important spatial and temporal signals, such as predation and recruitment.  相似文献   

16.
This report forms part of an on-going effort to understand the large yearly variations in blue crab harvest of Chesapeake Bay. Recent sampling programs have indicated that the larvae are transported out of the bay immediately after being spawned, and spend their first month offshore at the sea surface. Although it is well established that a mid and outer shelf southward flow occurs during all seasons in the Middle Atlantic Bight, very little is known of the nearshore currents. This study constitutes an effort to determine if the characteristically light, but northward, wind stress during the critical summer months is sufficient to drive northward counter flow at the surface and, hence, to reduce the chances that the larvae are being advected south and lost from the area of Chesapeake Bay.We investigate a local model of wind-driven currents on the continental shelf with vertical decoupling at the pycnocline. Additional driving forces include an alongshore sea surface slope and horizontal pressure gradients. With characteristic forcing values, it is found that the wind stress is indeed sufficient to drive a light northward flow within 25 to 50 km of the shoreline. We expect, then, that blue crab larval recruitment back to Chesapeake Bay may be partially dependent on summer wind stress. A comparison between a wind index time series and harvest several years later is strongly suggestive of such a dependency.  相似文献   

17.
Amur Bay (Sea of Japan) is used as an example to show that the range of diurnal variations of hydrochemical characteristics in the coastal zone of a sea subject to the effect of continental runoff features some regularities. Specifically, variations of water salinity in the surface frontal zone of estuaries exponentially increase toward the river and reach the largest magnitude in the zone of high longitudinal gradients, where diurnal salinity distributions are found to deviate from the normal law.  相似文献   

18.
The effectiveness of simulating surge inundation using the Eulerian–Lagrangian circulation (ELCIRC) model over multi-scale unstructured grids was examined in this study. The large domain model grid encompasses the western North Atlantic Ocean, the Gulf of Mexico, and the Caribbean Sea to appropriately account for remote and resonance effects during hurricane events and simplify the specification of the open boundary condition. The U.S. East and Gulf Coasts were divided into 12 overlapping basins with fine-resolution (up to 30 × 30 m) grids to model overland surge flooding. These overlapping basins have different fine-resolution grids near the coastal region, but have an identical coarse-resolution grid in the offshore region within the large model domain. Thus, the storm surge prediction can be conducted without reducing computation efficiency by executing multiple model runs with local fine-resolution grids where potential hurricane landfalls may occur. The capability of the multi-scale approach was examined by simulating storm surge caused by Hurricanes Andrew (1992) and Isabel (2003) along the South Florida coast and in the Chesapeake Bay. Comparisons between simulated and observed results suggest that multi-scale models proficiently simulated storm surges in the Biscayne Bay and the Chesapeake Bay during two hurricanes. A series of sensitivity tests demonstrated that the simulation of surge flooding was improved when LiDAR topographic data and special bottom drag coefficient values for mangrove forests were employed. The tests also showed that appropriate representation of linear hydrologic features is important for computing surge inundation in an urban area.  相似文献   

19.
Tidal marshes form at the confluence between estuarine and marine environments where tidal movement regulates their developmental processes. Here, we investigate how the interplay between tides, channel morphology, and vegetation affect sediment dynamics in a low energy tidal marsh at the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island. Poplar Island is an active restoration site where fine-grained material dredged from navigation channels in the upper Chesapeake Bay are being used to restore remote tidal marsh habitat toward the middle bay (Maryland, USA). Tidal currents were measured over multiple tidal cycles in the inlets and tidal creeks of one marsh at Poplar Island, Cell 1B, using Acoustic Doppler Current Profilers (ADCP) to estimate water fluxes throughout the marsh complex. Sediment fluxes were estimated using acoustic backscatter recorded by ADCPs and validated against total suspended solid measurements taken on site. A high-resolution geomorphic survey was conducted to capture channel cross sections and tidal marsh morphology. We integrated simple numerical models built in Delft3d with empirical observations to identify which eco-geomorphological factors influence sediment distribution in various channel configurations with differing vegetative characteristics. Channel morphology influences flood-ebb dominance in marshes, where deep, narrow channels promote high tidal velocities and incision, increasing sediment suspension and reducing resilience in marshes at Poplar Island. Our numerical models suggest that accurately modelling plant phenology is vital for estimating sediment accretion rates. In-situ observations indicate that Poplar Island marshes are experiencing erosion typical for many Chesapeake Bay islands. Peak periods of sediment suspension frequently coincide with the largest outflows of water during ebb tides resulting in large sediment deficits. Ebb dominance (net sediment export) in tidal marshes is likely amplified by sea-level rise and may lower marsh resilience. We couple field observations with numerical models to understand how tidal marsh morphodynamics contribute to marsh resilience. © 2019 John Wiley & Sons, Ltd.  相似文献   

20.
Ezer  Tal 《Ocean Dynamics》2023,73(1):23-34
Ocean Dynamics - Fast sea level rise (SLR) is causing a growing risk of flooding to coastal communities around the Chesapeake Bay (hereafter, CB or “the Bay”), but there are also...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号