首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mylonites derived largely from granite, pegmatite and sedimentary quartzite occupy a 500 m thick, gently N-dipping zone along the northern flank of the Coyote Mountains, west of Tucson, in southeastern Arizona. The quartzite mylonites are exceptionally well developed and occur as discrete layers and lenses, 2–5 m thick, within yet thicker, boudinaged, sill-like lenses of mylonitic pegmatite. Mylonitization took place in the Tertiary within a normal-slip ductile shear zone. The shear zones formed in response to regional extension of continental crust. Extension is along a north-south line, and N-directed sense of shear is revealed by mica fish, oblique foliations in dynamically recrystallized quartz aggregates, and asymmetric quartz c-axis fabrics. The microstructures and c-axis fabrics, taken together, disclose that ductile and brittle deformation was achieved by intense, penetrative, non-coaxial laminar flow dominated by progressive simple shear.  相似文献   

2.
The Karakoram Shear Zone is a northwest-southeast trending dextral ductile shear zone, which has affected the granitic and granodioritic bodies of the southern Asian Plate margin in three distinct episodes. The ductile shearing of the granitic bodies at Tangste and Darbuk has resulted in the development of mylonites with mylonitic foliation and stretching lineation. More intense deformation is noted in the Tangste granite grading up to orthomylonite, as compared to the Darbuk granite. Kinematic indicators include S-C foliation, synthetic C′ and C″ antithetic shear bands, Type A s-mantled porphyroclasts, oblique quartz foliation, micro-shears with bookshelf gliding, mineral fishes including Group 2 mica fishes, and Type 1 and 2a pull-apart microstructures, and exhibit strong dextral sense of ductile shearing towards southeast. The textural features of the minerals, especially that of quartz and feldspar, indicate temperature of mylonitisation ranging between 300 and 500°C in the upper greenschist facies, and appear to have been evolved during exhumation as a consequence of oblique strike-slip movements along the Karakoram shear zone.  相似文献   

3.
A characteristic domainal configuration is reported for both micro-structures and c-axis fabrics in the Cap de Creus pure quartz mylonites as displayed in 50 samples from the centres of different shear zones. Three types of domains are found a, b and c. Each domain has a distinct c-axis orientation pattern. These three fabric elements, also labelled a, b and c make up the total fabric. c-axis fabrics are symmetric or asymmetric with respect to the main mylonitic foliation depending on the presence or absence of the b domain and its fabric element. The boundaries of the domains are parallel to the main mylonitic foliation. Two domain types, a and b display an internal foliation defined by preferred grain boundary alignment parallel to the direction of optical orientation within the domain. The internal foliations are oblique to the main mylonitic foliation in two different senses giving the sample a herring-bone appearance. These internal foliations are shown to be related to extensional crenulations. Domains are not produced by host-controlled recrystallization. The fabric elements and corresponding domains are the expression of kinematic heterogeneities on the scale of the thin section.  相似文献   

4.
Asymmetric pressure shadows (APS) on both sides of a rigid porphyroclast are commonly observed in mylonites along the Median Tectonic Line (MTL) in Japan. It is one of the most noticeable asymmetric microstructures, showing that the porphyroclasts have rotated during non-coaxial laminar flow in a ductile shear zone. The shadow domains are filled with recrystallized quartz and K-feldspar. Excepting APS, various asymmetric microstructures in the mylonites indicate a sinistral sense of displacement throughout the ductile shear zone along the MTL.Based on the shape analysis of APS in XZ section (parallel to the mylonitic lineation and normal to the mylonitic foliation), the following results were obtained: (1) the relative position of the APS with respect to a porphyroclast is not a reliable criterion for deducing the sense of shear; and (2) the drag angle (β) of the shadow boundaries with respect to the mylonitic foliation in each quartered domain is diagnostic of the sense of shear; when the shearing is sinistral, β in upper right- and lower left-hand side of a porphyroclast is larger than β in upper left- and lower right-hand side, and vice versa for dextral shearing. These results demonstrate that the drag patterns of APS around porphyroclasts in mylonites are highly reliable indicators for the determination of the sense of shear.  相似文献   

5.
Argument about shear on foliations began in the mid 19th century and continues to the present day. It results from varying interpretations of what takes place during the development of different types of foliations ranging from slaty cleavages through differentiated crenulation cleavages, schistosity and gneissosity to mylonites. Computer modelling, quantitative microstructural work and monazite dating have provided a unique solution through access to the history of foliation development preserved by porphyroblasts. All foliations involve shear in their development and most can be used to derive a shear sense. The shear sense obtained is consistent between foliation types and accords with recent computer modelling of these structures preserved within porphyroblasts relative to those in the matrix. The asymmetry of curving foliation into a locally developing new one allows determination of the shear sense along the latter foliation in most rocks. The problem of shear on fold limbs and parallelism of foliation and the flattening plane of the strain ellipse is resolved through the partitioning of shearing and shortening components of deformation into zones that anastomose around ellipsoidal domains lying parallel to the XY plane. Conflicts in shear sense occur if multiple reuse or reactivation of foliations is not recognized and allowed for but are readily resolved if taken into account.  相似文献   

6.
Abstract Reactivation of early foliations accounts for much of the progressive strain at more advanced stages of deformation. Its role has generally been insufficiently emphasized because evidence is best preserved where porphyroblasts which contain inclusion trails are present. Reactivation occurs when progressive shearing, operating in a synthetic anastomosing fashion parallel to the axial planes of folds, changes to a combination of coarse- and finescale zones of progressive shearing, some of which operate antithetically relative to the bulk shear on a fold limb. Reactivation of earlier foliations occurs in these latter zones. Reactivation decrenulates pre-existing or just-formed crenulations, generating shearing along the decrenulated or rotated pre-existing foliation planes. Partitioning of deformation within these foliation planes, such that phyllosilicates and/or graphite take up progressive shearing strain and other minerals accommodate progressive shortening strain, causes dissolution of these other minerals. This results in concentration of the phyllosilicates in a similar, but more penetrative manner to the formation of a differentiated crenulation cleavage, except that the foliation can form or intensify on a fold limb at a considerable angle to the axial plane of synchronous macroscopic folds. Reactivation can generate bedding-parallel schistosity in multideformed and metamorphosed terrains without associated folds. Heterogeneous reactivation of bedding generates rootless intrafolial folds with sigmoidal axial planes from formerly through-going structures. Reactivation causes rotation or ‘refraction’of axial-plane foliations (forming in the same deformation event causing reactivation) in those beds or zones in which an earlier foliation has been reactivated, and results in destruction of the originally axial-plane foliation at high strains. Reactivation also provides a simple explanation for the apparently ‘wrong sense’, but normally observed ‘rotation’of garnet porphyroblasts, whereby the external foliation has undergone rotation due to antithetic shear on the reactivated foliation. Alternatively, the rotation of the external foliation can be due to its reactivation in a subsequent deformation event. Porphyroblasts with inclusion trails commonly preserve evidence of reactivation of earlier foliations and therefore can be used to identify the presence of a deformation that has not been recognized by normal geometric methods, because of penetrative reactivation. Reactivation often reverses the asymmetry between pre-existing foliations and bedding on one limb of a later fold, leading to problems in the geometric analysis of an area when the location of early fold hinges is essential. The stretching lineation in a reactivated foliation can be radically reoriented, potentially causing major errors in determining movement directions in mylonitic schistosities in folded thrusts. Geometric relationships which result from reactivation of foliations around porphyroblasts can be used to aid determination of the timing of the growth of porphyroblasts relative to deformation events. Other aspects of reactivation, however, can lead to complications in timing of porphyroblast growth if the presence of this phenomenon is not recognized; for example, D2-grown porphyroblasts may be dissolved against reactivated S1 and hence appear to have grown syn-D1.  相似文献   

7.
辽西兴城—台里地区发育系列花岗质岩石,强烈构造变形特征均显示其具有韧性剪切带的特点。对剪切带北段进行详细宏微观构造解析,结合岩石变形强度差异性分析、有限应变测量、石英C轴EBSD测试以及古差异应力值估算等研究,结果表明剪切带内花岗质片麻岩和眼球状花岗质片麻岩具有NEE向左行剪切变形特征,变形岩石为S-L构造岩,应变类型属于平面应变,古差异应力值介于30~40 MPa之间。长石-石英矿物温度计以及石英C轴EBSD组构指示剪切带以中低温变形为主,温度在400℃~500℃,属绿片岩相变质,具中-低温韧性剪切带特征。韧性剪切带内普遍存在变形分解现象,弱变形带内岩石残斑含量较高,眼球状构造和S-C组构较为发育;强变形带岩石残斑含量较低,剪切面理较为发育,糜棱面理发育较弱或者不发育。  相似文献   

8.
The rocks within the Singhbhum shear zone in the North Singhbhum fold belt, eastern India, form a tectonic melange comprising granitic mylonite, quartz-mica phyllonite, quartz-tourmaline rock and deformed volcanic and volcaniclastic rocks. The granitic rocks show a textural gradation from the least-deformed variety having coarse-to medium-grained granitoid texture through augen-bearing protomylonite and mylonite to ultramylonite. Both type I and type II S-C mylonites are present. The most intensely deformed varieties include ultramylonite. The phyllosilicate-bearing supracrustal rocks are converted to phyllonites. The different minerals exhibit a variety of crystal plastic deformation features. Generation of successive sets of mylonitic foliation, folding of the earlier sets and their truncation by the later ones results from the progressive shearing movement. The shear sense indicators suggest a thrust-type deformation. The microstructural and textural evolution of the rocks took place in an environment of relatively low temperature, dislocation creep accompanied by dynamic recovery and dynamic recrystallization being the principal deformation mechanisms. Palaeostress estimation suggests a flow stress within the range of 50–190 MPa during mylonitization.  相似文献   

9.
Geometrical relations between quartz C-axis fabrics, textures, microstructures and macroscopic structural elements (foliation, lineation, folds…) in mylonitic shear zones suggest that the C-axis fabric mostly reflects the late-stage deformation history. Three examples of mylonitic thrust zones are presented: the Eastern Alps, where the direction of shearing inferred from the quartz fabric results from a late deformation oblique to the overall thrusting; the Caledonides nappes and the Himalayan Main Central Thrust zone, where, through a similar reasoning, the fabrics would also reflect late strain increments though the direction of shearing deduced from quartz fabric remains parallel to the overall thrusting direction. Hence, the sense of shear and the shear strain component deduced from the orientation of C-axis girdles relative to the finite strain ellipsoid axes are not simply related nor representative of the entire deformation history.  相似文献   

10.
红河-哀牢山断裂带,由两条主要的糜棱岩带及其所夹的变质岩块体组成,是一条左行走滑韧性剪切带。带内糜棱岩叶理产状多为较陡,拉伸线理近水平。大量的S-C构造、旋转眼球体、多米诺牌式构造和布丁构造,以及断裂带两侧的构造线牵引形态都指示左行剪切。剪切带应变机制复杂,剪切应变值变化较大,估算走滑位移量在200km以上。据地质和同位素年龄资料,推断走滑剪切运动发生在喜山期。  相似文献   

11.
摩天岭花岗岩体为一大型韧性剪切带,岩体中广泛发育的片麻理实际上是糜棱面理,其总体走向为NNE向,倾向NWW-SWW,倾角30~70°,拉伸线理向SWW或NWW倾伏,根据S-C面理构造、长石和石英不对称眼球等剪切指向标志体判断,韧性剪切带运动学为正滑剪切。  相似文献   

12.
刘如琦  戴立军 《地质科学》2005,40(1):105-113
吉林省集安活龙金矿区位于一巨大剪切带中,强烈糜棱岩化,产生了Lister and Snoke(1984)所定义的Ⅰ和Ⅱ两类SC糜棱岩。依据两种主要糜棱面理S(Sm)与C的几何关系及局部发育的拉伸线理,初步确定了发生于中生代的两次剪切运动。含金石英脉(金矿体)均顺沿C面空间形成,当转入S时,则很快变薄消失。但S面大面积低品位金矿化现象表明,S面在含金流体渗透时曾起到通道作用。宏观上,含金石英脉集中分布于由接近平行的或交织的C面组成的、且排列较规则的构造带中,因C面通常倾角极缓,故构造带和相关的含金石英脉组呈一定间距出现于某些标高段内。金矿体的品位、厚度的稳定方位与S∧C交线方位接近,而且金矿体往往呈串珠状和透镜状顺此方位排列。  相似文献   

13.
New structural, metamorphic, finite strain, and kinematic vorticity data for mylonitic granitic rocks from northern thrust in Wadi Mubarak reveal a history of deformation reflecting different tectonic regimes. The vorticity analysis of porphyroclasts was determined in high temperature mylonites. The kinematic vorticity number for the mylonitic granitic samples in the northern thrust in Wadi Mubarak range from 0.66 to 0.90, and together with the strain data suggest deviations from simple shear. It is concluded that nappe stacking occurred early during the underthrusting event probably by brittle imbrication and that ductile strain was superimposed on the nappe structure during thrusting. The accumulation of ductile strain during thrusting was not by simple shear and involved a component of vertical shortening, which caused the subhorizontal foliation in the northern thrust in Wadi Mubarak and adjacent units.  相似文献   

14.
三维参照变形及应变相研究评述   总被引:2,自引:0,他引:2  
三维参照变形和应变相是最近构造地质学领域中取得的重要进展,三维参照变形是理想化的三维变形分类,每一参照变形是共轴级分(拉伸、压扁或纯剪)和与其垂直的简单切组分同时作用的产物,三种可能的面理取向和三种可能的线理取向的不同组合构成六咱应变相,三维参照变形和应变相研究证明糜陵面理未必平行剪切带,可与剪切带斜交,甚至垂直,线理未必与剪切方向一致,可与剪切方向斜交,甚至垂直,出现横向面理时,剪切指向标志位于该面理内,出现横向线理时,剪切指向出现在与线理垂直的ac面理内,三维变形分析不公可解决三维分析难以解释的横向面理和线理,而且可确定共轴组分的类型及其与单剪组分的结合方式。  相似文献   

15.
In the Singhbhum Shear Zone of eastern India successive generations of folds grew in response to a progressive ductile shearing. During this deformation a mylonitic foliation was initiated and was repeatedly transposed. The majority of fold hinges were formed in an arcuate manner at low angles to the Y-axis in an E-W trending subhorizontal position and major segments of the fold hinges were then rotated towards the down-dip northerly plunging X-axis. The striping and intersection lineations were rotated in the same manner. The down-dip mylonitic lineation is a composite structure represented by rotated early lineations and newly superimposed stretching lineations. The consistent asymmetry of the folds, the angular relations between C and S surfaces and the evidence of two-dimensional boudinage indicate that the deformation was non-coaxial, but with a flattening type of strain with λ1λ2. The degree of non-coaxiality varied both in space and time. From the progressive development of mesoscopic structures it is concluded that the 2–3 km wide belt of ductile shear gave rise to successive anastomosing shear zones of mesoscopic scale. When a new set of shear lenses was superimposed on already sheared rocks, the preexisting foliation generally lay at a low angle to the lenses. No new folds developed where the acute angle was sympathetic to the sense of shear displacements. Where the acute angle was counter to the sense of shear, the pre-existing foliation, lying in the instantaneous shortening field, was deformed into a set of asymmetric folds.  相似文献   

16.
17.
Structural investigations in the Precambrian Singhbhum Shear Zone of eastern India document an intimate relationship between micro- to meso-scale structures and the deformation history. Shear zone rocks are characterized by composite foliation, a well-developed stretching lineation, folds, shear planes, and quartz veins. These structures reflect thrusting of the Proterozoic north Singhbhum hanging wall block over the Archaean south Singhbhum footwall block. Microstructural analysis of multiple foliation and mylonitic rocks within the shear zone helps to define its progressive evolution. During progressive deformation, overprinting of microstructures resulted in incomplete transposition or complete erasing of previously formed structures and mineral assemblages, allowing room for new dynamic equilibrium structures to form. The dominant deformation mechanism was dissolution–recrystallization, with locally important fluid circulation responsible for transformation of the quartzo-feldspathic mass into phyllonite, and quartzites and schists into mylonite. Textural features suggest that the bulk deformation was non-coaxial, evolving from dominant pure shear in the early stage followed by simple shear in a single progressive strain history of the Singhbhum Shear Zone.  相似文献   

18.
Fabrics in the mid-crustal Bronson Hill zone of the southern New England Appalachian orogen record a range of apparent finite strains and conflicting kinematics, but structural relationships indicate coeval development. At the smallest scale of this study, shortening was accommodated in granitic orthogneiss, while transcurrent deformation was partitioned into relatively thin zones of metastratified rocks along the margins. The Monson orthogneiss can be broadly characterized by subvertical to steeply dipping S > L tectonites, subvertical to subhorizontal stretching lineations, closed to isoclinal folds, and dextral/reverse kinematics. The east-bounding Conant Brook shear zone and Greenwich syncline are characterized by steeply dipping mylonitic foliations, a range of lineations, and dextral/reverse kinematic indicators. The west-bounding Mt. Dumplin high strain zone is comprised of steeply dipping mylonites, subhorizontal lineations, and sinistral/normal kinematics. These structures reflect coeval partitioned dextral transpression, vertical extrusion, and north-directed lateral escape of the orthogneiss that was facilitated by bounding conjugate shear zones. Comparison of structural subdomains with transpressional modeling indicates vertical pseudo-monoclinic to inclined triclinic coaxial to simple shear influenced transpression. Compatibility between laterally adjacent subdomains was maintained by meso-/microscale partitioning. Absolute and relative timing constraints show that transpression was sustained from 330 Ma to 300 Ma.  相似文献   

19.
《Gondwana Research》2001,4(3):319-328
Examination of Landsat TM images, reconnaissance field traverses and the published geological maps from the Eastern Ghats Mobile Belt (EGMB), India, reveal a network of major ductile shear zones both within and at the margins. These shear zones are characterized by mylonitic foliation, grain size reduction, metamorphic retrogression, stretching lineations and distinct signatures of alkaline, anorthositic and granitic magmatism. These shear zones divide the EGMB into distinct terranes, which are heterogeneously deformed with extensive tracts of foliated mylonitic gneisses and ultramylonites. The main gneissic foliation in all the terranes is refolded in near non-coaxial manner generally about the axis subparallel to the elongation of the terrane.Structural history in each terrane is distinct in the orientation of stretching lineations, attitude of gneissosity and early fold axial planes, lithological assemblages and available geochronological data. It is possible to recognise nine large terranes within the EGMB and the characteristics of each terrane have been described. The terrane distribution in the EGMB could well fit a thrust tectonic, allochthonous model of amalgamation and accretion. Different terranes could be different thrust nappes or allochthonous tectonic sheets representing tectono-stratigraphic terranes.  相似文献   

20.
新疆胜利达坂金矿区金矿化特征   总被引:2,自引:0,他引:2  
胜利达坂金矿区,发育近EW向的韧性剪切带。该剪切带是区内金矿的主要控矿构造,控制了矿床、矿体及矿化体的分布。矿体主要沿韧性剪切带糜棱面理分布。矿石的主要类型是浸染糜棱岩型和变形石英脉型。成矿的最有利部位是剪切带内应力梯度大的地带。区内乳白色变形石英脉具有很大的找金潜力。该区金矿属韧性剪切带型金矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号