首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Numerous lenticular bodies of ultramafic rocks occur withinthe upper amphibolite- to granulitefacies metamorphic terraneof the Austrides between the Non and Ultimo valleys (Nonsbergregion), northern Italy. The ultramafic rocks are divided intotwo textural types: (a) coarse-type; and (b) finetype. The coarse-typerocks have the protogranular texture and are predominantly spinellherzolite. Some coarse-type spinel lherzolites have partlytransformed to garnet lherzolite. The fine-types are consideredto be metamorphic derivatives of the former, and the observedmineral assemblages are: (1) olivine + orthopyroxene + clinopyroxene+ garnet + amphibole ? spinel, (2) olivine + orthopyroxene +garnet + amphibole + spinel; (3) olivine + orthopyroxene + amphibole+ spinel; and (4) olivine+ orthopyroxene + amphibole + chlorite.Based on the microprobe analyses of constituent minerals fromten representative peridotite samples, physical conditions ofthe metamorphism, particularly that of the spinel to garnetlherzolite transformation, are estimated. Applications of pyroxenegeothermometry yield temperature estimates of 1100–1300?Cfor the formation of the primary spinel lherzolite, and 700–800?Cfor that of the fine-type peridotites. A pressure range of 16–28kb is obtained for the garnet lherzolite crystallization dependingon the choice of geobarometers. Two alternative P-T paths, i.e.(1) isobaric cooling or (2) pressure-increase and temperaturedecrease are considered and their geodynamic implications discussed.  相似文献   

2.
New evidence for ultrahigh‐pressure metamorphism (UHPM) in the Eastern Alps is reported from garnet‐bearing ultramafic rocks from the Pohorje Mountains in Slovenia. The garnet peridotites are closely associated with UHP kyanite eclogites. These rocks belong to the Lower Central Austroalpine basement unit of the Eastern Alps, exposed in the proximity of the Periadriatic fault. Ultramafic rocks have experienced a complex metamorphic history. On the basis of petrochemical data, garnet peridotites could have been derived from depleted mantle rocks that were subsequently metasomatized by melts and/or fluids either in the plagioclase‐peridotite or the spinel‐peridotite field. At least four stages of recrystallization have been identified in the garnet peridotites based on an analysis of reaction textures and mineral compositions. Stage I was most probably a spinel peridotite stage, as inferred from the presence of chromian spinel and aluminous pyroxenes. Stage II is a UHPM stage defined by the assemblage garnet + olivine + low‐Al orthopyroxene + clinopyroxene + Cr‐spinel. Garnet formed as exsolutions from clinopyroxene, coronas around Cr‐spinel, and porphyroblasts. Stage III is a decompression stage, manifested by the formation of kelyphitic rims of high‐Al orthopyroxene, aluminous spinel, diopside and pargasitic hornblende replacing garnet. Stage IV is represented by the formation of tremolitic amphibole, chlorite, serpentine and talc. Geothermobarometric calculations using (i) garnet‐olivine and garnet‐orthopyroxene Fe‐Mg exchange thermometers and (ii) the Al‐in‐orthopyroxene barometer indicate that the peak of metamorphism (stage II) occurred at conditions of around 900 °C and 4 GPa. These results suggest that garnet peridotites in the Pohorje Mountains experienced UHPM during the Cretaceous orogeny. We propose that UHPM resulted from deep subduction of continental crust, which incorporated mantle peridotites from the upper plate, in an intracontinental subduction zone. Sinking of the overlying mantle and lower crustal wedge into the asthenosphere (slab extraction) caused the main stage of unroofing of the UHP rocks during the Upper Cretaceous. Final exhumation was achieved by Miocene extensional core complex formation.  相似文献   

3.
The Raobazhai ultramafic body of the North Dabie Complex is re-interpreted as a mantle-derived peridotitic slice enclosed in, and isofacially metamorphosed with, surrounding granulite-to-amphibolite facies gneisses. The ultramafic sheet consists mainly of metaharzburgite, but includes subunits of metadunite and mylonitic lherzolite. The rocks contain spinel but neither garnet nor plagioclase. However, in the mylonitic lherzolite, fine-grained intergrowths of spinel, orthopyroxene and clinopyroxene outline domains resembling the habit of garnet in two dimensions; broad-beam microprobe analyses imply pseudomorphs after a pyropic garnet precursor. The mineral assemblage of the metadunite and metaharzburgite is: olivine (Fo92)+orthopyroxene (En92)+tremolitic-to-magnesiohornblende+Mg–Al-chromite, indicating amphibolite facies recrystallization. The mineral assemblage of the mylonitic lherzolite is: olivine (Fo90)+orthopyroxene (En90)+clinopyroxene+Cr-bearing spinel+pargasitic amphibole, indicative of granulite-to-amphibolite facies metamorphism. Phase equilibria and geothermometric estimations show that the Raobazhai meta-ultramafics have undergone at least three stages of recrystallization: (I) 950–990 °C, (II) 750–860 °C, and (III) 670–720 °C, assuming equilibrium in the spinel peridotite stability field ( c. 6–15 kbar), although an early, high-pressure stage (≥18 kbar) is probable, based on the inferred garnet pseudomorphs. Petrochemical and geothermobarometric data suggest that the ultramafic slice represents a fragment of the mantle wedge, tectonically incorporated into subducted continental crust and re-equilibrated at granulite-to-amphibolite facies conditions while being exhumed to shallow levels.  相似文献   

4.
The author describes a new occurrence of garnet peridotite and garnet pyroxenite interlayered in the biotite-sillimanite-garnet gneisses at the top of the granulitic serie of the Monts du Lyonnais (Massif Central français). Its dimensions are rather significant for a crustal gisement (500×100 m). It is only composed of forsterite, enstatite, chromiferous diopside, pyrope and spinel peridotites with their products of retrograde transformations as kelyphites, amphiboles, chlorites, lizardite, ores, etc. The petrographic studies show the heterogeneity of the massif and the anteriority of the red spinel upon the garnet which always forms a corona around the spinel. The peridotites are intermingled with numerous streched and dislocated layers of garnet websterites with rare centimetric levels. These pyroxenites would be derived of particular magmatic processes (partial anatectic melting followed by cristallisation) developped from an upper mantle level in a primary pyrolitic lherzolitic (s. l) or garnet peridotitic material. The garnet peridotite of “Le Bois des Feuilles” would be, in fact, a “secondary garnet lherzolite” derived: - either from a spinel lherzolite intermingled with garnet websterite layers and their “dunitic” remnants, to form a “pseudo-garnet lherzolite” like this of Beni Bouchera described by Kornprobst; - or from a spinel lherzolite associated with garnet websterites and submitted temporarily, at the time of its diapiric rising movement from the mantle towards the crust to the conditions of the spinel garnet lherzolite facies. The plastic deformations and intense laminations form blastomylonites of mixed rocks recristallised ultimately under granulitic facies conditions. These rocks are, pro parte, not very different from the other crustal garnet peridotites, in spite of the frequency of the spinel inclusions in garnet. In corollary, it seems that numerous crustal garnet peridotites would have the same origin.  相似文献   

5.
Ultrabasic Xenoliths and Lava from the Lashaine Volcano, Northern Tanzania   总被引:1,自引:3,他引:1  
The Lashaine tuff-ring consists of carbonatite tuff and glassyscoria of ankaramitic composition. The pyroclastics encloseejected blocks of country-rock metamorphic rocks and a suiteof ultramafic blocks which are divisible into two groups. Thefirst group, characterized by xenomorphic granular textures,contains rocks comprising varying combinations of pyrope garnet,spinel, magnesian olivine and orthopyroxene, chromiferous diopside,and phlogopite. Analyses are given for garnet lherzolite, lherzolite,harzburgite, and wehrlite and their separate phases. The chemistryof the garnet lherzolite and its phases resembles that of garnetperidotite nodules in kimberlite diatremes, and the A12O2 contentand Ca/Ca+Mg ratio of the clinopyroxenes in the lherzolite andwehrlite indicate more affinities with those in mantle-derivedrocks rather than with peridotites derived by accumulation froma basaltic melt. The phlogopite in a mica garnet lherzolite,that otherwise resembles other mantle garnet peridotites, isan unusual variety containing > 9 per cent TiO2. The othergroup of ultramafic xenoliths, characterized by cumulate andidiomorphic textures, comprises pyroxenite, with or withoutolivine, mica and amphibole, and mica dunite. Analyses are givenfor a mica dunite and its separate phases. The pressure andtemperature of formation of the various rock-types are estimated,and the relationship of the rocks to each other and to the hostlava is discussed. The chemistry of the host lava is discussedin the light of current experimental data and also in relationto the Northern Tanzania volcanic province. The significanceof the presence of mica in the upper mantle is also discussed.  相似文献   

6.
Whole-rock, major and trace element analyses and microprobe mineral analyses were conducted on serpentinized peridotites recovered from the walls of a MAR (Mid-Atlantic Ridge) 43° N fracture zone. These peridotites are extensively serpentinized; serpentine usually makes up 30–100 vol. percent of the bulk rocks. The relict minerals observed consist mainly of olivine and orthopyroxene with subordinate amounts of clinopyroxene and brown spinel. The range in olivine composition is very limited (Fo91–92). Orthopyroxene forms large, anhedral crystals with clinopyroxene exsolution lamellae and shows undulose extinction with bent cleavages and lamellae. Broad beam microprobe analyses indicate that the composition range of orthopyroxene is also limited (En89.1–87.6Fs8.2-8.0Wo2.7–4.4; Al2O3=1.82–2.64 wt%; Cr2O3=0.63–0.88 wt%). Clinopyroxene tends to fringe large orthopyroxene crystals or fills the interstices between them. The Mg/Fe ratios of clinopyroxene are practically constant; however, the Ca/(Ca + Mg + Fe) ratios range from 0.48 to 0.45. The Cr/(Cr+Al) and Mg/(Mg+ Fe2+) ratios of brown spinel range from 0.57 to 0.36 and 0.69 to 0.56, respectively. The geothermometers utilizing coexisting spinel lherzolite mineral assemblages suggest that the MAR 43° N peridotites attained equilibrium at temperatures from 1100° to 1250° C.Peridotites recovered from the ocean floor are generally considered to have been subjected to partial melting processes and are regarded as residues left after primary magma was removed. Major element chemistry of the MAR 43° N peridotites are compared with those of the ocean-floor ultramafic tectonites reported previously and used together with those published data to demonstrate that the major element abundances of the oceanfloor peridotites define an average trend which is compatible with removal of primary magma from these peridotites at moderate pressures (10–15 kb). Then, the most primitive abyssal tholeiite glasses could be produced by ca. 10% olivine fractionation of such primary magma. Extensive fractionation of olivine and/or orthopyroxene from picritic liquids which are in equilibrium with the lherzolitic or harzburgitic mantle sources at higher pressures (>20 kb) could not yield the majority of the most primitive abyssal tholeiite glasses.  相似文献   

7.
Eclogite facies mineral assemblages are variably preserved in mafic and ultramafic rocks within the Western Gneiss Region (WGR) of Norway. Mineralogical and microstructural data indicate that some Mg–Cr-rich, Alpine-type peridotites have had a complex metamorphic history. The metamorphic evolution of these rocks has been described in terms of a seven-stage evolutionary model; each stage is characterized by a specific mineral assemblage. Stages II and III both comprise garnet-bearing mineral assemblages. Garnet-bearing assemblages are also present in Fe–Ti-rich peridotites which commonly occur as layers in mafic complexes. Sm–Nd isotopic results are reported for mineral and whole rock samples from both of these types of peridotites and related rocks. The partitioning of Sm and Nd between coexisting garnet and clinopyroxene is used to assess chemical equilibrium. One sample of Mg–Cr-type peridotite shows non-disturbed partitioning of Sm and Nd between Stage II garnet and clinopyroxene pairs and yields a garnet–clinopyroxene–whole-rock date of 1703 ± 29 Ma (I= 0.51069, MSWD = 0.04). This is the best estimate for the age of the Stage II high-P assemblage. Other Stage II garnet–clinopyroxene pairs reflect later disturbance of the Sm–Nd system and yield dates in the range 1303 to 1040 Ma. These dates may not have any geological significance. Stage III garnet–clinopyroxene pairs typically have equilibrated Sm–Nd partitioning and two samples yield dates of 437 ± 58 and 511 ± 18 Ma. This suggests that equilibration of the Stage III high-P assemblage is related to the Caledonian orogeny and is more or less contemporaneous with high-P metamorphism of ‘country-rock’eclogites in the surrounding gneisses. The Sm–Nd mineral data for the Fe–Ti-rich garnet peridotites and for a superferrian eclogite, which occurs as a dyke within the Gurskebotn Mg–Cr-type peridotite, are consistent with a Palaeozoic high-P metamorphism. Finally a synoptic P–T–t path is proposed for the Mg–Cr-type peridotites which is consistent with the petrological and geochronological data.  相似文献   

8.
A. Kühn  J. Glodny  K. Iden  H. Austrheim 《Lithos》2000,51(4):423-330
The Lindås Nappe, Caledonides W-Norway was affected by two major tectonometamorphic events. A Precambrian granulite facies event at T=800–900°C, P<10 kbar was followed by localized Caledonian eclogite facies (T=650–700°C and P>15 kbar) and localized amphibolite facies reworking. During the granulite–eclogite facies transition, anorthositic rocks were converted from garnet granulites to kyanite eclogites, while phlogopite-bearing spinel lherzolite reacted to garnet lherzolite. The eclogite and amphibolite facies reequilibration took place along shear zones and fluid pathways. In the unhydrated and undeformed parts, the minerals preserved their granulite facies composition with constant Fe/Mg ratios from core to rim, suggesting diffusional reequilibration. Rb/Sr age dating was carried out on relict granulite facies minerals from three lenses of ultramafites (Alvfjellet, Hundskjeften and Kvamsfjellet). Phlogopite from phlogopite lherzolite at Alvfjellet give 857±9 Ma, while clinopyroxene, amphibole, phlogopite and whole rock from a lherzolite at Hundskjeften yield an age of 842±12 Ma (MSWD=1.9). Clinopyroxene, feldspar, orthopyroxene phlogopite and whole rock from websterite, Kvamsfjellet, yield an age of 835±7 Ma (MSWD<1), while clinopyroxene, phlogopite and whole rock from a lherzolite from the same lens gives a result of 882±9 Ma. These results are interpreted as minimum ages for the granulite facies event and only slightly younger than, or overlap with previous U–Pb zircon ages (929±1 Ma) and Sm–Nd garnet–pyroxene ages (890–923 Ma) interpreted to date the end of the granulite facies event. By contrast, ages obtained for the eclogite and amphibolite facies range from 460 (U–Pb, sphene), 440 (Ar–Ar), 419 (U–Pb, zircon) to 410 Ma (Rb/Sr mineral ages).

These results demonstrate that the reopening temperature for the Rb/Sr system in phlogopite–biotite under dry and static high-pressure conditions is, in the given mineral assemblages, at least 650°C, considerably higher than the 300–400°C assumed as the closure temperature of this system. We ascribe this elevated reopening temperature to fluid absent conditions that prevented element transport and rehomogenization.  相似文献   


9.
Peridotite xenoliths from the Bereya alkali picrite tuff in the Vitim volcanic province of Transbaikalia consist of garnet lherzolite, garnet–spinel lherzolite and spinel lherzolite varieties. The volcanism is related to the Cenozoic Baikal Rift. All peridotites come from pressures of 20–23 kbar close to the garnet to spinel peridotite transition depth, and the presence of garnet can be attributed to cooling of spinel peridotites, probably during formation of the lithosphere. The peridotites show petrographic and mineral chemical evidence for infiltration by an alkaline silicate melt shortly before their transport to the Earth's surface. The melt infiltration event is indicated petrographically by clinopyroxenes which mimic melt morphologies, and post-dates outer kelyphitic rims on garnets which are attributed to an isochemical heating event within the mantle before transport to the Earth's surface. Single-mineral thermometry gives reasonable temperature estimates of 1050±50°C, whereas two-mineral methods involving clinopyroxene are falsified by secondary components in clinopyroxene introduced during the melt infiltration event. Excimer Laser–ICP-MS analysis has been performed for an extensive palette of both incompatible and compatible trace elements, and manifests the most thorough dataset available for this rock type. Orthopyroxene and garnet show only partial equilibration of trace elements with the infiltrating melt, whereas clinopyroxene and amphibole are close to equilibration with the melt and with each other. The incompatible element composition of the infiltrating melt calculated from the clinopyroxene and amphibole analyses via experimental mineral/melt partition coefficients is similar to the host alkali picrite, and probably represents a low melt fraction from a similar source during rift propagation. The chemistry and chronology of the events recorded in the xenoliths delineates the series of events expected during the influence of an expanding rift region in the upper mantle, namely the progressive erosion of the lithosphere and the episodic upward and outward propagation of melts, resulting in the evolution of the Vitim volcanic field.  相似文献   

10.
A high-grade metamorphic complex is exposed in Filchnerfjella (6–8°E), central Dronning Maud Land. The metamorphic evolution of the complex has been recovered through a study of textural relationships, conventional geothermobarometry and pseudosection modelling. Relicts of an early, high-P assemblage are preserved within low-strain mafic pods. Subsequent granulite facies metamorphism resulted in formation of orthopyroxene in rocks of mafic, intermediate to felsic compositions, whereas spinel + quartz were part of the peak assemblage in pelitic gneisses. Peak conditions were attained at temperatures between 850–885 °C and 0.55–0.70 GPa. Reaction textures, including the replacement of amphibole and garnet by symplectites of orthopyroxene + plagioclase and partial replacement of garnet + sillimanite + spinel bearing assemblages by cordierite, indicate that the granulite facies metamorphism was accompanied and followed by decompression. The observed assemblages define a clock-wise P-T path including near-isothermal decompression. During decompression, localized melting led to formation of post-kinematic cordierite-melt assemblages, whereas mafic rocks contain melt patches with euhedral orthopyroxene. The granulite facies metamorphism, decompression and partial crustal melting occurred during the Cambrian Pan-African tectonothermal event.  相似文献   

11.
Six crystalline mixtures, picrite, olivine-rich tholeiite, nepheline basanite, alkali picrite, olivine-rich basanite, and olivine-rich alkali basalt were recrystallized at pressures to 40 kb, and the phase equilibria and sequences of phases in natural basaltic and peridotitic rocks were investigated.The picrite was recrystallized along the solidus to the assemblages (1) olivine+orthopyroxene+ clinopyroxene +plagioclase+spinel below 13 kb, (2) olivine+orthopyroxene+clinopyroxene+spinel between 13 kb and 18 kb, (3) olivine+orthopyroxene+clinopyroxene+ garnet+spinel between 18 kb and 26 kb, and (4) olivine+clinopyroxene+garnet above 26 kb. The solidus temperature at 1 atm is slightly below 1,100° and rises to 1,320° at 20 kb and 1,570° at 40 kb. Olivine is the primary phase crystallizing from the melt at all pressures to 40 kb.The olivine-rich tholeiite was recrystallized along the solidus into the assemblages (1) olivine+ clinopyroxene+plagioclase+spinel below 13 kb, (2) clinopyroxene+orthopyroxene+ spinel between 13 kb and 18 kb, (3) clinopyroxene+garnet+spinel above 18 kb. The solidus temperature is slightly below 1,100° at 1 atm, 1,370° at 20 kb, and 1,590° at 40 kb. The primary phase is olivine below 20 kb but is orthopyroxene at 40 kb.In the nepheline basanite, olivine is the primary phase below 14 kb, but clinopyroxene is the first phase to appear above 14 kb. In the alkali-picrite the primary phase is olivine to 40 kb. In the olivine-rich basanite, olivine is the primary phase below 35 kb and garnet is the primary phase above 35 kb. In the olivine-rich alkali basalt the primary phase is olivine below 20 kb and is garnet at 40 kb.Mineral assemblages in a granite-basalt-peridotite join are summarized according to reported experimental data on natural rocks. The solidus of mafic rock is approximately given by T=12.5 P Kb+1,050°. With increasing pressure along the solidus, olivine disappears by reaction with plagioclase at 9 kb in mafic rocks and plagioclase disappears by reaction with olivine at 13 kb in ultramafic rocks. Plagioclase disappears at around 22 kb in mafic rocks, but it persists to higher pressure in acidic rocks. Garnet appears at somewhat above 18 kb in acidic rocks, at 17 kb in mafic rocks, and at 22 kb in ultramafic rocks.The subsolidus equilibrium curves of the reactions are extrapolated according to equilibrium curves of related reactions in simple systems. The pyroxene-hornfels and sanidinite facies is the lowest pressure mineral facies. The pyroxene-granulite facies is an intermediate low pressure mineral facies in which olivine and plagioclase are incompatible and garnet is absent in mafic rocks. The low pressure boundary is at 7.5 kb at 750° C and at 9.5 kb at 1,150° C. The high pressure boundary is 8.0 kb at 750° C and 15.0 kb at 1,150° C. The garnet-granulite facies is an intermediate high pressure facies and is characterized by coexisting garnet and plagioclase in mafic rocks. The upper boundary is at 10.3 kb at 750° C and 18.0 kb at 1,150° C. The eclogite facies is the highest pressure mineral facies, in which jadeite-rich clinopyroxene is stable.Compositions of minerals in natural rocks of the granulite facies and the eclogite facies are considered. Clinopyroxenes in the granulite-facies rocks have smaller jadeite-Tschermak's molecule ratios and higher amounts of Tschermak's molecule than clinopyroxenes in the eclogite-facies rocks. The distribution coefficients of Mg between orthopyroxene and clinopyroxene are normally in the range of 0.5–0.6 in metamorphic rocks in the granulite facies. The distribution coefficients of Mg between garnet and clinopyroxene suggest increasing crystallization temperature of the rocks in the following order: eclogite in glaucophane schist, eclogite and granulite in gneissic terrain, garnet peridotite, and peridotite nodules in kimberlite.Temperatures near the bottom of the crust in orogenic zones characterized by kyanitesillimanite metamorpbism are estimated from the mineral assemblages of metamorphic rocks in Precambrian shields to be about 700° C at 7 kb and 800° C at 9 kb, although heat-flow data suggest that the bottom of Precambrian shield areas is about 400° C and the eclogite facies is stable.The composition of liquid which is in equilibrium with peridotite is estimated to be close to tholeiite basalt at the surface pressure and to be picrite at around 30 kb. The liquid composition becomes poorer in normative olivine with decreasing pressure and temperature.During crystallization at high pressure, olivine and orthopyroxene react with liquid to form clinopyroxene, and a discontinuous reaction series, olivine orthopyroxene clinopyroxene is suggested. By fractional crystallization of pyroxenes the liquid will become poorer in SiO2. Therefore, if liquid formed by partial melting of peridotite in the mantle slowly rises maintaining equilibrium with the surrounding peridotite, the liquid will become poorer in MgO by crystallization of olivine, and tholeiite basalt magma will arrive at the surface. On the other hand, if the liquid undergoes fractional crystallization in the mantle, the liquid may change in composition to alkali-basalt magma and alkali-basalt volcanism may be seen at a late stage of volcanic activity.Publication No. 681, Institute of Geophysics and Planetary Physics, University of California, Los Angeles.  相似文献   

12.
Garnet and spinel peridotite xenoliths associated with the Phanerozoic Lambert-Amery Rift in eastern Antarctica contain evidence for several stages in the development of the mantle beneath the rift. Despite the fact that equilibria were only partly attained, a combination of petrography, whole-rock geochemistry, mineral chemistry and thermobarometry can be used to decipher four stages prior to entrainment of the xenoliths in the host magma during the initial stages of the breakup of Antarctica, India and Madagascar. The first chronological stage is represented by harzburgitic protoliths represented by rare occurrences of low-Ca olivines and orthopyroxenes in spinel lherzolites: these yield the lowest temperatures of 830-850 °C, and are also characterized by distinct trace element contents; lower Ti, Cr, V and Zn in olivine and orthopyroxene, and additionally lower Cu, Ni, Ga and Li in orthopyroxene. Some garnets are subcalcic, indicating that the spinel-garnet lherzolites also formed from harzburgitic protoliths. The second stage is the formation of garnet due to a pressure increase probably related to collision at 1.1 Ga. The third stage is marked by the growth of clinopyroxene, demonstrably in cpx-poor spinel lherzolites but probably in all xenolith groups: equilibrium of clinopyroxene with olivine and orthopyroxene was not attained in all samples, so that the non-judicious use of thermobarometers can produce bewildering results. The fourth stage is an enrichment episode that affected all spinel-garnet peridotites and about half of the spinel peridotites. During this stage, reaction rims were produced on the clinopyroxenes that formed during stage 3, the modal content of olivine and Mg/(Mg + Fe) in the rocks was reduced, CaO, Al2O3 and trace elements were enriched, and garnets were almost completely transformed to kelyphites. A later stage is documented by interstitial glasses and films around spinels related to infiltration of melt from the host magma. These post-date, and are more enriched in alkalies than, partially melted rims on clinopyroxenes, demonstrating that all the three earlier episodes were pre-entrainment events. Pressures indicated by the spinel + garnet lherzolites are restricted to 20-24 kbar at 1040-1180 °C. Early harzburgitic assemblages are interpreted to represent an earlier, cooler geotherm, whereas the kelyphite assemblages indicate temperatures 180-200 °C hotter than the main xenolith geotherm. This event also caused recrystallization of the clinopyroxene rims and is attributed to heating during rifting, but not due to the host magma itself. The preservation of evidence for three progressively hotter geotherms can be related to the upward movement of isotherms during the development of the sub-rift mantle.  相似文献   

13.
B. Carter Hearn Jr.   《Lithos》2004,77(1-4):473-491
The Homestead kimberlite was emplaced in lower Cretaceous marine shale and siltstone in the Grassrange area of central Montana. The Grassrange area includes aillikite, alnoite, carbonatite, kimberlite, and monchiquite and is situated within the Archean Wyoming craton. The kimberlite contains 25–30 modal% olivine as xenocrysts and phenocrysts in a matrix of phlogopite, monticellite, diopside, serpentine, chlorite, hydrous Ca–Al–Na silicates, perovskite, and spinel. The rock is kimberlite based on mineralogy, the presence of atoll-textured groundmass spinels, and kimberlitic core-rim zoning of groundmass spinels and groundmass phlogopites.

Garnet xenocrysts are mainly Cr-pyropes, of which 2–12% are G10 compositions, crustal almandines are rare and eclogitic garnets are absent. Spinel xenocrysts have MgO and Cr2O3 contents ranging into the diamond inclusion field. Mg-ilmenite xenocrysts contain 7–11 wt.% MgO and 0.8–1.9 wt.% Cr2O3, with (Fe+3/Fetot) from 0.17–0.31. Olivine is the only obvious megacryst mineral present. One microdiamond was recovered from caustic fusion of a 45-kg sample.

Upper-mantle xenoliths up to 70 cm size are abundant and are some of the largest known garnet peridotite xenoliths in North America. The xenolith suite is dominated by dunites, and harzburgites containing garnet and/or spinel. Granulites are rare and eclogites are absent. Among 153 xenoliths, 7% are lherzolites, 61% are harzburgites, 31% are dunites, and 1% are orthopyroxenites. Three of 30 peridotite xenoliths that were analysed are low-Ca garnet–spinel harzburgites containing G10 garnets. Xenolith textures are mainly coarse granular, and only 5% are porphyroclastic.

Xenolith modal mineralogy and mineral compositions indicate ancient major-element depletion as observed in other Wyoming craton xenolith assemblages, followed by younger enrichment events evidenced by tectonized or undeformed veins of orthopyroxenite, clinopyroxenite, websterite, and the presence of phlogopite-bearing veins and disseminated phlogopite. Phlogopite-bearing veins may represent kimberlite-related addition and/or earlier K-metasomatism.

Xenolith thermobarometry using published two-pyroxene and Al-in-opx methods suggest that garnet–spinel peridotites are derived from 1180 to 1390 °C and 3.6 to 4.7 GPa, close to the diamond–graphite boundary and above a 38 mW/m2 shield geotherm. Low-Ca garnet–spinel harzburgites with G10 garnets fall in about the same T and P range. Most spinel peridotites with assumed 2.0 GPa pressure are in the same T range, possibly indicating heating of the shallow mantle. Four of 79 Cr diopside xenocrysts have PT estimates in the diamond stability field using published single-pyroxene PT calculation methods.  相似文献   


14.
宋衍茹  叶凯  续海金 《岩石学报》2009,25(1):147-158
苏鲁超高压变质地体中发现了大量包裹在超高压(UHP)变质片麻岩和混合岩中的造山带石榴橄榄岩。根据它们的野外产出特征和全岩地球化学成分,其中一部分石榴橄榄岩的原岩来自于亏损地幔,后来被卷入俯冲陆壳并经受过俯冲陆壳产生的熔/流体的交代。但是,对这些岩石早期的亏损过程尚缺乏清晰的认识。本文报道了东海芝麻坊石榴子石二辉橄榄岩早期变质演化的新证据。根据详细的变质反应结构观察和矿物成分研究,芝麻坊石榴子石二辉橄榄岩在经历高压低温俯冲带型超高压变质之前经历了至少两期变质演化。其原岩矿物组合由石榴子石变斑晶的高Ca-Cr核部及其中包裹的高Mg单斜辉石、高Al-Cr斜方辉石和高Mg-Ni橄榄石所记录;指示芝麻坊石榴子石二辉橄榄岩的原岩为高温-高压的富集石榴子石二辉橄榄岩。第二期矿物组合为包裹在低Cr变斑晶石榴子石幔部和细粒新生石榴子石核部的大量富Al铬铁矿和高Mg低Ni橄榄石以及少量高Mg斜方辉石。该期组合未发现单斜辉石,表明岩石随后被转变为高温低压的难熔尖晶石方辉橄榄岩或尖晶石纯橄岩。芝麻坊石榴子石二辉橄榄岩的早期变质演化记录了它们被卷入大陆板片俯冲带之前的地幔楔上升对流过程。笔者认为芝麻坊石榴子石二辉橄榄岩的原岩来源于早期俯冲大洋板片之上的深部高温富集地幔楔,洋壳俯冲过程中的地幔楔对流导致其上升到弧后或岛弧之下的地幔楔浅部,减压部分熔融使原本富集的石榴子石二辉橄榄岩转化为难熔的尖晶石方辉橄榄岩或尖晶石纯橄岩。  相似文献   

15.
Low-pressure granulite facies metasedimentary gneisses exposed in MacRobertson Land, east Antarctica, include hercynitic spinel-bearing metapelitic gneisses. Peak metamorphic mineral assemblages include spinel + rutile + ilmenite + sillimanite + garnet, spinel + ilmenite + sillimanite + garnet + cordierite, ortho-pyroxene + magnetite + ilmenite + garnet, spinel + cordierite + biotite + ilmenite and orthopyroxene + cordierite + biotite, each with quartz, K-feldspar and melt. The presence of garnet + biotite- and cordierite + orthopyroxene-bearing assemblages implies crossing tie-lines in AFM projection for the K2O-FeO-MgO-Al2O3-SiO2-H2O (KFMASH) system. This apparent contradiction, and the presence of spinel, rutile and ilmenite in the assemblages, is acounted for by using the KFMASH-TiO2-O2 system, i.e. AFM + TiO2+ Fe2O3. We derive a petrogenetic grid for this system, applicable to low-pressure granulite facies metamorphic conditions. Retrograde assemblages are interpreted from corona textures on hercynitic spinel and Fe-Ti oxides. The relative positions of the peak and retrograde metamorphic assemblages on the petrogenetic grid suggest that corona development occurred during essentially isobaric cooling.  相似文献   

16.
Ultramafic xenoliths of garnet lherzolite (?rare spinel), spinellherzolites, spinel harzburgites, clinopyroxenites, and clinopyroxenemegacrysts were collected from Cenozoic basalts in all partsof eastern China. From their modal composition and mineral chemistryall the xenoliths may be placed into three types representing:a fertile or more primitive mantle (garnet lherzolite and spinellherzolite), a refractory or more depleted mantle (spinel harzburgiteand dunite), and inclusions cognate with the host alkali basaltsat mantle pressures (pyroxenite and megacrysts). There are systematicdifferences between the mineral compositions of each type. Spinelshows a wide compositional range and the spinel cr-number [100Cr/(Cr + Al)] is a significant indicator of the xenolithtype. Spinel cr-number and Al2O3 of coexisting minerals (spinel,clinopyroxene, and orthopyroxene) are useful as refractory indicatorsfor spinel peridotite in that the cr-number increases and thepercentage of Al2O3 decreases with increasing degrees of melting.In garnet peridotite, however, the same functions vary withpressure, not degree of melting. According to P–T estimates,the various xenoliths were derived from a large range of depthsin the upper mantle: spinel peridotite from approximately 11to 22 kb (37–66 km), spinel/garnet lherzolite from 19to 24 kb (62–80 km), and garnet lherzolite from 24 to25 kb (79–83 km). We conclude that the uppermost mantlebeneath eastern China is heterogeneous, with a north-northeastzone of more depleted mantle lying beneath the continental marginand a more primitive mantle occurring towards the continentalinterior.  相似文献   

17.
We present the whole-rock and the mineral chemical data for upper mantle peridotites from the Harmanc?k region in NW Turkey and discuss their petrogenetic–tectonic origin. These peridotites are part of a Tethyan ophiolite belt occurring along the ?zmir-Ankara-Ercincan suture zone in northern Turkey, and include depleted lherzolites and refractory harzburgites. The Al2O3 contents in orthopyroxene and clinopyroxene from the depleted lherzolite are high, and the Cr-number in the coexisting spinel is low falling within the abyssal field. However, the orthopyroxene and clinopyroxene in the harzburgites have lower Al2O3 contents for a given Cr-number of spinel, and plot within the lower end of the abyssal field. The whole-rock geochemical and the mineral chemistry data imply that the Harmanc?k peridotites formed by different degrees of partial melting (~%10–27) of the mantle. The depleted lherzolite samples have higher MREE and HREE abundances than the harzburgitic peridotites, showing convex-downward patterns. These peridotites represent up to ~16 % melting residue that formed during the initial seafloor spreading stage of the Northern Neotethys. On the other hand, the more refractory harzburgites represent residues after ~4–11 % hydrous partial melting of the previously depleted MOR mantle, which was metasomatized by slab-derived fluids during the early stages of subduction. The Harmanc?k peridotites, hence, represent the fragments of upper mantle rocks that formed during different stages of the tectonic evolution of the Tethyan oceanic lithosphere in Northern Neotethys. We infer that the multi-stage melting history of the Harmanc?k peridotites reflect the geochemically heterogeneous character of the Tethyan oceanic lithosphere currently exposed along the ?zmir-Ankara-Erzincan suture zone.  相似文献   

18.
Alpine‐type orogenic garnet‐bearing peridotites, associated with quartzo‐feldspathic gneisses of a 140–115 Ma high‐pressure/ultra‐high‐pressure metamorphic (HP‐UHPM) terrane, occur in two regions of the Indonesian island of Sulawesi. Both exposures are located within NW–SE‐trending strike–slip fault zones. Garnet lherzolite occurs as <10 m wide fault slices juxtaposed against Miocene granite in the left‐lateral Palu‐Koro (P‐K) fault valley, and as 10–30 m wide, fault‐bounded outcrops juxtaposed against gabbros and peridotites of the East Sulawesi ophiolite within the right‐lateral Ampana fault in the Bongka river (BR) valley. Six evolutionary stages of recrystallization can be recognized in the peridotites from both localities. Stage I, the precursor spinel lherzolite assemblage, is characterized by Ol+Cpx+Opx±Prg‐Amp ± Spl±Rt±Phl, as inclusions within garnet cores. Stage II, the main garnet lherzolite assemblage, consists of coarse‐grained Ol+Opx+Cpx+Grt; whereas finer‐grained, neoblastic Ol+Opx+Grt+Cpx±Spl±Prg‐Amp±Phl constitutes stage III. Stages IV and V are manifest as kelyphites of fibrous Opx+Cpx+Spl in inner coronas, and Opx+Spl+Prg‐Amp±Ep in outer coronas around garnet, respectively. The final (greenschist facies) retrogressive stage VI is accompanied by recrystallization of Serp+Chl±Mag±Tr±Ni sulphides±Tlc±Cal. P–T conditions of the hydrated precursor spinel lherzolite stage I were probably about 750 °C at 15–20 kbar. P–T determinations of the peak stage IIc (from core compositions) display considerable variation for samples derived from different outcrops, with clustering at 26–38 kbar, 1025–1210 °C (P‐K & BR); 19–21 kbar, 1070–1090 °C (P‐K), and 40–48 kbar, 1205–1290 °C (BR). Stage IIr (derived from rim compositions) generally records decompression of around 4–12 kbar accompanied by cooling of 50–240 °C from the IIc peak stage. Stage III, which post‐dates a phase of ductile deformation, yielded 22±2 kbar at 750±25 °C (P‐K) and 16±2 kbar at 730±40 °C (BR). The granulite–amphibolite–greenschist decompression sequence reflects uplift to upper crustal levels from conditions of 647–862 °C at P=15 kbar (stage IV), through 580–635 °C at P=10–12 kbar (stage V) to 350–400 °C at P=4–7 kbar (stage VI), respectively, and is identical to the sequence recorded in associated granulite, gneiss and eclogite. Sulawesi garnet peridotites are interpreted to represent minor components of the extensive HP‐UHP (peak P >28 kbar, peak T of c. 760 °C) metamorphic basement terrane, which was recrystallized and uplifted in a N‐dipping continental collision zone at the southern Sundaland margin in the mid‐Cretaceous. The low‐T , low‐P and metasomatized spinel lherzolite precursor to the garnet lherzolite probably represents mantle wedge rocks that were dragged down parallel to the slab–wedge interface in a subduction/collision zone by induced corner flow. Ductile tectonic incorporation into the underthrust continental crust from various depths along the interface probably occurred during the exhumation stage, and the garnet peridotites were subsequently uplifted within the HP‐UHPM nappe, suffering a similar decompression history to that experienced by the regional schists and gneisses. Final exhumation from upper crustal levels was clearly facilitated by entrainment in Neogene granitic plutons, and/or Oligocene trans‐tension in deep‐seated strike–slip fault zones.  相似文献   

19.
A spinel lherzolite body outcrops as a fault block on the north coast of East Timor. The most common rock‐type in this body is a clinopyroxene‐poor lherzolite, but there are smaller proportions of clinopyroxene‐rich lherzolite and harzburgite. The dominant mineral assemblage is olivine, orthopyroxene, clinopyroxene, spinel and calcic amphibole. Low‐temperature hydrous minerals are restricted in distribution.

The chemical composition of the peridotite is closely similar to mantle‐derived spinel lherzolite nodules and some alpine peridotites. The internal variation of the peridotite suggests variable depletion by some combination of partial melting and liquid contamination of the residua, in a CO2‐rich system at 10–15 kb (1000–1500 MPa).

Three solid‐state events are indicated by geothermometry. The earliest event is recorded by coarse exsolution lamellae of orthopyroxene in clinopyroxene porphyro‐clasts. These grains formed at 1250°C. A later granoblastic texture equilibrated at 1100°C, and finally the rocks were mylonitised at 800–1000°C and 8–20 kb (800–2000 MPa).

The peridotite is probably a sample of the oceanic mantle trapped between the Java Trench and the Inner Banda Arc. Its emplacement on Timor is not related to obduction, but may be due to transcurrent faulting between the Asian and Australian plates.  相似文献   

20.
东喜马拉雅地区高压麻粒岩岩石学研究及构造意义   总被引:5,自引:0,他引:5       下载免费PDF全文
刘焰 《地质科学》1998,33(3):267-281
将该区内的高喜马拉雅结晶岩划分为南部的角闪岩相岩石和北部的中低压麻粒岩相岩石,后者沿那木拉逆冲断层向南推覆于前者之上。高压麻粒岩相岩石仅以残余产出于后者,主要包括石榴石蓝晶石片麻岩和石榴石透辉石岩。前者的峰期矿物组合为石榴石+蓝晶石+三元长石+石英+金红石;后者的峰期组合为石榴石(铁铝榴石10±钙铝榴石>80)+透辉石+石英+方柱石+榍石(Al2O3为4%-4.5%).变质温压估计结果表明高压麻粒岩相岩石形成于大约1.7-1.8GPa,890℃,然后经历了近等温降压变质作用至0.5±0.1GPa,850±50℃。它们的原岩可能是大理岩及泥质岩。这表明在区内曾存在一高压麻粒岩带,那木拉冲断层可能是高喜马拉雅结晶岩内的一条重要的构造界线。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号