首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forty four core samples were analyzed to determine sediment particle size, total organic carbon (TOC), total inorganic carbon (TIC), total nitrogen and total sulphur. Sequential extraction of S was also carried out, differentiating AVS (acid volatile sulphide), elemental S, organic S and pyrite S. The results obtained show that the presence of mussel rafts causes intense changes in the physicochemical composition and properties of the sea floor in the Ria de Arousa. The percentage of silt and clay, TOC, TIC and total N were significantly higher in the biodeposit than in the sediment. In contrast, there were no differences between the biodeposit and the sediment in terms of pH (8.0-8.7) and redox potential. The sediment and biodeposit were always anoxic, with values of redox potentials below -100 mV. In accordance with these conditions, the dominant fraction of S was pyrite S (FeS(2)). The AVS fraction and elemental S were present at low concentrations, except in the uppermost part of each core. Pyrite was relatively stable when the biodeposit and sediment were maintained in suspension for 8 days in oxic sea water; unlike the AVS fraction, which disappeared within a few hours.  相似文献   

2.
A cross-system analysis of bulk sediment composition, total organic carbon (TOC), atomic C/N ratio, and carbon isotope composition (δ13C) in 82 surface sediment samples from natural and planted mangrove forests, bank and bottom of tidal creeks, tidal flat, and the subtidal habitat was conducted to examine the roles of mangroves in sedimentation and organic carbon (OC) accumulation processes, and to characterize sources of sedimentary OC of the mangrove ecosystem of Xuan Thuy National Park, Vietnam. Sediment grain sizes varied widely from 5.4 to 170.2 μm (mean 71.5 μm), with the fine sediment grain size fraction (< 63 μm) ranging from 11 to 99.3% (mean 72.5%). Bulk sediment composition suggested that mangroves play an important role in trapping fine sediments from river outflows and tidal water by the mechanisms of tidal current attenuation by vegetation and the ability of fine roots to bind sediments. The TOC content ranged from 0.08 to 2.18% (mean 0.78%), and was higher within mangrove forests compared to those of banks and bottoms of tidal creeks, tidal flat, and subtidal sediments. The sedimentary δ13C ranged from − 27.7 to − 20.4‰ (mean − 24.1‰), and mirrored the trend observed in TOC variation. The TOC and δ13C relationship showed that the factors of microbial remineralization and OC sources controlled the TOC pool of mangrove sediments. The comparison of δ13C and C/N ratio of sedimentary OC with those of mangrove and marine phytoplankton sources indicated that the sedimentary OC within mangrove forests and the subtidal habitat was mainly composed of mangrove and marine phytoplankton sources, respectively. The application of a simple mixing model showed that the mangrove contribution to sedimentary OC decreased as follows: natural mangrove forest > planted mangrove forest > tidal flat > creek bank > creek bottom > subtidal habitat.  相似文献   

3.
Competitive interactions between silicate and phosphate at ligand exchange sites in the sediment surface layer may increase the release of phosphorus (P) from the sediment into the water column. In this study, the role of silicon (Si) in the release of P from the sediment surface layer was studied in a marine estuarine environment, the Bay of Brest, with the aid of a sequential sediment fractionation procedure developed for P, and the addition of inorganic or diatom-bound Si to surface sediment samples in vitro. The potentially mobile pools of P in the surface sediment (loosely bound P + Fe/Al-bound-P) amounted to 5.0 μmol g−1 dry sed., 42% of the total extractable and 33% of the total amount of P in the sediment, while the similarly extracted pools of Si were bigger (ca. 20 μmol g−1 dry sed., 50% of the total extractable Si). Additions of inorganic Si increased the concentration of dissolved P in the sediment interstitial water in a bottle experiment, and the addition of both inorganic Si and cultivated diatoms to intact sediment cores increased the outward flux of dissolved P. Model calculations based on the regression equation from the bottle experiment and Si and P water column data showed that the sedimentation of spring diatoms could cause Si pulses to the sediment which would produce a P flux to the water column of ca. 44 μmol m−2 d−1. Field data from the bay show that in spring, decreases in P and Si and an increase in chl a due to diatom production are often followed by a small separate P peak which may be caused by Si-induced P fluxes from the sediment surface.  相似文献   

4.
对南海北部陆坡柱状沉积物样品总有机碳、总硫含量,以及其中的自生黄铁矿形貌、含量进行分析.结果显示,沉积物中黄铁矿(FeS2)、总有机碳(TOC)、总硫(TS)的质量分数分别为0~0,71%、0.37%~1.18%、0.04%~0.81%;黄铁矿和总有机碳、总硫的含量随深度加深逐渐增大,达到峰值后不断减少,三者的分布趋势基本一致;扫描电镜下观察到黄铁矿主要以莓球状集合体和八面体微晶形貌产出,局部层位亦发现管状、生物内膜状和立方体状黄铁矿晶体.表明该区浅表层环境为缺氧环境,硫化物主要以黄铁矿形式产出,其成因与有机质的厌氧氧化作用有关,而甲烷的厌氧氧化作用也可能促使自生黄铁矿的加速形成.莓球状黄铁矿占主导亦指示一种强还原性的缺氧微环境.黄铁矿富集的缺氧环境与下伏地层中天然气水合物分解释放的甲烷有关,为天然气水合物在该区的勘探提供一定的科荤依据.  相似文献   

5.
This paper describes newly obtained, high-frequency observations of beach face morphological change over numerous tidal cycles on a macrotidal sandy beach made using a large array of ultrasonic altimeters. These measurements enable the net cross-shore sediment fluxes associated with many thousands of individual swash events to be quantified. It is revealed that regardless of the direction of net morphological change on a tidal time scale, measured net fluxes per event are essentially normally distributed, with nearly equal numbers of onshore and offshore-directed events. The majority of swash events cause net cross-shore sediment fluxes smaller than ± 50 kg m− 1 and the mean sediment flux per swash event is only O(± 1 kg m− 1) leading to limited overall morphological change. However, much larger events which deposit or remove hundreds of kilograms of sand per meter width of beach occur at irregular intervals throughout the course of a tide. It was found that swash–swash interactions tend to increase the transport potential of a swash event and the majority of the swash events that cause these larger values of sediment flux include one or more interactions. The majority of the larger sediment fluxes were therefore measured in the lower swash zone, close to the surf/swash boundary where swash–swash interactions are most common. Despite the existence of individual swash events that can cause fluxes of sediment that are comparable to those observed on a tidal time scale, frequent reversals in transport direction act to limit net transport such that the beach face volume remains in a state of dynamic equilibrium and does not rapidly erode or accrete.  相似文献   

6.
Four 70-m stations on the continental shelf offshore from the Eel River (northern California) were occupied at roughly four-month intervals between February 1995 and March 1998, and in August 1999. At each of the stations, profiles of excess 234Th were used to quantify sediment bioturbation intensity. In addition, at two of the stations macrofaunal abundance, species composition and functional groupings were quantified. During the study period, the Eel River displayed a range of hydrological conditions, with historically significant floods in January 1995 and January 1997 (return periods of 15 and 40 y, respectively), relatively low flows during the winters of 1995-1996 and 1998-1999 and an El Niño year characterized by moderate, but frequent discharges in 1997-1998. The January 1995 and 1997 floods deposited 3-7 cm of fine-grained, high porosity sediment with high C/N ratios and a terrestrial organic carbon signature at the study sites. The following general questions are addressed herein: (1) how do macrofaunal abundance, species composition and functional groupings vary over time? (2) Does the sediment deposition following the January 1997 flood constitute a major disturbance to the Eel shelf macrobenthos? (3) How does sediment bioturbation intensity vary in time/space and what are the main factors controlling this variation?The Eel shelf macrofauna is strongly dominated by subsurface-deposit feeding polychaetes, with anomalously low abundances of surface-deposit feeders and virtually no suspension feeders among the community dominants. The abundance data revealed a clear seasonal pattern, with peak density (∼4.5 × 104 m−2) in the fall and a factor of two lower density in the late winter/spring (∼2 × 104 m−2). Within this seasonal context there was little evidence for extraordinary mortality caused by the January 1997 flood, in that overall wintertime mortality and the mortality of most community dominants during a year (1995-1996) when there was no flood deposition were comparable to the mortality observed following the January 1997 flood. In contrast, the depth distribution of the macrofauna revealed a distinctive post-flood pattern, whereby a majority (55-70%) of individuals were temporarily found at depths >4 cm. This pattern suggests an active response by the resident fauna to sediment deposition, and supports the idea that the floods did not cause a widespread disturbance. Although there may not be clear evidence for short-term flood effects, the overall species composition and functional groupings do imply that the sedimentary environment (high sediment accumulation rates and abundant terrestrial organic matter) has had a long-term influence on the Eel shelf macrofauna.Model fits to ∼75 profiles of excess 234Th show that in general the data are consistent with a steady-state, biodiffusive model. The resultant mixing intensities ranged from 3 to 325 cm2 y−1, with averages (±standard deviation) of 35 ± 33, 24 ± 19, 37 ± 35, and22 ± 9 cm2 y−1 at stations C70, I70, L70, and O70, respectively. The average biodiffusivity for all stations and times was 29 ± 25 cm2 y−1 (N = 62). Due to the large amount of variability, which is consistent with other continental margin studies, it was not possible to detect significant spatial or temporal variability, although there is a hint of higher mixing intensities during the late summer - early fall, the period of maximal carbon flux to the seabed. Correlations between total macrofaunal abundance and mixing intensity are notably poor, whereas a slightly better correlation (r2 = 0.22) was obtained between the abundance of large animals and bioturbation intensity. By explicitly considering organic carbon flux, or some measure of seabed food resources, and the abundance of larger organisms it may be possible to predict bioturbation intensity better in future studies, although the pervasive small-scale variability detected on the Eel River shelf warrants in-depth theoretical and experimental consideration.  相似文献   

7.
Sabellariid worms, such as Phragmatopoma lapidosa, are sessile suspension feeders that attach to exposed hard bottom and serve as foundation species for worm reefs which are complex, multifaceted habitats. While worm reefs are adapted to dynamic sedimentary environments, burial of these habitats by beach nourishment projects is a concern. This study determined duration and depth of burial that can be tolerated by P. lapidosa without death. Worm rock samples were buried in sand at 1–10 cm (1-cm intervals), and at 15, 25 and 40 cm for the duration of 72, 144, and 216 h and then surveyed for initial mortality after burial and one week after removal of sediment (latent effects). Initial mortality was similar across all burial depths for the 72-h duration with values ranging from 8.3% (±0.8 SE) for 1 cm to 24.0% (±8.0 SE) for 10 cm of sediment. As burial duration increased to 144 h, mortality generally increased as burial depth increased with an average mortality for 2 cm of sediment of 23.5% (±5.3 SE) increasing to 96.0% (±14.3 SE) with 40 cm of sediment. The mean percent mortality for burial samples in the 216 h treatment varied from a low of 71.2% (±3.3 SE) for 1 cm depth to a high of 100% (±0 SE) for 10, 15, 25, and 40 cm depths. Mortality for most treatments also increased over time after removal of sediment indicating latent effects of burial stress.  相似文献   

8.
The relationship between sedimentary Fe inputs and net seagrass population growth across a range of Posidonia oceanica meadows growing in carbonate Mediterranean sediments (Balearic Islands, Spain; SE Iberian Peninsula, Spain; Limassol, Cyprus; Sounion, Greece) was examined using comparative analysis. Sedimentary Fe inputs were measured using benthic sediment traps and the net population growth of P. oceanica meadows was assessed using direct census of tagged plants. The meadows examined ranged from meadows undergoing a severe decline to expanding meadows (specific net population growth, from −0.14 yr−1 to 0.05 yr−1). Similarly, Fe inputs to the meadows ranged almost an order of magnitude across meadows (8.6–69.1 mg Fe m−2 d−1). There was a significant, positive relationship between sedimentary iron inputs and seagrass net population growth, accounting for 36% of the variability in population growth across meadows. The relationship obtained suggested that seagrass meadows receiving Fe inputs below 43 mg Fe m−2 d−1 are vulnerable and in risk of decline, confirming the pivotal role of Fe in the control of growth and the stability of seagrass meadows in carbonate sediments.  相似文献   

9.
In this study, we compared the spatial distribution of total metals (Cu, Pb, and Zn) and bioaccessible metals, which were quantified by incubating sediments with the digestive fluid of sipunculans Sipunculus nudus, in natural sediments of the Pearl River Estuary (PRE). The spatial distribution of bioaccessible metal was not the same as that of total metals in PRE sediments, which were mainly controlled by fine-grained size, total organic carbon (TOC) and Fe. Geochemical factors were important in interpreting this different spatial variation. The similar spatial variations of bioaccessible Cu and total Cu were related to TOC in PRE sediments. Differently from the total Zn, a higher bioaccessible Zn was detected near the West Channel of PRE because of a lower TOC. However, the distribution of bioaccessible Pb was not significantly related to any sediment geochemistry. This study provides a more accurate view of metal pollution in the PRE natural sediments.  相似文献   

10.
Concentrations of Cd, Cu, Cr, Co, Ni, Zn, Fe, Mn, Pb, As, and Sb were determined in sediment trap and bottom sediment samples collected seasonally from a station on the eastern Turkish coast of the Black Sea. Cd, Pb and Mn concentrations were highest in the sediment trap samples except during the summer period, whereas Co, Ni, Zn and Fe levels were much lower than corresponding levels found in the surface sediments. Cu, Cr, As and Sb levels showed no definite trend with sediment type. In general, with the exception of Cr, relatively lower metal concentrations in the sediment trap material were determined in the summer period. The highest mass flux, 56.5 g m−2 day−1, was measured during autumn. The highest flux of heavy metals also occurred during autumn and was strongly dependent on particle mass flux. Based on these results, we suggest that the downward vertical transport of particulate heavy metals in this region is related to the high degree of land erosion and the resultant particulate flux dynamics, which occur here. It was noteworthy that the highest concentrations of Cd, Cu, Co, Zn, Fe and Sb in particles were measured during winter a finding which suggests that enhanced fossil fuel combustion, which occurs during this period in adjacent urban and industrial areas plays an important role in the metal composition of sinking particles in nearshore waters.  相似文献   

11.
The objective of this study was to investigate the phosphorus distribution in the estuarine sediments of the Daliao river, intensively affected by municipal effluent and agricultural activity for about 50 years. Surface sediment samples were taken at 35 sites in the estuarine area and phosphorus species and contents of total P, Al, Fe, and Ca in the sediments were measured. Results showed that the content of total P in the sediments ranged from 230 to 841 mg kg−1, with an average of 549 mg kg−1. Ca–bound P, residual P, Al–bound P, reductant–soluble P, Fe–bound P, and soluble and loosely bound P were averagely 44.5, 21.6, 13.6, 11.7, 8.9 and 0.2% of total P, respectively. With the gradual increase of total P content, Al–bound P, reductant–soluble P, and Fe–bound P generally increased, while the rest species of P did not. This might indicate that anthropogenic P is bound to Al and Fe oxides. Regression analysis showed that Al–bound P and sum of Fe–bound P and reductant–soluble P were correlated to the contents of total Al and Fe, respectively. On the other hand, Ca–bound P was not correlated to the content of total Ca in the sediment, probably suggesting that Ca–P was mainly from authigenic marine origin. Whereas the content of total P in the estuarine sediments of the Daliao river was within the range of total P content for Chinese and worldwide river estuaries as well as coastal sediments, non-calcium apatite phosphorus content in the estuarine sediments of the Daliao river was relatively higher, indicating higher release risk and bioavailability of P in the sediment. On the other hand, the molar ratio of total Fe to total P was 16–34 in the estuarine sediments of the Daliao river, suggesting that iron oxides/hydroxides in the sediments might be able to sequester more phosphorus. Therefore, the accumulation or release of P in/from the estuarine sediments might be dependent on the external loading of P and the estuarine eutrophication may be sustained by the internal bioavailable P pools following the decrease of the external P loading.  相似文献   

12.
The Arabian Sea oxygen minimum zone (OMZ) impinges upon the Indian continental margin at bathyal depths (150-1500 m) producing changes in ambient oxygen availability and sediment geochemistry across the seafloor. The influence of these environmental changes upon the epi-benthic megafaunal assemblage was investigated by video survey at six stations spanning the OMZ core (540 m), lower boundary (800-1100 m) and below the OMZ (2000 m), between September and November 2008. Structural changes in the megafaunal assemblage were observed across the six stations, through changes in both megafaunal abundance and lebensspuren (biogenic traces). Most megafauna were absent in the OMZ core (540 m), where the assemblage was characterised by low densities of fishes (0.02-0.03 m−2). In the lower OMZ boundary, megafaunal abundance peaked at 800 m, where higher densities of ophiuroids (0.20-0.44 m−2) and decapods (0.11-0.15 m−2) were present. Total abundance declined with depth between 800 and 2000 m, as the number of taxa increased. Changes in the megafaunal assemblage were predicted by changes in abundance of seven taxonomic groups, correlated to both oxygen availability and sediment organic matter quality. Lebensspuren densities were highest in the OMZ boundary (800-1100 m) but traces of large infauna (e.g., echiurans and enteropneusts) were only observed between 1100 and 2000 m station, where the influence of the OMZ was reduced. Thus, changes in the megafaunal assemblage across the Indian margin OMZ reflect the responses of specific taxa to food availability and oxygen limitation.  相似文献   

13.
Grain-size distributions, total organic carbon (TOC) and total nitrogen (TN) concentrations, and TOC/TN ratios (C/N) were analysed for surface sediments from the Lower Yangtze River-East China Sea (ECS) shelf system. Hierarchical cluster analysis of grain-size parameters (mode, mean, sorting, skewness and kurtosis) has been employed to characterize grain-size compositions. The results suggest there are five grain-size compositional types (type-I–V) that fingerprint distinct depositional conditions. In areas with high sedimentation rates, hydrological sorting preferentially enriches the fraction coarser than 6.4ø (12 μm) in shallow seafloor sediments (water depth<30 m) by transporting the finer fraction to the deeper seafloor (water depth>30 m), and thus forms grain-size compositional type-I (shallow) and type-II (deep). In the open shelf, where modern sediment supply is very limited, grain-size types-III–V are identified according to different winnowing intensity. Overall TOC contents significantly correlate with mud proportions, suggesting muddy sediments are the primary control on OM accumulation. However, de-association of terrestrial OM from fine sediments in the Estuary and the occurrence of presumably relict OM in the open shelf exert additional controls on OM dispersal and carbon cycling in the ECS. By considering geography, oceanography, sediment source, and the relation between sedimentation conditions and sedimentary OM distributions, we define six depositional settings: the lower river, the estuary, the coast, the offshore upwelling area, the erosional area, and the open shelf. These settings describe the sediment dispersal and associated organic matter cycling in the Lower Yangtze River-ECS shelf system.  相似文献   

14.
Rose Bengal stained benthic foraminifera were studied from 11 cores collected along two depth transects off southern Portugal: one in the Lisbon-Setúbal Canyon and the other along the canyon edge. The total standing stocks and distribution of foraminifera were investigated in relation to sediment and pore water geochemistry. Nitrate was used as a redox indicator, sedimentary chlorophyll a and CPE (chloroplastic pigment equivalents) contents as a measure of labile organic matter, and total organic carbon as a measure of bulk organic matter availability.The canyon sediments were enriched in organic carbon and phytopigments at all water depths in comparison with the canyon edge. Water depth seemed to control sedimentary phytopigment content, but not total organic carbon. No significant correlation was seen between pigment and total organic carbon content.The abundance of calcareous foraminifera correlated with the phytodetritus content, whereas a weaker correlation was observed for the agglutinated taxa. Therefore, calcareous foraminifera appear to require a fresher food input than agglutinated taxa. The foraminiferal species composition also varied with pigment content and nitrate penetration depth in the sediment, in line with the TROX concept. Phytopigment-rich (surficial CPE content >20 μg/cm3) sediments with a shallow nitrate penetration depth (∼1 cm depth) were inhabited by generally infaunal species such as Chilostomella oolina, Melonis barleeanus and Globobulimina spp. As the nitrate penetration increased to ∼2 cm depth in sediment and the pigment content remained relatively high (>15 μg/cm3), Uvigerina mediterranea and Uvigerina elongatastriata became dominant species. With declining CPE content and increasing nitrate penetration depth, the foraminiferal assemblages changed from the mesotrophic Cibicides kullenbergi-Uvigerina peregrina assemblage to the oligotrophic abyssal assemblage, mainly consisting of agglutinated taxa.  相似文献   

15.
To estimate the influence of mercury emitted from submarine fumaroles, the horizontal and vertical distribution of mercury in sediment of Kagoshima Bay was studied. The fumaroles are located in the northern bay head area, and the sediment samples had been taken from 52 points throughout the bay with a gravity core sampler. The core samples obtained were cut at a thickness of 1–2 cm and used for measurements. The total concentration of mercury in surface sediment in the northern and central areas of the bay was 51–679 μg kg− 1 (average 199 μg kg− 1, n = 22) and 23–100 μg kg− 1 (average 55 μg kg− 1, n = 30), respectively. The highest value was obtained in the vicinity of the fumaroles. The mercury concentration in sediment near the fumaroles varied with depth, which may reflect the variation in fumarolic activity. A successive extraction method was applied to the speciation of mercury in the sediment. The results showed that sediment taken in the vicinity of submarine fumaroles contained a higher percentage of mercury bound with organic matter.  相似文献   

16.
Laboratory experiments on the New Zealand freshwater mussel Echyridella menziesii were used to investigate the short-term effects (7–8 days) of food type on rates of biodeposition and benthic substrate respiration. Post-feeding biodeposition rates ranged from 0.34 to 1.52?mg?g?1?h?1 (mean?=?0.50?mg g?1?h?1) and were unaffected by the addition of toxin-producing Microcystis. Addition of suspended sediment (30?mg?L?1) visibly altered substrate composition, and increased total and inorganic biodeposit production rates by 24–33% compared to mussels fed commercial phytoplankton stock. Biodeposition rates of mussels in lake bed substrates were 38% higher than those in silica sand for identical feeding regimes, suggesting that a significant proportion of material produced in this experiment could have been derived from feeding on organic matter in the lake bed sediments. Respiration rates were higher in treatments with Microcystis but were unaffected by the presence of mussels. This laboratory study suggests that biodeposition by E. menziesii is resilient to short-term exposure to Microcystis, and highlights the ability of mussels to alter benthic substrate composition by incorporating suspended sediment into substrates.  相似文献   

17.
Coastal wetlands provide important ecological services to the coastal zone, one of which is sediment retention. In this study we investigated sediment retention across a range of geomorphological settings and across vegetation zones comprising coastal wetlands. We selected six coastal wetlands dominated by mangroves over a gradient from riverine to tidal settings in Southeast Queensland, Australia. Each site was comprised of three distinct vegetation communities distributed as parallel zones to the coast line: seaward fringe mangroves, landward scrub mangroves and saltmarsh/ cyanobacteria mat of the high intertidal zone. We measured suspended sediment retention and sedimentation rates. Additionally, in order to assess the origin of sediment transported and deposited in the mangroves, glomalin, a novel terrestrial soil carbon tracer, was used. Our results show a mean average sedimentation of 0.64 ± 0.01 mg cm−2 spring tide−1, which was variable within sites, regardless of geomorphological setting. However, geomorphological setting influenced spatial patterns of sediment deposition. Riverine mangroves had a more homogeneous distribution of sediments across the intertidal zone than tidal mangroves, where most sedimentation occurred in the fringe zone. Overall, the fringe zone retained the majority of sediment entering the coastal wetland during a tidal cycle with 0.90 ± 0.22 mg cm−2 spring tide−1, accounting for 52.5 ± 12.5% of the total sedimentation. The presence of glomalin in suspended sediments, and thus the relative importance of terrigenous sediment, was strongly influenced by geomorphological setting, with riverine mangroves receiving more glomalin in suspended solids than tidal mangroves. Glomalin was also differentially deposited within the vegetation zones at different geomorphological settings: primarily at the fringe zone of tidal mangroves and within the scrub zone of riverine mangroves. The differences we observed in the spatial distribution of sedimentation and the difference in the origin of the sediment deposited in riverine and tidal mangroves are likely to have an impact on ecological processes.  相似文献   

18.
Biogenic bottom features, animal burrows and biological activities interact with the hydrodynamics of the sediment–water interface to produce altered patterns of sediment erosion, transport and deposition which have consequences for large-scale geomorphologic features. It has been suggested that depending on the hydrodynamic status of the habitat, the biological activity on the bottom may have a variety of effects. In some cases, different bioturbation activities by the same organism can result in different consequences. The burrowing crab Neohelice granulata is the most important bioturbator at SW Atlantic saltmarshes and tidal plains. Because of the great variety of habitats that this species may inhabit, it is possible to compare its bioturbation effects between zones dominated by different hydrodynamic conditions. Internal marsh microhabitats, tidal creeks bottoms and basins, and open mudflats were selected as contrasting zones for the comparison on a large saltmarsh at Bahía Blanca Estuary (Argentina). Crab burrows act as passive traps of sediment in all zones, because their entrances remain open during inundation periods at high tide. Mounds are generated when crabs remove sediments from the burrows to the surface and become distinctive features in all the zones. Two different mechanisms of sediment transport utilizing mounds as sediment sources were registered. In the first one, parts of fresh mound sediments were transported when exposed to water flow during flooding and ebbing tide, with higher mound erosion where currents were higher as compared to internal marsh habitats and open mudflats. In the second mechanism, mounds exposed to atmospheric influence during low tide became desiccated and cracked forming ellipsoidal blocks, which were then transported by currents in zones of intense water flow in the saltmarsh edge. Sedimentary dynamics varied between zones; crabs were promoting trapping of sediments in the internal saltmarsh (380 g m−2 day−1) and open mudflats (1.2 kg m−2 day−1), but were enhancing sediment removal in the saltmarsh edge (between 10 and 500 g m−2 day−1 in summer). The implication is that biologically mediated sedimentological changes could be different among microhabitats, potentially leading to contrasting geomorphologic effects within a particular ecosystem.  相似文献   

19.
This work aimed to evaluate, in vitro, the capability of roots of salt marsh plants to release strong Cu-complexing ligands and to ascertain whether Cu contamination would stimulate ligands' exudation or not. The sea rush Juncus maritimus and the sea-club rush Scirpus maritimus, both from the lower Douro river estuary (NW Portugal), were used. Plants were collected seasonally, four times a year in 2004, during low tide. After sampling, plant roots were washed for removal of adherent particles and immersed for 2 h in a solution that matched salinity (3) and pH (7.5) of the pore water from the same location and spiked with Cu2+ in the range 0–1600 nM to obtain plant exudates. In the final solutions as well as in sediment pore water total dissolved Zn and Cu, Cu-complexing ligand concentrations and the respective conditional stability constants (KCuL) values were determined by voltammetry. This study demonstrated that plants are able to release, in a short period of time, relatively high amounts of strong Cu-complexing ligands (56–265 nmol groot−1), which differed among plants and sampling site but were independent of the season. Cu contamination did not stimulate exudation of Cu-complexing ligands. On the other hand, in media contaminated with Cu both plants accumulated relatively high amounts (29–83%) of the initially dissolved Cu, indicating that they have alternative internal mechanisms for Cu detoxification. Cu exchange between roots and medium (either accumulation in contaminated medium or release in the absence of Cu) was more intense for S. maritimus than for J. maritimus. It was observed that exudate solutions obtained in the absence of added Cu and sediment pore water (the densities of roots observed inside the salt marsh where comparable to those used in the in vitro experiments), displayed similarities in terms of total dissolved metals, Cu-complexing ligands concentrations, values of KCuL (12 < log KCuL < 14), as well as patterns of variation among seasons (only observed for Zn). These results are novel and point out that salt marsh plants may be the source at least partially of the strong organic ligands found in the sediment pore water in shallow marginal areas. The capability of salt marsh plants to release strong organic ligands into the environment, conjugated with their known capacity to oxidize anaerobic sediment around roots, indicate that these plants can play a role in controlling metal speciation in the water/sediment interface.  相似文献   

20.
Release of methane from the seafloor throughout the world's oceans and the biogeochemical processes involved may have significant effects on the marine sedimentary environment. Identification of such methane release events in marine sediment records can hence provide a window into the magnitude of ancient seeps. Here, we report on analysis of the geochemical composition of samples in a 12.3 m long sediment core (DH-5) collected from a seep site in the South China Sea (SCS). Our aim has been to investigate whether the evidence for the presence of methane release event within sediments is discernible from solid-phase sediment geochemistry. We show that sedimentary total sulfur (TS), δ34S values of chromium reducible sulfur (δ34SCRS) along with total organic carbon (TOC) and total inorganic carbon (TIC) content can be used to infer the presence of methane release events in cold seep settings. At least three methane release events were identified in the studied core (Unit I at 400–550 cm, Unit II at 740–820 cm, and Unit III at 1000–1150 cm). According to the characteristic of redox-sensitive elements (eg., Mo, U and Mn), we suggest that methane flux has been changed from relatively high (Unit I) to low (Unit II and III) rates. This inference is supported by the coupled occurrence of 34S-enriched sulfides in Unit II and III. AMS 14C dates from planktonic foraminifera in Unit I suggest that high methane flux event occurred at ∼15.4–24.8 kyr BP, which probably resulted in locally-focused aerobic methane oxidation. Overall, our results suggest that TS, TOC, TIC and δ34SCRS have potential for identifying present and fossil methane release events in marine sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号