首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
226Ra and 228Ra have non-conservative excess concentrations in the mixing zones of the Pee Dee River-Winyah Bay estuary, the Yangtze River estuary, and the Delaware Bay estuary. Laboratory experiments, using Pee Dee River sediment, indicate desorption of 226Ra to increase with increasing salinities up to 20‰. In Winyah Bay desorption from river-borne sediments could contribute almost all of the increases for both isotopes. Desorption adds only a portion of the excess 228Ra measured in the Yangtse River and adjacent Shelf waters and Delaware Bay. In the Yangtze River the mixing zone extends over a considerable portion of the Continental Shelf where 228Ra is added to the water column by diffusion from bottom sediments, while 226Ra concentrations decrease from dilution. Diffusion of 228Ra from bottom sediments in Delaware Bay primarily occurs in the upper part of the bay (< 22‰ water) where fine grained sediments predominate. A diffusive flux for 228Ra of 0·33 dpm cm?2 year was determined for Delaware Bay.  相似文献   

2.
The temporal and spatial distribution of total and organic particulate matter is investigated in the Bideford River estuary. Particulate matter is homogenously distributed in both the water column and the surface sediment, due to high rates of resuspension and lateral transport. The measured mean sedimentation rate for the estuary is 183·5 g of particulate matter m?2 day?1, of which more than half is due to resuspension.The surface sediment of the estuary is quantitatively the dominant reservoir of organic matter, with an average of 902·5 g of particulate organic carbon (POC) m?2 and 119·5 g of particulate organic nitrogen (PON) m?2. Per unit surface area, the sediment contains 450 times more POC and 400 times more PON than the water column. Terrestrial erosion contributes high levels of particulate matter, both organic and inorganic, to the estuary from the surrounding watershed. Low rates of sediment export from the estuary result in the accumulation of the terrigenous material. The allochthonous input of terrigenous organic matter masks any relationship between the indigenous plant biomass and the organic matter.In the water column, a direct correlation exists between the organic matter, i.e. POC and PON, concentration and the phytoplankton biomass as measured by the plant pigments. Resuspension is responsible for the residual organic matter in the water column unaccounted for by the phytoplankton biomass.The particulate content of the water column and the surface sediment of the estuary is compared to that of the adjacent bay. Water-borne particulate matter is exported from the estuary to the bay, so that no significant differences in concentration are noted. The estuarine sediment, however, is five to six times richer in organic and silt-clay content than the bay sediment. Since sediment flux out of the estuary is restricted, the allochthonous contribution of terrigenous particulate matter to the bay sediment is minor, and the organic content of the bay sediment is directly correlated to the autochthonous plant biomass.  相似文献   

3.
226Ra and 228Ra have non-conservative excess concentrations in the mixing zones of the Pee Dee River-Winyah Bay estuary, the Yangtze River estuary, and the Delaware Bay estuary. Laboratory experiments, using Pee Dee River sediment, indicate desorption of 226Ra to increase with increasing salinities up to 20‰. In Winyah Bay desorption from river-borne sediments could contribute almost all of the increases for both isotopes. Desorption adds only a portion of the excess 228Ra measured in the Yangtse River and adjacent Shelf waters and Delaware Bay. In the Yangtze River the mixing zone extends over a considerable portion of the Continental Shelf where 228Ra is added to the water column by diffusion from bottom sediments, while 226Ra concentrations decrease from dilution. Diffusion of 228Ra from bottom sediments in Delaware Bay primarily occurs in the upper part of the bay (< 22‰ water) where fine grained sediments predominate. A diffusive flux for 228Ra of 0·33 dpm cm−2 year was determined for Delaware Bay.  相似文献   

4.
Dissolved and particulate lead were measured over an annual cycle (12 surveys between February 1998 and January 1999) in the Morlaix River estuary (Brittany, France). The concentrations were investigated in both the water column and the sediment of the river bottom in relation to hydrological conditions. In the water column, dissolved and particulate lead concentrations ranged from 0.1 to 4.4 nM and from 0.04 to 1.9 μmol g− 1, respectively. Lead concentrations in surface sediment varied from 0.04 to 0.19 μmol g− 1 and concentrations in the sediment pore water of the estuary were below the detection limit. Compared with the ranges known for pristine estuaries, concentrations of Pb in the water column of the Morlaix River estuary were found to be much higher. Concentrations of Pb also exceeded the lower range of those known for industrialized estuaries. Extensive agricultural activities in the drainage basin may be responsible for Pb levels above pristine conditions. Furthermore, the sediment appeared not to be contaminated. A mass balance was constructed quantifying all known sources and sinks for the Pb in the estuary. Riverine input accounts for most of the total annual metal flux. Burial in sediments was the major sink within the estuary, which acts as a trap especially for the particulate lead. The mass balance shows that the metal accumulation ranged between 414.6 and 446.0 kg year− 1.  相似文献   

5.
Competitive interactions between silicate and phosphate at ligand exchange sites in the sediment surface layer may increase the release of phosphorus (P) from the sediment into the water column. In this study, the role of silicon (Si) in the release of P from the sediment surface layer was studied in a marine estuarine environment, the Bay of Brest, with the aid of a sequential sediment fractionation procedure developed for P, and the addition of inorganic or diatom-bound Si to surface sediment samples in vitro. The potentially mobile pools of P in the surface sediment (loosely bound P + Fe/Al-bound-P) amounted to 5.0 μmol g−1 dry sed., 42% of the total extractable and 33% of the total amount of P in the sediment, while the similarly extracted pools of Si were bigger (ca. 20 μmol g−1 dry sed., 50% of the total extractable Si). Additions of inorganic Si increased the concentration of dissolved P in the sediment interstitial water in a bottle experiment, and the addition of both inorganic Si and cultivated diatoms to intact sediment cores increased the outward flux of dissolved P. Model calculations based on the regression equation from the bottle experiment and Si and P water column data showed that the sedimentation of spring diatoms could cause Si pulses to the sediment which would produce a P flux to the water column of ca. 44 μmol m−2 d−1. Field data from the bay show that in spring, decreases in P and Si and an increase in chl a due to diatom production are often followed by a small separate P peak which may be caused by Si-induced P fluxes from the sediment surface.  相似文献   

6.
Transport between pore waters and overlying surface waters of Flamengo Bay near Ubatuba, Brazil, was quantified using natural and artificial geochemical tracers, 222Rn, Cl, and SF6, collected from multi-level piezometers installed along a transect perpendicular to the shore. Eight sampling ports positioned along the length of the piezometers allowed sampling of pore waters at discrete depth intervals from 10 to 230 cmbsf (centimeters below seafloor). Small volume samples were collected from the piezometers using a peristaltic pump to obtain pore water depth profiles. Pore water 222Rn is deficient in shallow sediments, allowing application of a diffusion-corrected 222Rn exchange rate. This model estimates the magnitude of pore water exchange rates to be about 130–419 cm/day. An SF6-saturated fluorescein dye tracer was gently pumped into deep pore waters and exchange rates estimated from this method range from 29 to 185 cm/day. While absolute rates are higher using 222Rn than SF6, rates are of similar magnitudes and the trends with distance from shore are the same – flow is greatest 6 m from shore and decreases by more than 50% further offshore. A Cl mass balance indicates the greatest fraction of fresh SGD occurs along an apparent preferential flow path in sediments within 5–7 m of the shoreline (87%). Recirculating bay waters through sediments dominate pore water advection at 10 m offshore where only 4% of the flow can be attributed to a freshwater source. Both fresh and marine sources combine to make up submarine groundwater discharge to coastal water bodies. The magnitude of fresh aquifer discharge is often a spatially variable and minor component of the total discharge.  相似文献   

7.
The concentration of suspended particulate matter (SPM), sedimentation flux, and various forms of phosphorus and silica in turbidity maximum zone (TMZ) in the Changjiang (Yangtze) estuary was studied. Based on the budget of P and Si, their mass balances in the TMZ were calculated. Results show that the variation in concentration of dissolved inorganic silicon (DISi) was mainly controlled by seawater dilution, while that of dissolved inorganic phosphorus (DIP) was considerably affected by the buffering of suspended matter and sediment. Our experiments showed that the sedimentation fluxes of SPM and particulate inorganic phosphorus (PIP), total particulate phosphorus (TPP), particulate inorganic silicon (PISi), and biological silicon (BSi) in the TMZ were 238.4 g m−2 d−1 and 28.3, 43.1, 79.0, 63.0 mg m−2 d−1, respectively. In addition, a simple method to estimate the ratio of resuspension of sediment in the TMZ was established, with which the rate in surface and bottom waters of the TMZ accounted for 55.7 and 66.1% of the total SPM, respectively, indicating that the sediment resuspension in the TMZ influenced significantly the mass balances of P and Si. Particulate adsorbed P (60.8%) and 35.5% of total particulate P discharged from the river were filtered and then deposited in the TMZ. The input flux of PIP from the river mouth was 55.9% of that of DIP, being important as biologically available P, while that of PISi was only 3.5% of DISi, showing that particulate adsorbed Si was much less important than particulate adsorbed P.  相似文献   

8.
Nitrification rates, as oxidation of 15N-labelled ammonium and loss of nitrite from N-Serve treated samples, were measured in Kochi backwaters during three seasons. Nitrification rates ranged from undetectable to 166 nmol N L−1 h−1 in the water column and up to 17 nmol N (g wet wt)−1 h−1 in sediments. Nitrification rates were higher in intermediate salinities than in either freshwater or seawater end. Within this salinity range, nitrification rates could be related to ammonium concentrations. As shown by the relation between ammonification and nitrification rates, it is also likely that nitrification is more regulated by renewal rates, rather than by in situ concentrations, of substrate. Among other environmental parameters, temperature and pH may have an influence on nitrification. Potential nitrification rates calculated from loss of nitrite from N-Serve treated, nitrite-enriched samples were about 800 nmol N L−1 h−1 in the water column and 40 nmol N (g wet wt)−1 h−1 in sediments. While these rates are in balance with those of biological ammonium production they may be inadequate to mitigate ammonium pollution in this estuary.  相似文献   

9.
The activities of extracellular enzymes that initiate the microbial remineralization of high molecular weight organic matter were investigated in the water column and sandy surface sediments at two sites in the northeastern Gulf of Mexico. Six fluorescently labeled polysaccharides were hydrolyzed rapidly in the water column as well as in permeable sediments. This result contrasts with previous studies carried out in environments dominated by fine-grained muds, in which the spectrum of enzymes active in the water column is quite limited compared to that of the underlying sediments. Extracts of Spirulina, Isochrysis, and Thalassiosira were also used to measure hydrolysis rates in water from one of the sites. Rates of hydrolysis of the three plankton extracts were comparable to those of the purified polysaccharides. The broad spectrum and rapid rates of hydrolysis observed in the water column at both sites in the northeastern Gulf of Mexico may be due to the permeable nature of the sediments. Fluid flux through the sediments is sufficiently high that the entire 1.5 m deep water column could filter though the sediments on timescales of a few days to two weeks. Movement of water through sediments may also transport dissolved enzymes from the sediment into the water column, enhancing the spectrum as well as the rate of water column enzymatic activities. Such interaction between the sediments and water column would permit water column microbial communities to access high molecular weight substrates that might otherwise remain unavailable as substrates.  相似文献   

10.
The effect of bioturbation on the erodability of natural and manipulated copper spiked sediments (3 μmol Cu g−1 dw) was investigated using sediments collected in the Tagus estuary and Nereis diversicolor (900 ind m−2). The input of particulate matter and Cu into the water column as a result of erosion was quantified in an annular flume at 7 shear velocities (1–13 cm s−1). The biogeochemical characteristics of the sediment were analysed in depth down to 8 cm. Cu contamination elicited lower levels of eroded matter and lower shear strength profiles. Eroded matter and sediment shear strength values were higher (up to 1.7 kg m−2) in the presence of N. diversicolor, whose effect was less pronounced under contamination. Sediment erodability was not only related to hydrodynamics but was highly affected by the biogeochemical characteristics and contamination of the sediments.  相似文献   

11.
To better understand the development of the annually recurring late summer red water blooms of the phototrophic ciliate Myrionecta rubra in the Columbia River estuary we examined its standing stocks and measured its growth rates both in the estuary main channels and in Baker Bay, a peripheral embayment situated near the river mouth. Data collected during two summers show a biphasic development of M. rubra blooms, with an initial phase when the protist was only detected in Baker Bay, followed by an established phase when red waters were observed throughout the lower estuary. Ilwaco harbor (Baker Bay’s seaward-end) is at least one of the locations where the bloom starts since M. rubra was detected there at concentrations >100s cell L−1 before Chinook harbor (Baker Bay’s upriver-end) or the estuary main channels. In 2010, this initial phase lasted about 1.5 months, spanning the neap tide of early July to the beginning of the neap tide of mid-August. While high growth rates were measured in Ilwaco harbor during the initial phase (1.2–3.1 d−1) and in the estuary main channels in both surface red (0.7 d−1) and adjacent non-red (1.1 d−1) waters during the established period, growth of the ciliate was not detected in Ilwaco harbor during this second phase. Growth rate data obtained during the established bloom phase also suggest that M. rubra cells in the estuary mostly divide during the daytime and that red water patches might experience self-shading.  相似文献   

12.
Results of a three-year survey of the occurrence of Callinectes sapidus larvae in the mouth of Delaware Bay indicated that stage I zoea larvae were most abundant insurface water as compared to mid-depths and near bottom. The major peak in abundance of stage I zoea larvae occurred in early August with a secondary peak in early September. Peaks in abundance of megalopae occurred five weeks after the respective peaks in zoeal abundance. Zoea stages II–VIII were not collected in the bay mouth. Results of sampling every 3 h over consecutive tidal cycles showed that stage I zoea larvae were most common in the water column on ebbing tidal currents. Megalopae were most common in the water column on flooding tidal currents, suggesting a tidally related, vertical migration. It was concluded that stage I zoea larvae are flushed from the estuary and undergo development on the continental shelf. Megalopae are then transported back to inshore waters by a combination of winds and currents and invade the estuary by means of migration into the water column on flooding tidal currents and migration to the bottom on ebbing tidal currents.  相似文献   

13.
Spatial and seasonal variations of sulphate, dissolved organic carbon (DOC), nutrients and metabolic products were determined down to 5 m sediment depth in pore waters of intertidal flats located in NW Germany. The impact of sediment permeability, pore water flow, and organic matter supply on deep pore water biogeochemistry was evaluated. Low sediment permeability leads to an enrichment of remineralisation products in pore waters of clay-rich sediments. In permeable sandy sediments pore water biogeochemistry differs depending on whether tidal flat margins or central parts of the tidal flat are studied. Pore water flow in tidal flat margins increases organic matter input. Substrate availability and enhanced temperatures in summer stimulate sulphate reducers down to 3.5 m sediment depth. Sulphate, DOC, and nutrient concentrations exhibit seasonal variations in deep permeable sediments of the tidal flat margin. In contrast, seasonal variations are small in deep pore waters of central parts of the sand flat. This study shows for the first time that seasonal variations in pore water chemistry are not limited to surface sediments, but may be observed down to some metres depth in permeable tidal flat margin sediments. In such systems more organic matter seems to be remineralised than deduced from surface sediment studies.  相似文献   

14.
The levels of 19 kinds of organochlorine pesticides (OCPs) in the aqueous phase, suspended particulate matter (SPM), pore water and sediments from Daliao River estuary of Liaodong Bay (Bohai Sea) in northeast China were investigated to evaluate their potential pollution risks. The total OCPs concentrations in the aqueous phase, SPM, pore water and sediments were 3.7–30.1 ng l−1, 4.6–52.6 ng l−1, 157–830 ng l−1 and 2.1–21.3 ng g−1 dry weight, respectively. The concentrations of OCPs, in the Daliao River estuary, are in the mid-range, as compared to those reported in other estuaries worldwide. The distribution of HCHs and DDTs were different indicating different contamination sources. Lindane is the main type of HCH and continuing use in northeast China of ‘pure’ HCH (lindane) rather than technical HCH accounts for the source. The ratios of (DDE + DDD)/DDT in the samples indicate no recent inputs of these chemicals to the estuary.  相似文献   

15.
The inner zone of the Bahía Blanca Estuary is shallow, nutrient-rich and turbid. Tidal energy and water turbulence strongly affect the water column resulting in a well-mixed structure and high concentrations of suspended sediment. The phytoplankton community is mostly dominated by diatoms and the annual pattern has been characterized by a recurrent winter-early spring bloom. Here, we investigated to what extent the temporal variations of suspended particulate matter (SPM) regulate the phytoplankton blooms in the head of the estuary by light-limitation. Sampling was done on a fortnightly basis (weekly during the blooming season) at a fixed station in the inner zone of the estuary from January 2007 to February 2008. SPM concentrations and light extinction coefficients (k) in the water column were significantly correlated and showed relatively lower values during the phytoplankton maximal biomass levels. During winter, SPM and k reached values of 23.6 mg l−1 and 0.17 m−1 which were significantly lower than the annual means of 77.6 mg l−1 and 2.94 m−1, respectively. The particulate organic matter (POM) concentration was significantly correlated with the calculated phytoplankton biomass although the contribution of the latter to the total POM was rather low. Both, POM and biomass, had maximal values during winter (21.8 mg l−1 and 393.5 μg C l−1) and mid summer (24.3 mg l−1 and 407.0 μg C l−1), with cell densities up to 8 × 106 cells l−1 and chlorophyll a up to 24.6 μg l−1. Our results suggest that the decrease of SPM concentrations in the water column with a concomitant increase in the penetration of solar radiation seems to be one of the main causes for the development of the phytoplankton winter bloom in the Bahía Blanca Estuary.  相似文献   

16.
To estimate the influence of mercury emitted from submarine fumaroles, the horizontal and vertical distribution of mercury in sediment of Kagoshima Bay was studied. The fumaroles are located in the northern bay head area, and the sediment samples had been taken from 52 points throughout the bay with a gravity core sampler. The core samples obtained were cut at a thickness of 1–2 cm and used for measurements. The total concentration of mercury in surface sediment in the northern and central areas of the bay was 51–679 μg kg− 1 (average 199 μg kg− 1, n = 22) and 23–100 μg kg− 1 (average 55 μg kg− 1, n = 30), respectively. The highest value was obtained in the vicinity of the fumaroles. The mercury concentration in sediment near the fumaroles varied with depth, which may reflect the variation in fumarolic activity. A successive extraction method was applied to the speciation of mercury in the sediment. The results showed that sediment taken in the vicinity of submarine fumaroles contained a higher percentage of mercury bound with organic matter.  相似文献   

17.
通过对诏安湾海域6个站位的水文泥沙观测和181个表层沉积物样品的粒度分析,结合海湾水深地形,应用Gao?Collins粒径输运模型和系统聚类分析方法,分析研究了福建诏安湾海域的粒度参数分布特征、表层沉积物的运移趋势和沉积环境划分及其动力机制.结果表明,诏安湾表层沉积物共6种类型,以黏土质粉砂和砂为主,平均粒径介于0.5...  相似文献   

18.
In situ benthic flux measurements, pore water nutrient profiles, water column nutrient distributions, sediment grain size distributions and side-scan sonar observations suggest that advective transport of pore waters may be a major input pathway of nutrients into the Satilla River Estuary (coastal Georgia, USA). In situ benthic chamber incubations demonstrate the occurrence of highly variable, but occasionally very large sea floor fluxes of silicate, phosphate, and ammonium. Locally occurring benthic microbial mineralization of organic matter, as estimated by S35-sulphate reduction rate measurements, is insufficient to support these large fluxes. We hypothesize that the observed interlayering of permeable, sandy sediments with fine-grained, organic-rich sediments in the estuary provides conduits for advective transport of pore water constituents out of the sediments. Because permeable layers may extend significant distances beneath the salt marsh, the large fluxes observed may be supported by remineralization occurring over large areas adjacent to the estuary. Advective transport may be induced by pressure gradients generated by a variety of processes, including landward recharge by meteoric or rain waters if sand layers extend far enough into the maritime coastal lands. Alternatively, tidal variations across the salt marsh sediment surface may hydraulically pump water through the sediment system. Because these fluxes appear to be concentrated into small layers, this source may be a significant input of nutrients to the estuary even if permeable, sandy layers comprise a very small proportion of the seabed.  相似文献   

19.
To better understand large-scale interactions between fresh and saline groundwater beneath an Atlantic coastal estuary, an offshore drilling and sampling study was performed in a large barrier-bounded lagoon, Chincoteague Bay, Maryland, USA. Groundwater that was significantly fresher than overlying bay water was found in shallow plumes up to 8 m thick extending more than 1700 m offshore. Groundwater saltier than bay surface water was found locally beneath the lagoon and the barrier island, indicating recharge by saline water concentrated by evaporation prior to infiltration. Steep salinity and nutrient gradients occur within a few meters of the sediment surface in most locations studied, with buried peats and estuarine muds acting as confining units. Groundwater ages were generally more than 50 years in both fresh and brackish waters as deep as 23 m below the bay bottom. Water chemistry and isotopic data indicate that freshened plumes beneath the estuary are mixtures of water originally recharged on land and varying amounts of estuarine surface water that circulated through the bay floor, possibly at some distance from the sampling location. Ammonium is the dominant fixed nitrogen species in saline groundwater beneath the estuary at the locations sampled. Isotopic and dissolved-gas data from one location indicate that denitrification within the subsurface flow system removed terrestrial nitrate from fresh groundwater prior to discharge along the western side of the estuary. Similar situations, with one or more shallow semi-confined flow systems where groundwater geochemistry is strongly influenced by circulation of surface estuary water through organic-rich sediments, may be common on the Atlantic margin and elsewhere.  相似文献   

20.
The spatial and temporal abundances of limno-tolerant and halo-tolerant bacteria were investigated in the tide-dominated Mandovi estuary along the west coast of India. These investigations were carried out in relation to various environmental parameters on a monthly basis at three fixed stations for a year. On an annual basis, the estuary showed an average salinity of 28.2, 17.4, and 12.6 at the mouth, midstream and upstream region. Halo-tolerant retrievable count (HTRC) and limno-tolerant retrievable count (LTRC) of bacteria were in the order of 106 L−1. Among the environmental parameters, a strong negative relationship between salinity and nitrate (r = −0.806; p < 0.001) suggested that 64% of the variation could be due to fresh water influence in the estuary. The limno-tolerant retrievable count (LTRC) brought about 23% variations in nitrate concentration. This influence was maximum during the monsoon (r = 0.522; p < 0.05) especially in the surface waters (r = 0.624; p < 0.001) suggesting nitrate reduction by LTRC. Measurements of nitrate reducing activity (NRA) in whole-water samples along the salinity gradient in the estuary also revealed higher reduction rates at lower salinity upstream. This was further confirmed by culture experiments where the limno-tolerant bacteria showed higher NRA than halo-tolerant forms. It is therefore suggested that LTRC is more actively involved in the variation of nitrate that enters the Mandovi estuary particularly during the monsoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号