首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Douglas M. Thompson   《Geomorphology》2008,99(1-4):420-432
A coarse surface layer can help to limit bedload transport rates in channels with cobble and gravel beds. In these systems, periodic boulder-sized clasts often exist with small deposits of fine material in the lee of these large bed elements. A combined field and flume study was conducted to investigate the potential impact of lee deposits with distinctly finer sediment-sizes behind boulders on bedload transport rates. Detailed sediment characterizations were performed on surface, subsurface, and lee sediments in two coarse-bedded Connecticut channels. Bedload measurements also were conducted in a series of flows that approached the bankfull level in these two systems to determine transport rates and the size distribution of bedload material. A 6-m long, 0.5-m wide flume was used to model these systems with fine sediment passing over a fixed bed of sediment particles with uniform-sized, large bed elements. Sediment distributions of the lee deposits in the two Connecticut channels indicate that lee deposits may be produced from winnowing of sediments from the surface layer. Lee deposits also exhibit sediment distributions similar to bedload sediment distributions from low to near-bankfull flow in one of the two channels. Bedload sediments in the second channel were finer than lee deposits, presumably from selective entrainment of fines. Flume experiments demonstrate that bedload transport rates are lower for periods of steady flow relative to periods that include either an increase or decrease in discharge. The results show that lee sediments establish a metastable deposit behind each obstruction for a given discharge. Either increases or decreases in discharge disrupt this temporary stability and increase sediment delivery to the main flow. The study suggests that the influence of the rate of change in discharge may be as important as the absolute magnitude of discharge on sediment transport rates at moderate and low discharges in sediment-limited systems with large bed elements.  相似文献   

2.
Sediment is fractionated by size during its cascade from source to sink in sediment routing systems. It is anticipated, therefore, that the grain size distribution of sediment will undergo down‐system changes as a result of fluvial sorting processes and selective deposition. We assess this hypothesis by comparing grain size statistical properties of samples from within the erosional source region with those that have undergone different amounts of transport. A truncated Pareto distribution describes well the coarser half of the clast size distribution of regolith, coarse channel bed sediment and proximal debris flows (particularly their levees), as well as the coarser half of the clast size distribution of gravels that have undergone considerable amounts of transport in rivers. The Pareto shape parameter a evolves in response to mobilization, sediment transport and, importantly, the selective extraction of particles from the surface flow to build underlying stratigraphy. A goodness of fit statistic, the Kolmogorov–Smirnov vertical difference, illustrates the closeness of the observed clast size distributions to the Pareto, Weibull and log‐normal models as a function of distance from the depositional apex. The goodness of fit of the particle size distribution of regolith varies with bedrock geology. Bedload sediment at catchment outlets is fitted well by the log‐normal and truncated Pareto models, whereas the exponential Weibull model provides a less good fit. In the Eocene Escanilla palaeo‐sediment routing system of the south‐central Pyrenees, the log‐normal and truncated Pareto models provide excellent fits for distances of up to 80 km from the depositional apex, whereas the Weibull fit progressively worsens with increasing transport distance. A similar trend is found in the Miocene–Pliocene gravels of the Nebraskan Great Plains over a distance of >300 km. Despite the large fractionation in mean grain size and gravel percentage from source region to depositional sink, particle size distributions therefore appear to maintain log‐normality over a wide range of transport distance. Use of statistical models enables down‐system fractionation of sediment released from source regions to be better understood and predicted and is a potentially valuable tool in source‐to‐sink approaches to basin analysis.  相似文献   

3.
基于数字图像的中国西北地区戈壁表面砾石形貌特征研究   总被引:5,自引:3,他引:2  
中国戈壁面积约66.08万km2,超过了流动沙丘和半固定沙丘的面积之和,但目前对戈壁沉积特征的研究程度相对较低。本文采用ImageJ软件,对中国西北地区戈壁原位无干扰的表面数字图像进行量算,获取了砾石覆盖度、粒径、磨圆度和形状比率等形貌参数。结果表明:中国西北地区戈壁表面的砾石覆盖度介于31.5%~84.6%,以中覆盖度为主,70%的戈壁属于空气动力学稳定表面;90%以上的戈壁表面砾石平均粒径为细砾和中砾。不同区域戈壁表面砾石磨圆度的平均值介于0.50~0.76,形状比率变化范围在1.38~2.46。戈壁表面砾石形貌特征与其成因类型密切相关:以剥蚀(侵蚀)-洪积作用为主形成的戈壁,砾石粒径较粗、形态比率较大、磨圆度低、覆盖度较高;以冲洪积为主形成的戈壁,砾石粒径和形态比率变小,磨圆度变好而覆盖度降低。砾石形貌特征可为追溯戈壁物源区和反演沉积物的搬运堆积过程提供参考。  相似文献   

4.
张家界甘溪砾石沉积物粒度的空间变化及其原因   总被引:1,自引:0,他引:1  
以往研究沉积物粒度分布规律时,主要局限于砂质沉积物,至多涉及细砾,对于卵砾、卵石、漂石等粗大砾石沉积物的粒度分布规律很少涉及。以张家界山地河流甘溪现代砾石沉积物为研究对象,样品的颗粒粒径介于23~663 mm,分析了河床、心滩和河岸沉积物样品的累积频率分布曲线。结果表明,这些河流砾石沉积物具有较好的统计规律和空间变化趋势,其分布特征可以用累积频率曲线来表达,一般呈现出清晰的两段式或三段式分布特征,是对不同水位洪水动力的响应。粒度参数反映出这些砾石沉积物具有较好的分选性和球度。河道砾石的中值粒径沿程变小,反映了河流水动力沿程变小的规律。岩壁崩塌的砂岩块体短期难以受到流水的充分改造,使河流沉积物的峰态呈现多样化;漂石及卵石缝隙间拦截了低水位洪水所携带的部分较细砾石,引起河道砾石沉积物呈现负偏。该项研究对于山地河流巨大碎屑沉积物的定量研究具有启示作用。  相似文献   

5.
Radical grain size changes between two main units of a sedimentary megacycle in a foreland basin are commonly interpreted to result from changes in tectonic activity or climate in the adjacent mountain range. In central Nepal, the Cenozoic Siwalik molasse deposits exposed in the frontal Himalayan folds are characterized by such a radical grain size transition. Locally gravel deposits completely replace sands in vertical succession over approximately a hundred metres, the median grain size (D50) displaying a sharp increase by a factor of ca. 100. Such a rapid gravel‐sand transition (GST) is also observed in present‐day river channels about 8–20 km downstream from the outlet of the Siwalik Range. The passage from gravel‐bed channel reaches (proximal alluvial fans) to sand‐bed channel reaches (distal alluvial fans) occurs within a few kilometres on the Gangetic Plain in central Nepal, and the D50 ratio between the two types of channels equals ca. 100. We propose that the dramatic and remarkably similar increase in grain size observed in the Neogene Siwalik series and along modern rivers in the Gangetic foreland basin, results from a similar hydraulic process, i.e. a grain sorting process during the selective deposition of the sediment load. The sudden appearance of gravels in the upper Siwalik series would be related to the crossing of this sorting transition during progressive southward migration of the gravel front, in response to continuous Himalayan orogen construction. And as a consequence, the GST would be diachronous by nature. This study demonstrates that an abrupt change in grain size does not necessarily relate to a change in tectonic or climatic forcing, but can simply arise from internal adjustment of the piedmont rivers to the deposition and run out of coarse bedload. It illustrates, in addition, the genesis of quartz‐rich conglomerates in the Himalayan foreland through gravel selective deposition associated with differential weathering, abrasion processes and sediment recycling during thrust wedge advance and shortening of the foreland basin.  相似文献   

6.
丹棱-思濛砾石层成因与时代   总被引:6,自引:0,他引:6  
根据组成丹棱-思氵蒙砾石层的不同岩性的砾石的统计分析,论证了该砾石层的物源区。应用粒组分析资料经数据处理取得的趋势分布所显示的砾石分选性和递变规律,并应用沃克划分砾岩成因类型的组构标志,判别砾石层成因。最后根据砾石的风化程度和川西前陆盆地第四纪演化特征,以及青衣江阶地位相所显示的第四纪沉积物序次,论述了丹棱-思氵蒙砾石层的形成时代。结论认为,丹棱-思氵蒙砾石层为冲积成因,物源区为青衣江流域,为古青衣江出山后在前陆盆地中充填的冲积扇,当时青衣江古河道由洪雅黄坪流经丹棱最后在思氵蒙汇入岷江。现代的丹棱-思氵蒙河是青衣江改道出平羌峡汇入大渡河后残留下来的断头河。砾石层的形成时代为早中更新世(Q12)。  相似文献   

7.
In order to evaluate the relationship between thrust loading and sedimentary facies evolution, we analyse the progradation of fluvial coarse‐grained deposits in the retroarc foreland basin system of the northern Andes of Colombia. We compare the observed sedimentary facies distribution with the calculated one‐dimensional (1D) Eocene to Quaternary sediment‐accumulation rates in the Medina wedge‐top basin and with a three‐dimensional (3D) sedimentary budget based on the interpretation of ~1800 km of industry‐style seismic reflection profiles and borehole data. Age constraints are derived from a new chronostratigraphic framework based on extensive fossil palynological assemblages. The sedimentological data from the Medina Basin reveal rapid accumulation of fluvial and lacustrine sediments at rates of up to ~500 m my?1 during the Miocene. Provenance data based on gravel petrography and paleocurrents reveal that these Miocene fluvial systems were sourced from Upper Cretaceous and Paleocene sedimentary units exposed to the west in the Eastern Cordillera. Peak sediment‐accumulation rates in the upper Carbonera Formation and the Guayabo Group occur during episodes of coarse‐grained facies progradation in the early and late Miocene proximal foredeep. We interpret this positive correlation between sediment accumulation and gravel deposition as the direct consequence of thrust activity along the Servitá–Lengupá faults. This contrasts with one class of models relating gravel progradation in more distal portions of foreland basin systems to episodes of tectonic quiescence.  相似文献   

8.
中国北方农牧交错带鄂尔多斯高原段土壤表层粒度特征   总被引:1,自引:0,他引:1  
土壤粒度是描述土壤性质的重要参数,研究农牧交错带土壤表层粒度对土壤质量和沙化程度评价具有科学意义。对不同沉积物类型及土地利用方式土壤表层(0~5 cm深度)粒度进行分析。结果表明:(1)沙黄土、覆沙黄土残积物、风化残积物中粉粒最多,其次为极细砂和细砂,这3个粒级含量之和表现为沙黄土(96.51%) > 覆沙黄土残积物(88.29%) > 风化残积物(77.58%);风成沙土壤表层以细砂(53.85%)和中砂(26.13%)为主。(2)平均粒径由小到大依次为沙黄土(4.78Φ)、覆沙黄土残积物(4.62Φ)、风化残积物(3.80Φ)、风成沙(2.46Φ);分选性由差到好依次为风化残积物、覆沙黄土残积物、沙黄土、风成沙;偏度呈现为正偏或极正偏;峰值表明风成沙(2.30)粒径分布最为集中。(3)同一地表沉积物中,砾石和极粗砂等粗颗粒在农田较多,粉粒在草地较多,极细砂在林地较多;风成沙中,粉粒在固定沙丘略多,细砂在半固定沙丘较多,砾石、极粗砂等粗颗粒仅在流动沙丘地中分布。(4)土壤颗粒分形维数表现为沙黄土(2.5242) > 覆沙黄土残积物(2.4373) > 风化残积物(2.3554) > 风成沙(2.2815);地表沉积物类型不同,表层土壤分形维数与粒级含量相关性有着明显差异。  相似文献   

9.
S.S. Li  R.G. Millar  S. Islam   《Geomorphology》2008,95(3-4):206-222
A two-dimensional (2D) numerical hydrodynamic-morphological model is developed to investigate gravel transport and channel morphology in a large wandering gravel-bed river, the Fraser River Gravel Reach, in British Columbia, Canada. The model takes into count multi-fraction bedload transport, including the effects of surface coarsening, hiding and protrusion. Model outputs together with river discharge statistics were analyzed, producing distributed sediment budget and well-defined, localised zones of aggradation and degradation along the gravel reach. Long-term channel response to gravel extraction from aggrading zones as a flood hazard mitigation measure was also investigated numerically to assess the effectiveness of such an extraction. The total computed sediment budget agrees well with results based on field measurements of gravel transport available to us. This study points to the importance of a number of factors to bedload predictions: the gravel-to-sand ratio, the adequacy of resolving the wandering planform, and the distinction between bed shear stress driving bedload transport and bed resistance on the flow. These are in addition to the physical processes governing the flow field and gravel mobilization. The methodology presented in this paper can provide a scientific basis for gravel management including monitoring and extraction in order to maintain adequate flood protection and navigation, while preserving the ecosystem.  相似文献   

10.
We present data from a proglacial river in Iceland that exhibits very different sedimentological characteristics when compared to its alpine counterparts. The braidplain is characterised by coarse outburst gravels that inhibit sediment transport and channel change. Bedload transport is restricted to the movement of fine-grained gravels that pass through the channel system without promoting significant changes in channel geometry. Bar forms are erosional features, inherited from the last major peak flow, rather than depositional in nature. On the basis of our observations we conclude that braidplain morphology is controlled by low frequency, high magnitude flow events, possibly associated with glacial outburst floods. This is in marked contrast to process-form relationships in more dynamic alpine proglacial channels that are characterised by high rates of sediment transport and channel change.  相似文献   

11.
基于高光谱数据的戈壁地表砾石粒径反演研究   总被引:1,自引:1,他引:0  
戈壁地表砾石粒径组成特征反映戈壁形成过程信息,且在很大程度上决定戈壁改造利用的难易,是开展戈壁研究的基础和前提。结合高光谱数据的微分变换,遴选出砾石粒径的敏感波段与反演方程,进行戈壁地表砾石粒径反演研究。结果表明:微分变换后的砾石光谱反射率与粒径有较好相关性,相关性最好的波段为908nm、983nm和985nm。其中,对数倒数微分变换之后的反射率与粒径成正相关(R2 =0.61),而一阶微分、平方根微分、对数微分3种变换形式之后的反射率与粒径呈负相关,相关系数分别为-0.633、-0.646、-0.649。将一阶微分变换后的光谱数据与粒径进行回归分析,发现一元三次回归模型具有较好的拟合精度,其中对数微分在回归分析中表现最好(R2 =0.851),经过验证得出对数微分预测精度(75.27%)高于其他4种微分形式的精度,表明砾石光谱的对数微分变换之后的908nm波段可应用于戈壁地表砾石粒径的反演。  相似文献   

12.
An unusual assemblage of landforms and deposits is described from upper Norangsdalen, Sunnmøre region, southern Norway, and interpreted as the product of snow‐avalanche events that vary in magnitude, frequency and debris content. An avalanche impact plunge pool, proximal scar and distal mound are associated with a coarse gravel deposit covering part of the valley floor. Landforms in this debris spread include gravel ridges, boulder lines, beaded ridges, fine sediment banked against and covering large boulders, and gravel clumps. Many of these landforms are aligned, indicating across‐valley transport radiating from the plunge pool. Features were mapped in the field and samples analysed for grain size and heavy‐mineral content. The debris spread is attributed to deposition by high‐energy, debris‐rich snow‐avalanche events that collect debris from large areas of the valley side, lower slopes and plunge pool. Aligned landforms develop through sediment transport in a basal shear zone, and randomly distributed gravel clumps represent melt pits following debris transport in the avalanche body. Air displacement ahead of larger avalanches is thought to have felled and tilted trees on the lower slopes of the distal valley side. Approximate ages of damaged trees allowed estimation of the frequency of snow‐avalanche events: (1) small, frequent events (several per annum) carry debris to the lower valley slopes and the plunge pool; (2) moderate events with an annual to decadal frequency maintain the pool–scar–mound complex; and (3) large, debris‐rich events with a decadal to centennial frequency add material to the debris spread.  相似文献   

13.
The upper Columbia River, British Columbia, Canada, shows typical anastomosing morphology — multiple interconnected channels that enclose floodbasins — and lateral channel stability. We analysed field data on hydraulic and sedimentary processes and show that the anastomosing morphology of the upper Columbia River is caused by sediment (bedload) transport inefficiency, in combination with very limited potential for lateral bank erosion because of very low specific stream power (≤ 2.3 W/m2) and cohesive silty banks. In a diagram of channel type in relation to flow energy and median grain size of the bed material, data points for the straight upper Columbia River channels cluster separately from the data points for braided and meandering channels. Measurements and calculations indicate that bedload transport in the anastomosing reach of the upper Columbia River decreases downstream. Because of lateral channel stability no lateral storage capacity for bedload is created. Therefore, the surplus of bedload leads to channel bed aggradation, which outpaces levee accretion and causes avulsions because of loss of channel flow capacity. This avulsion mechanism applies only to the main channel of the system, which transports 87% of the water and > 90% of the sediment in the cross-valley transect studied. Because of very low sediment transport capacity, the morphological evolution of most secondary channels is slow. Measurements and calculations indicate that much more bedload is sequestered in the relatively steep upper anastomosing reach of the upper Columbia River than in the relatively gentle lower anastomosing reach. With anastomosing morphology and related processes (e.g., crevassing) being best developed in the upper reach, this confirms the notion of upstream rather than downstream control of upper Columbia River anastomosis.  相似文献   

14.
本文从河口塑造与输沙关系、流域泄沙与输移模式,以及口外来沙与潮流输移特征等三方面,探讨河口区的泥沙运移规律和补给来源。并在此基础上,提出粗细不同粒级的造床泥沙按不同方式治理的设想。  相似文献   

15.
Changes to the tectonic boundary conditions governing erosional dynamics in upland catchments have a significant effect on the nature and magnitude of sediment supply to neighbouring basins. While these links have been explored in detail by numerical models of landscape evolution, there has been relatively little work to quantify the timing, characteristics and locus of sediment release from upland catchments in response to changing tectonic boundary conditions that are well‐constrained independently. We address this challenge by quantifying the volume and granulometric characteristics of sediment exported from modern rivers draining across active normal faults in the Central Apennines in Italy. We demonstrate that catchments undergoing a transient response to tectonics are associated with significant volumetric export of material derived primarily from the zone upstream of the fault, producing bi‐modal grain‐size distributions with elevated D84 values within the transient reach. This is in direct contrast to the headwaters, where the fluvial capacity to transport sediment is low and the grain‐size distribution of material in transit is fine and uni‐modal. The grain‐size response is driven by landslides feeding coarse material directly into the channel, and we show the amplitude of the signal is modulated by the degree of tectonic perturbation, once the threshold for bedrock landsliding is exceeded. Additionally, we evaluate the length‐scale over which this transient grain‐size signal propagates downstream into the basin. We show that the coarse‐fraction sediment released is retained in the proximal hanging‐wall if rates of tectonic subsidence are high and if the axial river system is small or far from the fault‐bounded mountain front. Our results therefore provide some of the first quantitative data to evaluate how transient landscape responses affect the locus, magnitude and calibre of sediment supply to basins.  相似文献   

16.
Bedload yields have been calculated using eight bedload equations at a total of 11 gauging sites in four coastal river basins in New South Wales. Comparisons of yields calculated by each equation at each site show enormous variations. Furthermore, on the Manning River, where calculations could be made on the four main tributaries and compared to those from the trunk channel below their combined confluence, there was no recognisable continuity of results. For the following reasons, the use of bedload formulae on these rivers appears to be a futile exercise. Firstly, the formulae appear to be inherently unstable under natural field conditions. Secondly, application of the formulae must rely on extrapolated flow data, as actual flow measurements are rarely conducted at discharges that are more than a small fraction of largest discharges recorded at any site. Thirdly, formulae must be applied assuming an unlimited availability of bed material; yet the rivers studied here behave as ‘conveyor belts’ of considerable power but with very low and irregular rates of sediment feed. Finally, temporal step‐functional shifts in climate and flow regimes are shown to have an important impact on estimation of sediment yields. The implication of these results is that, until there is a carefully monitored scientific program of bedload measurement or estimates of reservoir sedimentation on the rivers of south eastern Australia, there can be no reliable evaluation of sediment yields from these rivers. As a result, the impact of gravel extraction, the dispersal of mine tailings, or the construction of dams can not be adequately assessed for this region, nor probably for the rest of Australia.  相似文献   

17.
The quantitative modelling of fluvial reservoirs, especially in the stages of enhanced oil recovery, requires detailed three‐dimensional data at both the scale of the channel belt and within‐channel. Although studies from core, analogue outcrop and modern environments may partially meet these needs, they often cannot provide detail on the smaller‐scale (i.e. channel‐scale) heterogeneity, frequently suffer from limited three‐dimensional exposure and cannot be used to examine the influence of different variables on the process–deposit relationship. Physical modelling offers a complementary technique that can address many of these quantitative requirements and holds great future potential for integration with reservoir modelling. Physical modelling provides the potential to upscale results and derive reservoir information on three‐dimensional facies geometry, connectivity and permeability. This paper describes the development and use of physical modelling, which employs generic Froude‐scaling principles, in an experimental basin that permits aggradation in order to model the morphology and subsurface depositional stratigraphy of coarse‐grained braided rivers. An example is presented of a 1:50 scale model based on the braided Ashburton River, Canterbury Plains, New Zealand and the adjacent late Quaternary braided alluvium exposed in the coastal cliffs. Critically, a full, bimodal grain size distribution (20% sand and 80% gravel) was used to replicate the prototype, which allows the realistic reproduction of the surface morphology and importantly permits grain size sorting during deposition. Uncertainties associated with the compression of time, sediment mass balance and the hydrodynamics of the finest particle sizes do not appear to affect the reproducibility of stratigraphy between experimental and natural environments. Sectioning of the preserved sedimentary sequence in the physical model allows quantification of the geometry, shape, spatial distribution and internal sedimentary structure of the coarse‐ and fine‐grained facies. A six‐fold facies scheme is proposed for the model braided alluvium and a direct link is established between the grain size distribution and facies type: this allows permeability to be estimated for each facies, which can be mapped onto two‐dimensional vertical cross‐sections of the preserved stratigraphy. Results demonstrate the dominance of four facies based on permeability that range over three orders of magnitude in hydraulic conductivity. Quantification of such variability, and linkage to both vertical proportion curves for facies distribution and connectivity presents significant advantages over other methodologies and offers great potential for the modelling of heterogeneous braided river sediments at the within channel‐belt scale. This paper outlines how physical models may be used to develop high‐resolution, geologically‐accurate, object‐based reservoir simulation models.  相似文献   

18.
The timing of clastic sedimentation in two glacial‐fed lakes with contrasting watersheds was monitored using sequencing sediment traps for two consecutive years at Allison Lake (Chugach Range, Alaska) and four months at Shainin Lake (Brooks Range, Alaska). Shainin Lake is a weakly stratified lake fed by distant glaciers, whereas Allison Lake is more strongly stratified and fed predominantly by proximal glaciers. At Shainin Lake, sediment accumulation started in late June and reached its maximum in mid‐August, just before lake mixing and during a period of low river discharge. The grain size of the sediment reaching the sediment trap in Shainin Lake was homogenous throughout the summer. At Allison Lake, pulsed sedimentation of coarse particles during late summer and early fall storms were superimposed on the fine‐grained sedimentation pattern similar to that observed at Shainin Lake. These storms triggered underflows that were observed in the thermal structure of the lake and deposited abundant sediment. The sequencing sediment traps reveal a lag between fluvial discharge and sediment deposition at both lakes, implying limitations to interpreting intra‐annual sedimentary features in terms of inflow discharge.  相似文献   

19.
《Basin Research》2018,30(4):613-635
Transient sediment storage and mixing of deposits of various ages during transport across alluvial piedmonts alter the clastic sedimentary record. We quantify buffering and mixing during cycles of aggradation–incision in the north piedmont of the Eastern Tian Shan. We complement existing chronologic data with 20 new luminescence ages and one cosmogenic radionuclide age of terrace abandonment and alluvial aggradation. Over the last 0.5 Myr, the piedmont deeply incised and aggraded many times per 100 kyr. Aggradation is driven by an increased flux of glacial sediment accumulated in the high range and flushed onto the piedmont by greater water discharge at stadial–interstadial transitions. After this sediment is evacuated from the high range, the reduced input sediment flux results in fluvial incision of the piedmont as fast as 9 cm year−1 and to depths up to 330 m. The timing of incision onset is different in each river and does not directly reflect climate forcing but the necessary time for the evacuation of glacial sediment from the high range. A significant fraction of sediments evacuated from the high range is temporarily stored on the piedmont before a later incision phase delivers it to the basin. Coarse sediments arrive in the basin with a lag of at least 7–14 kyrs between the first evacuation from the mountain and later basinward transport. The modern output flux of coarse sediments from the piedmont contains a significant amount of recycled material that was deposited on the piedmont as early as the Middle Pleistocene. Variations in temperature and moisture delivered by the Westerlies are the likely cause of repeated aggradation–incision cycles in the north piedmont instead of monsoonal precipitation. The arrival of the gravel front into the proximal basin is delayed relative to the fine‐grained load and both are separated by a hiatus. This work shows, based on field observations and data, how sedimentary systems respond to climatic perturbations, and how sediment recycling and mixing can ensue.  相似文献   

20.
Reconstruction of the geological history of orogenic events can be challenging where basins have limited and/or fragmentary preservation. Here, we apply understanding gained from modern analogues to the sedimentological analysis of the succession of Upper Silurian to Lower Devonian Lower Old Red Sandstone (LORS), northern Midland Valley, Scotland, in order to reconstruct the foreland to the Caledonian orogeny. A new depositional model is presented which differs significantly from current understanding. Using facies analysis, grain size distribution and palaeocurrent data a large distributive fluvial system is reconstructed. Three lithofacies and nine sublithofacies are identified, forming fluvial channel and floodplain facies associations. The system was derived from an emerging mountain range in the Caledonian foreland undergoing constant tectonic rejuvenation to produce 9 km of coarse‐grained sediment, exhibiting an overall decrease in thickness towards the west and a large‐scale downstream reduction in grain size. Conglomerate sublithofacies dominate proximal areas in the east where amalgamated fluvial channel facies association is abundant, with a downstream increase in the dominance of floodplain facies. Additionally, observed grain size cyclicity is attributed to a pulsatory tectonic influence. The LORS records the time‐period between the late phases of the Caledonian Orogeny and the onset of post‐orogenic collapse in the mid‐Devonian and the presented model allows improved understanding of the north‐Atlantic Caledonian foreland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号