首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
  国内免费   2篇
大气科学   1篇
地质学   1篇
自然地理   40篇
  2023年   3篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2012年   3篇
  2011年   1篇
  2010年   5篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
排序方式: 共有42条查询结果,搜索用时 156 毫秒
1.
内陆季节性湖盆是干旱区重要的粉尘来源地,其沙尘的排放会通过一系列的陆地-大气相互作用对区域气候及生态环境产生重大影响。以青土湖、南湖和红沙岗为研究对象,利用BSNE型沙尘仪采集沙尘物质,探讨不同地区沙尘水平通量和粒度特征。结果表明:5个测点平均沙尘水平通量表现为青土湖北(612.1 kg·m-2·a-1)>青土湖南(84.6kg·m-2·a-1)>青土湖东(35.2 kg·m-2·a-1)>红沙岗(11.0 kg·m-2·a-1)>南湖(10.7 kg·m-2·a-1),随着高度增加,青土湖北和青土湖东沙尘水平通量快速降低,青土湖南和红沙岗的下降速度分别在0.5 m和1 m高度以上放缓,南湖先降后增;沙尘颗粒物主要为粉沙和极细沙,其次为细沙和黏土,除青土湖南外,其余测点随着高度的增加呈粉沙含量递增、细沙含量递减、平均粒径变细的趋势;5个测点总体表...  相似文献   
2.
风沙活动威胁着龙羊峡水库的安全运营,查清沙害来源和入库量对于防治水患和沙害具有重要意义。基于1987、1995、2003、2013、2019年的Landsat卫星影像,利用COSI-Corr技术监测了龙羊峡库区不同时空的沙丘移动特征,并重新评估库区近32 a的潜在风沙入库量。结果显示:(1)1987—2019年龙羊峡库区沙丘平均移动速率为5.81 m·a-1,呈先加速(1987—2003年)后减速(2003—2013年)再加速(2013—2019年)趋势;沙丘移动方向在132.81°—165.82°范围内,与该区主风向一致。(2)近32 a向龙羊峡水库输送的潜在风沙量可达7.82×107 m3(1.20×108 t)。上风向塔拉滩潜在输送量为7.38×107 m3(1.14×108 t),下风向木格滩仅贡献了0.44×107 m3(0.68×107 t)。(3)库区内风沙输移受风况、气候、植被等多种因素的影响,在未来全球变暖条件下,青藏高原的风沙活动将会持续发展,风沙入库量的长期累计效应将对水库安全构成严重威胁,必须引起足够重视。  相似文献   
3.
横向沙丘背风侧沙粒风蚀起动的风洞模拟   总被引:1,自引:1,他引:1  
通过风洞实验,探讨了横向沙丘背风侧“二次流”的沉积学和形态-动力学意义。在不同迎风坡坡度的横向沙丘模型背风侧,我们观测了不同位置沙粒的起动风速以及在临界状态下沙粒的运动特征。结果表明,沙丘背风侧的颗粒起动风速不仅与其距沙丘顶部的距离有关,也与沙丘迎风坡坡度有密切关系。根据沙丘背风侧颗粒运动特征,可以将其划分为向后运动区域、晃动或摆动区域以及向前运动区域,产生这一现象的原因是在沙丘背风坡气流分离、反向涡和气流重新辐合共同作用的结果。在所有的观测结果中,迎风坡坡度为15°的沙丘具有最大的沙粒起动风速和最远的气流重新辐合距离,其原因尚需进一步研究。  相似文献   
4.
腾格里沙漠西部和西南部风能环境与风沙地貌   总被引:5,自引:3,他引:2  
腾格里沙漠西部和西南部的沙漠边缘地区位于石羊河流域的下游地区,该地区生态环境脆弱,成为近年来备受关注的区域之一。利用自动气象站2009年年度风况资料和Google Earth影像,对该地区的风能环境与风沙地貌进行讨论,为评价区域风沙活动强度,风沙地貌形态特征提供依据。研究表明,腾格里沙漠西部和西南部的风况、风能环境呈自北向南逐渐变化的趋势,年平均风速西部最大,中部次之,南部最小;起沙风风向在北部以西北风和东北风为主,中部以西北风和东南风为主,而南部以西北风为主,东南风很少。研究区的北部为高风能环境,中部和南部为低风能环境。研究区的沙丘类型主要为格状沙丘,在沙漠边缘的部分地区为新月形沙丘链,南部为植被线形沙垄,其主要是由地形作用形成的,沙垄之间为新月形沙丘链。风能环境、沙源和植被共同影响沙丘的形态参数,研究区中部的风能比南部大,沙源比南部多,植被比南部少,因此,格状沙丘主梁之间的间距要比南部新月形沙垄的间距大。格状沙丘的走向近似相同,均在205°~225°之间。研究区南部有范围较大的植被线形沙垄,其间距在0.8~2.0 km之间,平均间距为1.37 km;走向为近似南北(164°~176°之间)。  相似文献   
5.
栅栏防护体系的空气动力学效应研究是揭示其防护机理的重要基础,也是风沙工程学和风沙物理学应用研究的主要组成部分。根据已有的研究成果,全面综述了近半个多世纪以来有关栅栏防护体系空气动力学机制方面的研究进展,对各个时期的主要成果作以介绍,并对几种代表性防护栅栏最佳疏透度的确定方法及范围分别加以对比分析。分析认为,对栅栏空气动力学效应已取得了相对较深的认识,并且积累了大量的研究经验,对于认识栅栏防护机理具有重要的指导和启发作用。但影响栅栏防护效益的因素是复杂的,众多研究都运用了过多的简化与假设,而且研究者们对于栅栏防护效应的理解不同以及所强调的保护侧重点不同导致评判的标准也各不相同,最终得到的最佳疏透度也有所差异,不能直接运用于实践中。鉴于此,在将来的研究中运用现代测量技术获取可靠的数据资料仍然很重要。  相似文献   
6.
栅栏绕流减速效应风洞实验模拟   总被引:12,自引:9,他引:3  
为研究阻沙栅栏的空气动力学效应,利用PIV技术对栅栏绕流的速度场进行了风洞实验模拟,并对其减速效应加以分析评价。结果表明,疏透度对栅栏绕流的平均速度场分布影响比较明显,疏透度越小栅栏后的平均水平风速衰减得越快;栅栏绕流的垂直速度分量在栅栏顶部最大,并随疏透度的增大而减小,影响了栅栏周围沙粒的跃移传输及沉积特征;栅栏后的累计减速率可以用高斯峰值函数来拟合,随疏透度的增大呈先增大后减小的趋势,疏透度η=0.2时累计减速率最大,代表了栅栏减速的理论最佳疏透度。  相似文献   
7.
横向沙丘气流平均速度变化规律的风洞模拟   总被引:10,自引:8,他引:2  
在沙丘动力系统中,存在沙丘形态、气流、沙粒运移三者之间复杂的相互作用。通过风洞实验的方法,针对不同形态的6组横向沙丘模型,采用粒子图像测速系统,测量了模型沙丘周围气流水平速度和垂直速度的变化规律。实验结果表明,横向沙丘迎风坡水平气流存在1.28~1.89之间的加速率,垂直气流存在上扬趋势,这二者均有随沙丘迎风坡坡度增大而增大的趋势。在横向沙丘背风坡,由于气流的分离,水平气流速度减小并出现反向,其大小约为自由风速的17%;垂直气流速度存在下沉趋势,其最大沉速出现在气流重附点附近;背风坡气流速度的变化受沙丘迎风坡坡度影响较小,受自由风速的影响较大。沙丘对气流速度的改变在近地层较为显著,随着高度的增加地形影响逐渐减小。  相似文献   
8.
沙丘形成演变是风-沉积物-其他地理因子相互反馈作用的一个动态系统过程,粒度可以揭示其中包含的部分环境信息并被广泛应用于风沙地貌研究。本文分析了巴丹吉林沙漠伊和吉格德湖高大沙山区沉积物粒度特征及其与植被、地貌形态的关系。结果表明:迎风坡中上部及中部剖面各层沉积物主粒径均一,分别为中沙、细沙;迎风坡中下部及底部剖面细沙、中沙及粗沙等不同主粒径层交替,粒配复杂,其成因与粗沙粒保护作用、风向季节变化及地质时期气候变迁等因素有关;背风坡表层沉积物以细沙为主,趋向底部粗沙、中沙及极细砂增多,说明不同粒径对风及重力作用的响应存在差异;粒度参数散点图可以区分不同部位样品,趋向迎风坡底部剖面,沙粒分选性变差,正偏、负偏及近对称沙层交替,说明风力分选作用在不同部位差异明显及存在其他外力作用;沙层粒配影响植被多样性,迎风坡中上部中沙含量高,背风坡表层中部偏上极细沙及大于2.65 Φ细沙含量突然增加,是植被影响粒配的反映;迎风坡沉积环境的差异,说明随地质时期气候变迁,沙山形成可能经历了两个重要阶段,一是早期风力和水动力交替影响、具有风成与非风成环境交替特征的基底形成时期,二是以风力作用为主的现代沙山形成时期。  相似文献   
9.
直立阻沙栅栏流场特征的风洞模拟实验   总被引:12,自引:10,他引:2  
直立栅栏作用于地表深刻地影响了周围气流的流动特性,使原来流经地表的气流成为一种特殊形式的“次生流”。根据PIV所测的非对数-线性风速廓线形态及风速廓线所表现的不同速度梯度,栅栏周围的流场可以划分为6个典型区域。随着栅栏疏透度的增加,流动的区域会随着下风向距离的增加逐渐合并,划分的区域越来越少。这些典型的区域分别表现了气流的不同运移行为及能量传输特征,对栅栏周围的风沙沉积有很大的影响。  相似文献   
10.
栅栏最佳疏透度的空气动力学评价   总被引:4,自引:4,他引:0  
为研究栅栏防沙的动力学机制,运用风洞中PIV所测风速资料,从空气动力学角度对直立栅栏的最佳疏透度范围进行了讨论与评价。结果表明,不同研究者所得栅栏的最佳疏透度范围不尽相同,大致范围在0.2~0.6之间,结果非常分散。PIV资料评价的栅栏最佳疏透度在0.2~0.3之间,该疏透度范围的栅栏周围气流湍流度较低,对风能的耗散较大,能有效抑制过境风沙流,理论上属于防沙的最佳疏透度,但实践操作中为了降低成本,阻沙栅栏的实际疏透度可适度增大,放宽到0.3~0.4左右。栅栏绕流的复杂性,使得众多研究都运用了过多的简化与假设,而且研究者们对于栅栏防护过程的不同理解以及所强调的保护侧重点不同导致评判的标准也各不相同,最终得到的最佳疏透度范围也有所差异。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号