首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
For the first time zircons have been extracted from gabbro–norite of a lower layered horizon of the West Pana Massif in the Pt–Pd Kievei deposit of the Fedorov–Pana Layered Complex. Those zircons have been used for U–Pb dating along with Sm–Nd age determination on sulfide minerals. The obtained new isotopic data are a U–Pb zircon age of 2500 ± 4 Ma, while the Sm–Nd (mineral and whole-rock) isochron yielded 2483 ± 86 Ma. These results correspond to the first phase of the Pt–Pd reef complex formation in the Layered Complex. The Pt–Pd reef formation has been dated by U–Pb baddeleyite and zircon analyses in the East Pana Massif to 2464 ± 12 Ma. The 2485–2464 Ma time span corresponds to the second phase of the Pt–Pd reef formation in the Fedorov–Pana ore cluster.  相似文献   

2.
The formation time of 410.5 ± 1.1 Ma (zircon U/Pb SHRIMP) and the duration of rock crystallization (2–2.5 Ma) were determined for gabbro from the Nurali massif. The gabbro zircons showed a complicated polyphase structure. A new polygenous type of zonality including traces of primary growth and of the processes of crushing, dissolution, and substitution was discovered in the zircons. The formations of gabbro and ultramafites (lherzolites) of the massif are separated by a time break of 30–35 Ma determined by the genetic discontinuance.  相似文献   

3.
New U–Pb and Sm–Nd isotope data have been obtained in the Kandalaksha–Kolvitsa zone, Baltic Shield, on accessory zircon and rutile, along with whole-rock and secondary metamorphic minerals. Isotope U–Pb age of single zircon grains from metagabbro of the Kandalaksha Anorthosite Massif is 2453.5 ± 4.8 Ma, which is close to the U–Pb age of zircon from the Kolvitsa Massif metagabbro (2448 ± 5 Ma). For the first time, REEs in zircon grains of the Kandalaksha metagabbro have been analyzed and the results have been plotted. Ti-in-zircon thermometry has been applied using LA–ICP–MS: it yielded an average temperature of zircon crystallization of 844°C. The isotope and geochemical new data obtained indicate a magmatic genesis of the zircon crystals studied.  相似文献   

4.
ABSTRACT

The tectonic affiliation of the Khanka Massif, in the easternmost section of the Central Asian Orogenic Belt (CAOB), is still a matter of debate. Here, we provide new constraints on the provenance and timing of deposition of Permian strata in the western margin of the Khanka Massif. The results, which include U–Pb dating of detrital zircon grains using laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS), provide evidence regarding the tectonic position of the Khanka Massif and its role in the late Palaeozoic evolution of the eastern CAOB. Detrital zircon grains from a sublitharenite (Pingyangzhen Formation), a litharenite (Liangzichuan Formation), and a metamorphic siltstone (Qinglongcun Group) yielded multiple age populations ranging from Neoproterozoic (~914 Ma) to Permian (~272 Ma). Combined with age constraints from overlying/late-stage igneous rocks and other magmatism of the Khanka Massif, we conclude that the dated strata were deposited during the early–middle Permian and were sourced from the Khanka Massif. A comparison between the detrital zircon age populations and the history of magmatic activity in the neighbouring areas suggests that the Khanka Massif was tectonically linked to the Songnen–Zhangguangcai Range Massif. Based on tectonic discrimination diagrams, we conclude that the western margin of the Khanka Massif was positioned in a convergent-boundary basin during the early–middle Permian. Strike-slip faulting along the Dunhua–Mishan Fault, in response to ridge subduction of the Paleo-Asian Ocean Plate, resulted in a north-eastward movement of the Khanka Massif. The occurrence of Precambrian detrital zircon grains (with ages of 1900–1700 and 900–700 Ma) implies the presence of an ancient basement within the Khanka Massif.  相似文献   

5.
New age data are reported for the magmatic rocks from the western flank of the Okhotsk-Chukotka volcanogenic belt consisting of the Ul’ya and Kuidusun volcanic zones. Four U-Pb SHRIMP zircon dates within 106-90 Ma were obtained for the upper part of the Emanrin Formation and the lower part of the Ul’ya Group of the Ul’ya volcanic zone. Large Verkhneallakh and Atarbai subvolcanic intrusions from the Kuidusun volcanic zone were dated using the Rb-Sr method at 115–107 Ma and 85 Ma, respectively. U-Pb dating of zircon microsamples from adamellites and diorites of the Sizindzha Massif yielded, respectively, ages of 91 and 90 Ma. New geochronological data indicate that the Selitkan-Sungari and Okhotsk-Chukotka volcanogenic belts are coeval and can be united in a common Okhotsk-Sungari system of volcanic belts and zones (megabelt).  相似文献   

6.
40Ar-39Ar, Sm-Nd, U-Pb, and Lu-Hf isotope data are reported on the gabbro of the Volkovsky Massif, the only massif of the Uralian Platinum Belt wherein economic copper-iron-vanadium and high-grade gold-palladium mineralization is present. The massif is made up of gabbro blocks with concentrically zoned structure and diorite intrusions in its core. In the northeast and southwest, the gabbro is cut by syenite of the Kushva Massif. Gabbro blocks mainly consist of the olivine-anorthite gabbro, while labradorite two- pyroxene gabbro intersects both olivine-anorthite gabbro and Ti-magnetite and copper-PGE mineralization developed in them. The study of both gabbro types by Sm-Nd isochron and U-Pb (SHRIMP II) zircon methods with subsequent REE and Lu-Hf isotope analysis of zircon made it possible to date reliably (428 ± 7 Ma (SHRIMP) and 436 ± 21 Ma (Sm-Nd)) postore labradorite gabbro and, correspondingly, the upper age limit of the mineralization of the Volkovsky Massif. Ore-bearing olivine-anorthite gabbro contain four different-age zircon populations: 2682 ± 37–972 ± 18 Ma, 655 ± 15 to 565 ± 9 Ma; 450 ± 12 Ma, and 343 ± 8 Ma. Hf-Nd isotope systematics showed that zircon with an age of 450 ± 12 Ma presumably marks the formation age of the rocks, the older zircon was trapped, while zircon with an age of 343 ± 8 Ma was formed during low-temperature transformation of the rock and sometimes contains excess radiogenic Hf. Proterozoic xenogenic zircon was inherited from diverse rocks of ancient crust, while the oldest grain with an age of 2065 Ma was possibly formed in a deep mantle source. Vendian zircon was presumably also entrapped, and its morphology and geochemistry point to the crystallization from a basaltic melt. The abundance of pre-Paleozoic zircon in the olivine-anorthite gabbro suggests significant contribution of ancient material in their petrogenesis. This material could serve as source of ore components (metals and sulfur) for unique copper-sulfide gold-PGE mineralization of the Volkovsky Massif.  相似文献   

7.
Resolving time differences between successive magmatic pulses in composite granitoid plutons is often a difficult task. High-precision CA-ID-TIMS zircon ages obtained from such a pluton, the Variscan Karkonosze Granite (NE part of the Bohemian Massif), provide evidence that the crystallization of the two main granite facies, porphyritic and equigranular, happened between 312.5 ± 0.3 and 312.2 ± 0.3 Ma, thus unresolvable at the 0.08–0.1 % precision level of a single 206Pb/238U age. This finding is at odds with most other previous dating attempts and asks for a re-evaluation of the previous scattered geochronological data. The main reasons for the scatter of the earlier dates obtained by various techniques can include analytical causes, the presence of older inheritance and disturbance of the U–Pb isotopic system, due to zircon metamictization (enhanced by high-U content in zircon) or late- and post-magmatic alteration.  相似文献   

8.
The U-Pb zircon dates obtained for the Sutara (480 ± 4 Ma), Kabalinskii (471 ± 10 Ma), and Durilovskii (461 ± 5 Ma) massifs reliably confirm an Early Proterozoic orogenic event, which took place after granulite metamorphism at approximately 500 Ma (Wilde et al., 2003) in the Lesser Khingan (Jiamusi) terrane. The rocks emplaced most shortly after the main metamorphic event are the granites of the Sutara Massif and leucogranites of the Kabalinskii Massif, whose geochemistry is close to that of collision granites. The quartz diorites and subalkaline granites of the Durilovskii Massif, whose geochemistry suggests their origin in a postcollision environment with the participation of an enriched mantle source, were emplaced longer after metamorphic event and after the aforementioned massifs.  相似文献   

9.
Correct interpretation of zircon ages from high-grade metamorphic terrains poses a major challenge because of the differential response of the U–Pb system to metamorphism, and many aspects like pressure–temperature conditions, metamorphic mineral transformations and textural properties of the zircon crystals have to be explored. A large (c. 450?km2) coherent migmatite complex was recently discovered in the Bohemian Massif, Central European Variscides. Rocks from this complex are characterized by granulite- and amphibolite-facies mineral assemblages and, based on compositional and isotopic trends, are identified as the remnants of a magma body derived from mixing between tonalite and supracrustal rocks. Zircon crystals from the migmatites are exclusively large (200–400?μm) and yield 207Pb/206Pb evaporation ages between 342–328?Ma and single-grain zircon fractions analysed by U–Pb ID-TIMS method plot along the concordia curve between 342 and 325?Ma. High-resolution U–Pb SHRIMP analyses substantiate the existence of a resolvable age variability and yield older 206Pb/238U ages (342–330?Ma, weighted mean age?=?333.6?±?3.1?Ma) for inner zone domains without relict cores and younger 206Pb/238U ages (333–320?Ma, weighted mean age?=?326.0?±?2.8?Ma) for rim domains. Pre-metamorphic cores were identified only in one sample (206Pb/238U ages at 375.0?±?3.9, 420.3?±?4.4 and 426.2?±?4.4?Ma). Most zircon ages bracket the time span between granulite-facies metamorphism in the Bohemian Massif (~345?Ma) and the late-Variscan anatectic overprint (Bavarian phase, ~325?Ma). It is argued that pre-existing zircon was variously affected by these metamorphic events and that primary magmatic growth zones were replaced by secondary textures as a result of diffusion reaction processes and replacement of zircon by dissolution and recrystallization followed by new zircon rim growth. Collectively, the results show that the zircons equilibrated during high-grade metamorphism and record partial loss of radiogenic Pb during post-peak granulite events and new growth under subsequent anatectic conditions.  相似文献   

10.
The U–Pb (SHRIMP) dating of zircon from the layered complex of ophiolitic gabbro in the Klyuchevsk massif yielded an age of 456 ± 6 Ma corresponding within the limits of error to zircon dates obtained for other petrographic varieties from this massif. The investigation of the composition of silicate inclusions in dated zircon grains revealed that they are represented by typical metamorphic minerals: albite, zoisite, and secondary amphiboles. The data indicate that zircon was crystallized during metamorphic transformations of gabbroids and its U–Pb age (Late Ordovician–Silurian) is characteristic of all rocks in the ophiolite association of the Klyuchevsk massif indicating the age of metamorphism, not their formation time.  相似文献   

11.
大兴安岭北段额尔古纳地块莫尔道嘎-太平川一带分布有大量的新元古代巨斑状花岗岩,该岩体形成的确切时代及成因尚不清楚。笔者等运用LA ICP MS技术进行了锆石U Pb定年和锆石Hf同位素组成测定。锆石U Pb年龄结果揭示太平川巨斑状花岗岩形成时代为791.4 Ma。锆石Hf同位素研究显示εHf(t)为1.4~6.4,均>0,反映亏损地幔来源新生地壳物质在花岗岩的形成中起主导作用,锆石Hf单阶段的模式年龄tDM为1.09~1.28 Ga,与岩石的形成时间791.4 Ma有较长的时间间隔,表明该区花岗岩的母岩来自具有较长地壳滞留时间的地壳物质的部分熔融。结合额尔古纳已有的花岗岩锆石Hf同位素资料,认为额尔古纳地块在中、新元古代曾发生过地壳增生事件,存在1.09~1.28 Ga的中元古代晚期增生地壳。  相似文献   

12.
Approximately 500-Ma-old orthogneisses are widespread in the eastern part of the Variscan belt and are commonly interpreted to have intruded mica-schist series of assumed Neoproterozoic age. New SHRIMP zircon ages of quartzofeldspathic metavolcanogenic rocks of the mica schist series in the eastern part of the Karkonosze-Izera Massif (SW Poland) indicate that they are late Cambrian/early Ordovician rather than Neoproterozoic in age, based on the zircon age spectra distributed mainly between ca. 500 and 660 Ma (with a few Proterozoic inherited minimum ages of ca. 970 and 1,825 Ma). Younger zircon dates, dispersed between ca. 412 and 464 Ma, are interpreted as a result of Pb-loss likely caused by subsequent metamorphism. Consequently, the felsic metavolcanogenic rocks appear to be roughly contemporaneous with the intrusion of ca. 500-Ma-old orthogneiss protoliths (with the pooled concordia age of 487 ± 8 Ma interpreted as the best approximation of the protolith intrusive age). Field relationships, petrological and geochemical features of the felsic and mafic rocks studied support a model in which the accompanying mica schist series are not the original country rocks to the ca. 500 Ma granite intrusions, and indicate that their recent close proximity is the result of tectonic juxtaposition. However, both the mica schists enclosing the bimodal metavolcanic rocks, and the orthogneisses, are interpreted to represent a Cambro-Ordovician passive continental margin sequence being part of the Saxothuringian domain. They are tectonically overlain to the east by HP/T metamorphic units, comprising MORB-type metaigneous rocks, and delineating a tectonic suture separating the Saxothuringian block in the west from an assumed continental block (Tepla-Barrandian) to the south-east.  相似文献   

13.
黑龙江省东部马家街群碎屑锆石年代学及其大地构造意义   总被引:2,自引:0,他引:2  
赵亮亮  王宗起  张兴洲 《岩石学报》2014,30(6):1769-1779
马家街群分布在黑龙江省东部佳木斯地块桦南隆起的西南缘,主要由一套经历了接触变质作用的富铝、富碳沉积碎屑岩所组成。区域上,这套接触变质岩系具有变质矿物分带特征,由西向东依次出现十字石、红柱石、石榴石和黑云母。红柱石碳质板岩和石榴云母石英片岩2件样品获得的LA-ICP-MS U-Pb碎屑锆石年龄谱均显示有272~310Ma、479~533Ma和>800Ma三组年龄。根据两件样品显示的最小年龄均未小于272Ma,而且二者的最小年龄组(272~310Ma)具有类似的峰值年龄,分别为276Ma和279Ma,这限定了马家街群主体岩石沉积年龄的下限应在中二叠世之前。侵入马家街群的花岗岩的锆石年龄为259Ma,说明其接触变质作用时代为晚二叠世早期,限定了马家街群形成时代的上限。479~533Ma年龄组中,2件样品的峰值年龄分别为499Ma和522Ma,这是佳木斯地块麻山群中最为重要的高级变质和花岗质岩浆作用年龄。>800Ma的年龄组具有多个峰值年龄,说明源区(佳木斯地块)具有前寒武纪-早前寒武纪地壳。上述证据表明,马家街群是晚二叠世早期形成的一套接触变质岩系,而非前寒武纪区域变质岩系。鉴于479~533Ma的麻山群在佳木斯地块中普遍存在,说明以麻山群为代表的早古生代变质结晶岩系既是马家街群沉积的基底,也是重要的物源区;而276~279Ma的早二叠世火山岩在佳木斯地块东缘分布广泛,表明其对马家街群的沉积也具有一定的贡献。  相似文献   

14.
Petrographic and isotopic-geochemical data obtained on basic and ultrabasic rocks from the Yurchik Massif in the Ganal block of crystalline rocks in Kamchatka indicate that the distribution of major and trace elements in these rocks are analogous to those in the fractionation products of high-Al tholeiites occurring in island arcs in the eastern continental margin of Eurasia. Allivalites and dunites found as nodules in gabbronorites and gabbro of the massif are thought to be early cumulates of arc basalts. Petrographic and geochemical characteristics of the Yurchik Massif make it different from Ni-bearing Paleocene-Eocene (approximately 50 Ma) norite-cortlandite intrusions in the Sredinnyi Range of Kamchatka. U-Pb zircon and 40Ar/39Ar dates for rocks from the massif definitely testify to its younger, Early Miocene (approximately 22 Ma) age.  相似文献   

15.
Deformation of granulite-facies rocks in the Moldanubian Zone of the southern Bohemian Massif is expressed in two intersecting planar fabrics - steeply disposed (S1) and flat-laying (S2) - which correspond to two deformation stages (D1) and (D2). The existing Sm-Nd garnet ages from banded granulite gneisses, new U-Pb zircon data from deformed granite intrusions within the granulite gneisses, and the P-T and field structural relations constrain the ages and P-T conditions of the two deformation phases. The early deformation (D1) was associated with a HP-HT metamorphic stage with a minimum age of ca. 354 Ma which was followed by a near-isothermal decompression. A concordant U-Pb zircon age of 318ǃ Ma dates the emplacement of intrusions of deformed granite into the granulite gneisses and constrains deformation phase (D2). This phase was associated with an LP-HT metamorphism dated in the region at ca. 340-330 Ma. The available structural and isotopic data indicate that granulites in the southern Bohemian Massif were exhumed from lower to middle crust during compression. The structural relations and P-T-t data for the studied granulites are consistent with their exhumation by near-vertical extrusion of the softened orogenic root.  相似文献   

16.
为了解富锦隆起的构造演化,研究了佳木斯地块东北部富锦隆起地区一套含砾粗砂岩-石英砂与花岗片麻岩不整合面。LA-ICP-MS锆石U-Pb年代学结果表明,花岗片麻岩的加权平均年龄为495±5 Ma,石英砂岩中的碎屑锆石年龄均480 Ma,其中以480~520 Ma的年龄组为主体,并含有少量年龄800 Ma的锆石。角度不整合及年代学证据充分表明,富锦隆起是佳木斯地块的组成部分。鉴于佳木斯地块缺失奥陶纪—志留纪沉积,推测这套含砾粗砂岩-石英砂岩的形成时代为泥盆纪。结合区域资料,认为佳木斯地块的变质结晶基底形成后,经历了长期的隆升剥蚀,到早泥盆世,其东部整体转为被动大陆边缘。  相似文献   

17.
The Late Vendian (540–550 Ma) U–Pb zircon age of postcollisional granitoids in the Osinovka Massif was obtained for the first time. The Osinovka Massif is located in rocks of the island-arc complex of the Isakovka Terrane, in the northwestern part of the Sayany–Yenisei accretion belt. These events stand for the final stage of the Neoproterozoic history of the Yenisei Ridge, related to the completing accretion of the oceanic crust fragments and the beginning of the Caledonian orogenesis. The petrogeochemical composition and the Sm–Nd isotopic characteristics support the fact that the granitoid melt originated from a highly differentiated continental crust of the southwestern margin of the Siberian Craton. Hence, the granite-bearing Late Riphean island-arc complexes were thrust over the craton margin at a distance considerably exceeding the dimensions of the Osinovka Massif.  相似文献   

18.
New U–Pb detrital zircon ages from (meta-)graywackes of the Blovice accretionary complex, Bohemian Massif, provide an intriguing record of expansion of the northern active margin of Gondwana during late Neoproterozoic and Cambrian. The late Neoproterozoic (meta-)graywackes typically contain a smaller proportion of Archean and Paleoproterozoic zircons and show a 1.6–1.0 Ga age gap and a prominent late Cryogenian to early Ediacaran age peak. The respective zircon age spectra match those described from other correlative Cadomian terranes with a West African provenance. On the other hand, some samples were dominated by Cambrian zircons with concordia ages as young as 499 Ma. The age spectra obtained from these samples mostly reflect input from juvenile volcanic arcs whereas the late Cambrian samples are interpreted as representing relics of forearc basins that overlay the accretionary wedge.The new U–Pb zircon ages suggest that the Cadomian orogeny, at least in the Bohemian Massif, was not restricted to the Neoproterozoic but should be rather viewed as a continuum of multiple accretion, deformation, magmatic and basin development events governed by oceanic subduction until late Cambrian times. Our new U–Pb ages also indicate that the Cadomian margin was largely non-accretionary since its initiation at ~ 650–635 Ma and that most of the material accreted during a short time span at around 527 Ma, closely followed by a major pulse of pluton emplacement. Based on the new detrital zircon ages, we argue for an unsteady, cyclic evolution of the Cadomian active margin which had much in common with modern Andean and Cordilleran continental-margin arc systems. The newly recognized episodic magmatic arc activity is interpreted as linked to increased erosion–deposition–accretion events, perhaps driven by feedbacks among the changing subducted slab angle, overriding plate deformation, surface erosion, and gravitational foundering of arc roots. These Cadomian active-margin processes were terminated by slab break-off and/or slab rollback and by a switch from convergent to divergent plate motions related to opening of the Rheic Ocean at around 490–480 Ma.The proposed tectonic evolution of the Teplá–Barrandian unit is rather similar to that of the Ossa Morena Zone in Iberia but shows significant differences to that of the North Armorican Massif and Saxothuringian unit in Western and Central Europe. This suggests that the Cadomian orogenic zoning was complexly disrupted during early Ordovician opening of the Rheic Ocean and Late Paleozoic Variscan orogeny so that the originally outboard tectonic elements are now in the Variscan orogen's interior and vice versa.  相似文献   

19.
Five Paleogene volcanics sampled from the northern South China Sea were analyzed via LA-ICP-MS zircon U-Pb dating,including basalt and andesite from Borehole SCSV1 and volcanic agglomerate from Borehole SCSV2,respectively.A total of 162 zircon U-Pb dates for them cover an age range from Neoarchean to Eocene,in which the pre-Paleocene data dominate.The Paleogene dates of 62.5±2.2 Ma and 42.1±2.9 Ma are associated with two igneous episodes prior to opening of South China Sea basin.Those pre-Paleocene zircons are inherited zircons mostly with magmatogenic oscillatory zones,and have REE features of crustal zircon.Zircon U-Pb dates of 2518–2481 Ma,1933– 1724 Ma,and 1094–1040 Ma from the SCSV1 volcanics,and 2810–2718 Ma,2458–2421 Ma,and 1850 –993.4 Ma from the SCSV2 volcanics reveal part of Precambrian evolution of the northern South China Sea,well comparable with age records dated from the Cathaysia block.The data of 927.0±6.9 Ma and 781±38 Ma dated from the SCSV2 coincide with amalgamation between Yangtze and Cathaysia blocks and breakup of the Rodinia,respectively.The age records of Caledonian orogeny from the Cathaysia block are widely found from our volcanic samples with concordant mean ages of 432.0±5.8 Ma from the SCSV1 and of 437±15 Ma from the SCSV2.The part of the northern South China Sea resembling the Cathaysia underwent Indosinian and Yanshannian tectonothermal events.Their age signatures from the SCSV1 cover 266.5±3.5 Ma,241.1±6.0 Ma,184.0±4.2 Ma,160.9±4.2 Ma and 102.8±2.6 Ma,and from the SCSV2 are 244±15 Ma,158.1±3.5 Ma,141±13 Ma and 96.3±2.1 Ma.Our pre-Paleogene U-Pb age spectra of zircons from the borehole volcanics indicate that the northern South China Sea underwent an evolution from formation of Precambrian basement,Caledonian orogeny,and Indosinian orogeny to Yanshannian magmatism.This process can be well comparable with the tectonic evolution of South China,largely supporting the areas of the northern South China Sea as part of southward extension of the Cathaysia.  相似文献   

20.
The U-Pb geochronological study (by the classic technique and on an ion microprobe) of syenites from central Karelia has established their Archean age. The age values obtained for individual massifs are 2735 ± 15 Ma for syenites from the Sjargozero Massif and 2745 ± 10 Ma for syenite from the Khizhjarvi Massif. The syenites are demonstrated to have been emplaced nearly synchronously with sanukitoid massifs in central Karelia, whose average age is 2743 ± 3 Ma (Bibikova et al., 2005). The syenites of the Sjargozero Massif and granodiorites of the Ust-Volomsky Massif were determined to have practically identical ages of 2735 and 2738 Ma, respectively, a fact also corroborating the coeval character of the syenites and granodiorites. Some zircon grains from the Sjargozero syenites contain cores with an age of about 2755 Ma, which suggests that the syenites could have been contaminated with the material of the host volcanic rocks of basaltic and andesitic composition that were metamorphosed at 2750–2760 Ma. The results of the isotopic geochronologic research indicate that the different rock groups composing the Archean postorogenic association of sanukitoids, syenites, and granitoids in central Karelia have been generated in a single stage at approximately 2740 Ma, i.e., 60–70 m.y. after the origin of the syntectonic tonalites. The zircons have elevated Th/U ratios, which is consistent with the mantle genesis of the rocks. Significant crustal contamination was identified in the most acid members of the sanukitoid series: syenites and granitoids. Our data obtained for zircons from the sanukitoids and syenites of the Karelian craton in the Baltic Shield are in good agreement with the results obtained on the sanukitoids of the Canadian Shield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号