首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The autonomous (massif-type) anorthosite massifs of the Kalar Complex (2623 ± 23 Ma) intrude high-grade metamorphic rocks of the Kurulta tectonic block at the junction of the Aldan and Dzhugdzhur-Stanovoi fold area. These rocks belong to the most ancient anorthosite-mangerite-charnockite-granite (AMCG) magmatic association, whose origin was constrained to the Mesoproterozoic (1.8–1.1 Ga). The charnockites are typical high-potassium reduced granites like rapakivi, which affiliate with the A type. The Nd and Pb isotopic composition of these rocks suggests their predominantly crustal genesis, whereas the anorthosites were most probably produced by a mantle magma that was significantly contaminated by crustal material at various depth levels. The intrusions of the Kalar Complex were emplaced in a postcollision environment, with the time gap between the collisional event and the emplacement of these massifs no longer than 30 m.y. The southern Siberian Platform includes two definitely distinguished and spatially separated AMCG associations, which have different ages and tectonic settings: (i) the Late Archean (2.62 Ga) postcollision Kalar plutonic complex and (ii) the Early Proterozoic (1.74–1.70 Ga) anorogenic Ulkan-Dzhugdzhur volcano-plutonic complex.  相似文献   

2.
The U-Pb geochronological study (by the classic technique and on an ion microprobe) of syenites from central Karelia has established their Archean age. The age values obtained for individual massifs are 2735 ± 15 Ma for syenites from the Sjargozero Massif and 2745 ± 10 Ma for syenite from the Khizhjarvi Massif. The syenites are demonstrated to have been emplaced nearly synchronously with sanukitoid massifs in central Karelia, whose average age is 2743 ± 3 Ma (Bibikova et al., 2005). The syenites of the Sjargozero Massif and granodiorites of the Ust-Volomsky Massif were determined to have practically identical ages of 2735 and 2738 Ma, respectively, a fact also corroborating the coeval character of the syenites and granodiorites. Some zircon grains from the Sjargozero syenites contain cores with an age of about 2755 Ma, which suggests that the syenites could have been contaminated with the material of the host volcanic rocks of basaltic and andesitic composition that were metamorphosed at 2750–2760 Ma. The results of the isotopic geochronologic research indicate that the different rock groups composing the Archean postorogenic association of sanukitoids, syenites, and granitoids in central Karelia have been generated in a single stage at approximately 2740 Ma, i.e., 60–70 m.y. after the origin of the syntectonic tonalites. The zircons have elevated Th/U ratios, which is consistent with the mantle genesis of the rocks. Significant crustal contamination was identified in the most acid members of the sanukitoid series: syenites and granitoids. Our data obtained for zircons from the sanukitoids and syenites of the Karelian craton in the Baltic Shield are in good agreement with the results obtained on the sanukitoids of the Canadian Shield.  相似文献   

3.
Anorogenic magmatic complexes were formed during protoplatformal evolution of the Keivy structure. This evolution ended with development of aluminous schists, which were derived by deep disintegration and redeposition of the rocks from the lower parts of the sequence and surrounding of the structure. The anorogenic rocks of the region are represented by the following magmatic complexes: gabbro-labradorite-latite-monzonite-granites; ophitic gabbro and gabbrodiabases; quartz syenite-alkaline granites; alkaline and nepheline syenites. The magmatic activity of this period, starting from the emplacement of gabbrolabradorite massifs and ending with alkaline and nepheline syenite bodies, was caused by ascent of mantle asthenolith, which destructed the Earth’s crust basement in this area. The anorogenic magmatism of the Keivy structure lasted for no more than few or few tens of million years. The granitoid subcomplex of the gabbro-labradorite-latite-monzonite-granite complex is dated at 2674 ± 6 Ma, which is comparable with an age of alkaline granites of the Ponoy and Beliye Tundry massifs (2673 ± 6 Ma). The considered complexes are separated in time by intrusion of amphibole-biotite plagiomicrocline granites with an age of 2667 ± 8 Ma. Gabbrolabradorites of the Shchuch’e Ozero and Tsaga massifs have close ages (2663 ± 7 and 2668 ± 10 Ma, respectively, Bayanova, 2004), but were formed earlier than granitoids (Bayanova, 2004). Formation of alkaline syenites of the Sakharijok I Massif, which finalized the Neoarchean anorogenic magmatism of the region, falls in the same interval. During Paleoproterozoic transformations, the rocks of the Keivy structure were sheared and uranium was introduced in the contact zones of the alkaline granite massifs, which caused formation of palingenetic melts and subsequent formation of pegmatites in the outer contact zones of the granite bodies.  相似文献   

4.
The basement of the Zheltav sialic massif (Southern Kazakhstan) is composed of different metamorphic rocks united into the Anrakhai Complex. In the southeastern part of the massif, these rocks form a large antiform with the core represented by amphibole and clinopyroxene gneissic granite varieties. By their chemical composition, dominant amphibole (hastingsite) gneissic granites correspond to subalkaline granites, while their petroand geochemical properties make them close to A-type granites. The U–Pb geochronological study of accessory zircons yielded an age of 1841 ± 6 Ma, which corresponds to the crystallization age of melts parental for protoliths of amphibole gneissic granites of the Zheltav Massif. Thus, the structural–geological and geochronological data make it possible to define the Paleoproterozoic (Staterian) stage of anorogenic magmatism in the Precambrian history of the Zheltav Massif. The combined Sm–Nd isotopic—geochronological data and age estimates obtained for detrital zircons indicate the significant role of the Paleoproterozoic tectono-magmatic stage in the formation of the Precambrian continental crust of sialic massifs in Kazakhstan and northern Tien Shan.  相似文献   

5.
抚顺南部早前寒武纪变质杂岩的地质事件序列   总被引:8,自引:7,他引:1  
白翔  刘树文  阎明  张立飞  王伟  郭荣荣  郭博然 《岩石学报》2014,30(10):2905-2924
抚顺南部早前寒武纪变质杂岩是华北克拉通北缘辽北-吉南早前寒武纪变质地块的一个重要组成部分,主要由浑南群石棚子组角闪岩相变质火山岩、火山碎屑岩及相伴生的沉积岩等表壳岩系和侵位于其中的石英闪长质片麻岩、英云闪长质-奥长花岗质-花岗闪长质(TTG)片麻岩和花岗闪长岩-二长花岗岩-钾长花岗岩岩石组合组成。LA-ICP-MS锆石U-Pb同位素分析结果显示,侵位于表壳岩中的石英闪长质片麻岩样品12LN39-3的岩浆结晶年龄为2571±7Ma,指示存在老于该年龄的表壳岩系。英云闪长质片麻岩样品12LN04-1和奥长花岗质片麻岩样品13LB49-3的岩浆结晶年龄分别为2544±4Ma和2550±10Ma,记录了一期重要的英云闪长质-奥长花岗质片麻岩侵位事件。斜长角闪岩(样品12LN25-2)的岩浆结晶的最小年龄为2530±5Ma,指示另一火山喷发阶段。晚期钾长花岗岩样品12LN01-1和奥长花岗质片麻岩样品12LN27-1分别侵位于2522±4Ma和2518±23Ma,说明它们的岩浆作用发生于同一时期。而采自于晚期未变形侵入体的石英闪长岩样品12LN30-2的岩浆结晶年龄为2496±18Ma,与上述表壳岩和深成侵入体的主要变质作用(2510~2470Ma)同期发生。这些年代学结果表明,抚顺南部地区新太古代大规模的铁镁质火山喷发作用在大于2571±7Ma已经发生,紧接着2571±7Ma发生石英闪长质岩浆侵位,在2550±10Ma~2544±4Ma之间发生英云闪长质-奥长花岗质岩浆侵位。接下来铁镁质火山再度喷发(~2530±5Ma),随后为钾长花岗岩和奥长花岗质岩浆的侵位(2522±4Ma~2518±23Ma)。晚期为角闪岩相变质作用时期(2510~2470Ma),伴随一定规模的石英闪长岩侵位。  相似文献   

6.
Magmatic rocks of the Pikan and Un’ya massifs situated in eastern segment of the Mongolian-Okhotsk foldbelt are studied using isotopic-geochronological (U-Pb zircon dating) and geochemical methods. Two rock complexes different in age are recognized in the Pikan massif: the high-Al gabbro-tonalite association of the Middle Ordovician (468 ± Ma) and granodiorite-granite association of the Late Silurian-Early Devonian (415 ± 7 Ma). The Late Ordovician age (454 ± 5 Ma) is established for leucocratic granites of the Un’ya massif. As is suggested, the Pikan and Un’ya massifs are “allogenic blocks” detached from continental framework of the Mongolian-Okhotsk foldbelt and tectonically emplaced into the foldbelt structure at the last stage of its development.  相似文献   

7.
The Mount Athos Peninsula is situated in the south-easternmost part of the Chalkidiki Peninsula in northern Greece. It belongs to the Serbo-Macedonian Massif (SMM), a large basement massif within the Internal Hellenides. The south-eastern part of the Mount Athos peninsula is built by fine-grained banded biotite gneisses and migmatites forming a domal structure. The southern tip of the peninsula, which also comprises Mount Athos itself, is built by limestone, marble and low-grade metamorphic rocks of the Chortiatis Unit. The northern part and the majority of the western shore of the Mount Athos peninsula are composed of highly deformed rocks belonging to a tectonic mélange termed the Athos-Volvi-Suture Zone (AVZ), which separates two major basement units: the Vertiskos Terrane in the west and the Kerdillion Unit in the east. The rock-types in this mélange range from metasediments, marbles and gneisses to amphibolites, eclogites and peridotites. The gneisses are tectonic slivers of the adjacent basement complexes. The mélange zone and the gneisses were intruded by granites (Ierissos, Ouranoupolis and Gregoriou). The Ouranoupolis intrusion obscures the contact between the mélange and the gneisses. The granites are only slightly deformed and therefore postdate the accretionary event that assembled the units and created the mélange. Pb–Pb- and U–Pb-SHRIMP-dating of igneous zircons of the gneisses and granites of the eastern Athos peninsula in conjunction with geochemical and isotopic analyses are used to put Athos into the context of a regional tectonic model. The ages form three clusters: The basement age is indicated by two samples that yielded Permo-Carboniferous U–Pb-ages of 292.6?±?2.9?Ma and 299.4?±?3.5?Ma. The main magmatic event of the granitoids now forming the gneiss dome is dated by Pb–Pb-ages between 140.0?±?2.6?Ma and 155.7?±?5.1?Ma with a mean of 144.7?±?2.4?Ma. A within-error identical age of 146.6?±?2.3?Ma was obtained by the U–Pb-SHRIMP method. This Late Jurassic age is also known from the Kerdillion Unit and the Rhodope Terrane. The rather undeformed granites are interpreted as piercing plutons. The small granite stocks sampled have Late Cretaceous to Early Tertiary ages of 66.8?±?0.8?Ma and 68.0?±?1.0?Ma (U–Pb-SHRIMP)/62.8?±?3.9?Ma (Pb–Pb). The main accretionary event was according to these data in the Late Jurassic since all younger rocks show little or no deformation. The age distribution together with the geochemical and isotopic signature and the lithology indicates that the eastern part of the Mount Athos peninsula is part of a large-scale gneiss dome also building the Kerdillion Unit of the eastern SMM and the Rhodope Massif. This finding extends the area of this dome significantly to the south and indicates that the tectonic boundary between the SMM and the Rhodope Massif lies within the AVZ.  相似文献   

8.
Pan-African basement rocks and a Paleozoic cover series, which were intruded by the protoliths of leucocratic orthogneisses, have been recognized in the Menderes Massif, located in the western part of the Alpine orogenic belt of Turkey. This geochemical and geochronological study focuses on the evolution of the Menderes Massif at the end of Paleozoic time. Geochemical data suggest that the crustally derived leucocratic orthogneisses have chemical composition typical of calc-alkaline and S-type granite. Zircon grains which are euhedral with typical igneous morphologies were dated by the 207Pb/206Pb evaporation method. Single-zircon dating of three samples yielded mean 207Pb/206Pb ages of 246LJ, 241LJ and 235Lj Ma. These ages are interpreted as the time of protolith emplacement in Triassic. Geological and geochronological data suggest that leucocratic granites were emplaced in a period following a metamorphic event related to the closure of the Paleo-Tethys. The leucocratic granites were metamorphosed during the Alpine orogenesis and transformed into orthogneisses. The similar Triassic magmatic event at 233DŽ Ma was also occurred, using single-zircon evaporation method, from granitic gneisses which rest upon the migmatites with tectonic contacts in Naxos, Cycladic complex. This indicates that the Menderes Massif and Cycladic complex had a common pre-Early Triassic magmatic evolution.  相似文献   

9.
This paper presents data on the geological position, geochemistry, age, and isotopic characteristics of the granitoids of the southern part of the Voznesenka terrane, Southern Primorye (Muraviev–Amursky Peninsula and its vicinities). All of the studied granitoids were formed in three stages: the Ordovician, Silurian, and Permian. The Silurian and Permian ages of the granitoid intrusions have been previously determined (Ostrovorussky Massif, 432–422 Ma, and 250 ± 4 Ma, early and late associations, respectively; Sedanka massif, 261 ± 3 Ma). The granites of the Artem and Nadezhdinsky massifs define an U–Pb zircon age of 481 ± 6 and 452 ± 4 Ma, respectively. The geochemical and isotope data show mainly the crustal nature of the granitoids. Their formation was related to melting of relatively immature rocks of the continental crust (mafic–intermediate volcanic rocks). The Nd isotope composition of the granitods (TNd(DM–2) = 1.3 Ga) indicates the absence of the mature ancient crust at the basement of the southern Voznesenka terrane. The maximum contribution of mantle sources to the granite formation is recorded in the Permian associations. A comparison of the peaks of intrusive magmatism in the southern part of the Voznesenka terrane and adjacent territories suggests that the formation of the granitoids of the Muraviev–Amursky Peninsula and its vicinities was caused by the interaction of continental blocks with two oceanic basins: the Paleoasian (and its fragments) and Paleopacific ones.  相似文献   

10.
The Vetas-California Mining District (VCMD), located in the central part of the Santander Massif (Colombian Eastern Cordillera), based on U–Pb dating of zircons, records the following principal tectono-magmatic events: (1) the Grenville Orogenic event and high grade metamorphism and migmatitization between ∼1240 and 957 Ma; (2) early Ordovician calc–alkalic magmatism, which was synchronous with the Caparonensis–Famatinian Orogeny (∼477 Ma); (3) middle to late Ordovician post-collisional calc–alkalic magmatism (∼466–436 Ma); (4) late Triassic to early Jurassic magmatism between ∼204 and 196 Ma, characterized by both S- and I-type calc–alkalic intrusions and; (5) a late Miocene shallowly emplaced intermediate calc–alkaline intrusions (10.9 ± 0.2 and 8.4 ± 0.2 Ma). The presence of even younger igneous rocks is possible, given the widespread magmatic–hydrothermal alteration affecting all rock units in the area.The igneous rocks from the late Triassic–early Jurassic magmatic episodes are the volumetrically most important igneous rocks in the study area and in the Colombian Eastern Cordillera. They can be divided into three groups based on their field relationships, whole rock geochemistry and geochronology. These are early leucogranites herein termed Alaskites-I (204–199 Ma), Intermediate rocks (199–198 Ma), and late leucogranites, herein referred to as Alaskites-II (198–196 Ma). This Mesozoic magmatism is reflecting subtle changes in the crustal stress in a setting above an oblique subduction of the Panthalassa plate beneath Pangea.The lower Cretaceous siliciclastic Tambor Formation has detrital zircons of the same age populations as the metamorphic and igneous rocks present in the study area, suggesting that the provenance is related to the erosion of these local rocks during the late Jurassic or early Cretaceous, implying a local supply of sediments to the local depositional basins.  相似文献   

11.
小兴安岭东部早古生代花岗岩的发现及其构造意义   总被引:23,自引:4,他引:19  
通过全岩-单矿物的Rb-Sr法和锆石激光剥蚀等离子体U-Pb法定年研究,确定小兴安岭东部地区存在508~471Ma的早古生代花岗岩.根据岩石学和年代学的特征.进一步将小兴安岭东部地区的早古生代花岗岩划分为与高级变质岩伴生的片麻状花岗冈长岩-二长花岗岩(508Ma+15Ma)、块状花岗闪长岩-二长花岗岩(499Ma+1Ma)和碱长-碱性花岗岩(471 Ma±3Ma)3种岩石组合类型.上述3类花岗岩组合的依次出现反映了同碰撞-碰撞后伸展的构造演化特点,表明小兴安岭东部早古生代存在碰撞造山事件.  相似文献   

12.
13.
The Sergipano Belt is the outcome of collision between the Pernambuco–Alagoas Massif and the São Francisco Craton during Neoproterozoic assembly of West Gondwana. Field relationships and U–Pb geochronology of granites intruded in garnet micaschists of the Macururé Domain are used to constrain the main collisional event (D2) in the belt. The granites are divided into two groups, the pre-collisional granites (pre- to early-D2) and the syn-collisional granites (syn- to tardi-D2), the latter were emplaced as sheets along the S2 axial plane foliation or they were collected at the hinge zones of F2 folds. A U–Pb SHRIMP zircon age of 628 ± 12 Ma was obtained for the pre-collisional Camará tonalite. Two U–Pb TIMS titanite ages were obtained for the syn-collisional granites, 584 ± 10 Ma for the Angico granite and 571 ± 9 Ma for the Pedra Furada granite, and these ages are close to the garnet-whole rock Sm–Nd isochron of 570 Ma found for the peak of metamorphism in the Sergipano Belt. The ages of the Camará tonalite (628 Ma) and the Pedra Furada granite (571 Ma) mark respectively the maximum age for beginning of the D2 event and minimum age for the end in the Macururé Domain. Using these ages, the main Neoproterozoic D2 collisional event has been in operation in the Sergipano Belt for at least 57 million years. Correlation with coeval granitoids farther north in the Borborema Province indicate that while in the Sergipano Belt the syn-D2 granites (ca. 590–570 Ma) were emplaced under compression, in the Borborema Province they emplaced under extensional conditions related to regional strike-slip shear zones. These contrasting emplacement settings for contemporaneous Neoproterozoic granitoids are explained by a combination of continent–continent collision and extrusion tectonics.  相似文献   

14.
Data on the composition, age, and source of material of Aptian rocks composing a bimodal volcanic complex and related granitoids in the northern margin of the Amur microcontinent indicate that the granodiorites of the Talalinskii Massif and subalkaline granites of the Dzhiktandiunskii Massif crystallized at 117 ± 2 and 119 ± 2 Ma, respectively (40Ar/39Ar method), and their crystallization ages coincide with the age of volcanic rocks of the Gal’kinskii bimodal complex. These data make it possible to combine the rocks within a single volcano-plutonic association. Geochemical and isotopic-geochemical features of trachybasaltic andesites of the Gal’kinskii bimodal complex suggest that the parental melts were derived from such sources as PREMA (or DM) and an enriched source of the EMII type at a subordinate contribution of a crustal source. The parental melts of rhyolites of the Gal’kinskii Complex and granitoids of the Talalinskii and Dzhiktandinskii massifs were derived from crustal material with minor amounts of juvenile material. The bimodal volcanic association and related granitoids dated at 119–115 Ma were most likely formed in geodynamic environments implying the ascent of the asthenospheric mantle.  相似文献   

15.
In contrast to the granitoids of the ultrametamorphic basement of northern Sardinia, Hercynian intrusive granites exist in southern Sardinia in low-grade metamorphic surroundings. In this area, endogenous cassiterite-bearing vein deposits and molybdenumtungsten mineralizations occur adjacent to the granite massifs of the Quirra (3), Arburese (4) and Monte Linas (5). In comparison, the intrusives of the Sarrabus (1) and San Vito (2) seem to be barren.Petrochemically these granitoids represent a spatial and temporal suite of calc-alkaline magmas with biotite-muscovite granite as a latest product of the magmatic evolution. The formation of the massifs was governed mainly by in situ differentiation. Only locally is there evidence of emanative differentiation processes which also caused post-magmatic metasomatic alteration of the granite and the formation of the hypothermal mineralization.According to their trace element geochemistry there exist normal and anomalous leucogranites. Thus, the Quirra (3), Monte Linas (5) and Arburese (4) massifs exhibit the highest grade of geochemical specialization. However, compared with highly tin-bearing granites in other regions, these massifs show only a slight specialization. Structural arguments suggest that the Arburese Massif (4) could have lost its higher specialized cupola and some possible deposits by erosion. In addition, only the drainage system of the Monte Linas Massif (5) exhibits anomalous tin concentrations in the alluvial sediments of recent channels.  相似文献   

16.
东昆仑祁漫塔格花岗片麻岩记录的岩浆和变质事件   总被引:14,自引:6,他引:8  
东昆仑青海祁漫塔格尕林格一带原定为金水口群的眼球状花岗片麻岩,实际为新元古代早期形成的花岗岩.采用SHRIMP和LA-MC-ICP-MS两种方法对其中的锆石进行了测试,获得的年龄分别为938±5Ma和938±2Ma,代表了花岗岩的形成时代.花岗岩地球化学特征显示为S-型,属于钙碱性系列的弱过铝-过铝质花岗岩,εNd(0)为-9.4~-11.7,εNd(t=938Ma)为-0.6~-3.2,显示低的负值,tDM为1.6 ~2.1Ga,推测其源岩与白沙河岩组类似.东昆仑东段、柴北缘以及阿尔金均有1000~900Ma的花岗岩形成,表明这次岩浆活动比较广泛,可能与我国西部不同陆块间的汇聚有关,是我国西部新元古代克拉通基底形成的反映,同时也响应于全球Rodinia超大陆的形成.花岗片麻岩中1粒锆石边部获得了416±11Ma的年龄,与区域上志留-泥盆纪花岗岩形成时代一致,代表了新元古代花岗岩发生变质作用的时代,其中白云母40Ar/39Ar的坪年龄和等时线年龄为406±2Ma,代表了变质花岗岩的冷却年龄,这些年龄表明新元古代花岗岩卷入了古生代中期与祁漫塔格洋/海盆关闭有关的造山事件.  相似文献   

17.
赵硕  许文良  唐杰  李宇  郭鹏 《地球科学》2016,41(11):1803-1829
对额尔古纳地块新元古代花岗岩进行了锆石LA-ICP-MS U-Pb年代学、岩石地球化学和锆石Hf同位素研究,以便对其新元古代岩浆作用历史与微陆块构造属性给予制约.所测花岗质岩石中锆石的CL图像特征和Th/U比值(0.17~1.46) 显示其为岩浆成因.测年结果并结合前人定年结果,可以判定额尔古纳地块上至少存在~929 Ma、~887 Ma、~850 Ma、~819 Ma、~792 Ma、~764 Ma和~738 Ma岩浆事件.岩石地球化学特征显示,~887 Ma花岗岩为一套后碰撞花岗岩类;而850~737 Ma花岗质岩石整体上属于A-型花岗岩,也有部分岩体(漠河、阿木尔、碧水和室韦岩体)显示I-型花岗岩特征.锆石Hf同位素特征反映这些花岗岩的源区既有中-新元古代(TDM2=884~1 563 Ma)新增生地壳物质的部分熔融,同时伴有少量古老地壳物质的混染,也有残留的古老中基性下地壳物质的部分熔融.综合研究区新元古代侵入岩的地球化学特征,同时对比新元古代全球构造热事件,认为额尔古纳地块上新元古代岩浆活动记录了Rodinia超大陆形成和演化过程中的地壳响应:927~880 Ma的岩浆作用应是Rodinia超大陆汇聚造山的产物;而850~737 Ma的岩浆作用应是对Rodinia超大陆快速裂解的记录.通过岩浆事件对比发现,额尔古纳地块与邻近的西伯利亚南缘微陆块(如中蒙古地块和图瓦地块)具有亲缘性,而与塔里木板块和华南板块至少在新元古代岩浆活动上具有一定的相似性,而明显区别于华北板块和西伯利亚板块.   相似文献   

18.
ABSTRACT Key insights into the timing of tectonometamorphic events in a complex high-grade metamorphic terrane can be obtained by combining results from SHRIMP II ion microprobe studies of individual monazite grains with SHRIMP II studies and scanning electron microscope (SEM)-based cathodoluminescence (CL) imaging of zircons. Results from the Reynolds Range region, Arunta Block, Northern Territory, Australia, show that the final episode of regional metamorphism to high-T and low-P granulite facies conditions is most likely to have occurred at c. 1580 Ma, not at 1785–1775 Ma, as previously accepted. The previous interpretation was based on zircon studies of structurally controlled granitoids, without SEM-based CL imaging. Monazites in a 1806± 6 Ma megacrystic granitoid preserve rare cores that are interpreted to be inherited magmatic monazite, but record no evidence of another high-T event prior to 1580 Ma. Most monazites from the region record only a single high-T metamorphic event at c. 1580 Ma. Zircon inheritance is very common. Zircons or narrow overgrowths of zircon dated at c. 1580 Ma have only been found in two types of rocks: rocks produced by metasomatic fluid flow at high temperatures (≤750°C), and rocks that have undergone local partial melting. Previous explanations that attributed these 1580 Ma zircon ages to widespread hydrothermal fluid fluxing associated with post-tectonic pegmatite emplacement at amphibolite facies conditions are not supported by the available evidence including oxygen isotope data. The observed high regional metamorphic temperatures require the involvement of advective heating. However, contrary to a previous tectonic model for the formation of this and other low-P, high-T metamorphic belts, the granites that are exposed at the present structural level do not appear to be the source of that heat, unless some of the granites were emplaced at c. 1580 Ma.  相似文献   

19.
In this paper, U‐Pb zircon, monazite and rutile data for crystalline rocks deposited as clasts in the Upper Viséan conglomerates at the eastern margin of the Bohemian Massif are reported. U‐Pb data of spherical zircon from three different granulite clasts yielded a mean age of 339.0 ± 0.7 Ma (±2σ), while oval and spherical grains of another granulite pebble define a slightly younger date of 337.1 ± 1.1 Ma. These ages are interpreted as dating granulite facies metamorphism. Thermochronology and the derived pressure–temperature (P–T) path of the granulite pebbles reflect two‐stage exhumation of the granulites. Near‐to‐isothermal decompression from at least 44 km to mid‐crustal depths of around 22 km was followed by a near‐isobaric cooling stage based on reaction textures and geothermobarometry. Minimum average exhumation rate corresponds to 2.8–4.3 mm year?1. The extensive medium‐pressure/high‐temperature overprint on granulite assemblages is dated by U‐Pb in monazite at c. 333 Ma. This thermal event probably has a close link to generation and emplacement of voluminous Moldanubian granites, including the cordierite granite present in clasts. This granite was emplaced at mid‐crustal levels at 331 ± 3 Ma (U‐Pb monazite), whereas the U‐Pb zircon ages record only a previous magmatic event at c. 378 Ma. Eclogites and garnet peridotites normally associated with high‐pressure granulites are absent in the clasts but exotic subvolcanic and volcanic members of the ultrapotassic igneous rock series (durbachites) of the Bohemian Massif have been found in the clasts. It is therefore assumed that the clasts deposited in the Upper Viséan conglomerates sampled a structurally higher tectonic unit than the one that corresponds to the present denudation level of the Moldanubicum of the Bohemian Massif. The strong medium‐temperature overprint on granulites dated at c. 333 Ma is attributed to the relatively small size of the entirely eroded bodies compared with the presently exposed granulites.  相似文献   

20.
In France, the Devonian–Carboniferous Variscan orogeny developed at the expense of continental crust belonging to the northern margin of Gondwana. A Visean–Serpukhovian crustal melting has been recently documented in several massifs. However, in the Montagne Noire of the Variscan French Massif Central, which is the largest area involved in this partial melting episode, the age of migmatization was not clearly settled. Eleven U–Th–Pbtot. ages on monazite and three U–Pb ages on associated zircon are reported from migmatites (La Salvetat, Ourtigas), anatectic granitoids (Laouzas, Montalet) and post-migmatitic granites (Anglès, Vialais, Soulié) from the Montagne Noire Axial Zone are presented here for the first time. Migmatization and emplacement of anatectic granitoids took place around 333–326 Ma (Visean) and late granitoids emplaced around 325–318 Ma (Serpukhovian). Inherited zircons and monazite date the orthogneiss source rock of the Late Visean melts between 560 Ma and 480 Ma. In migmatites and anatectic granites, inherited crystals dominate the zircon populations. The migmatitization is the middle crust expression of a pervasive Visean crustal melting event also represented by the “Tufs anthracifères” volcanism in the northern Massif Central. This crustal melting is widespread in the French Variscan belt, though it is restricted to the upper plate of the collision belt. A mantle input appears as a likely mechanism to release the heat necessary to trigger the melting of the Variscan middle crust at a continental scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号