首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
鲁东地区前寒武纪侵入岩其侵入活动集中于新太古代和新元古代,均遭受不同程度的区域变质和韧性剪切带的改造,形成一套花岗质片麻岩类。新太古代早期TTG质花岗岩分布于胶北隆起区莱州一栖霞一带,经受了区域变质作用,形成一套灰色片麻岩,锆石内核SHRIMPU—Pb年龄2726—2707Ma基本代表岩浆结晶年龄,锆石变质边为2500Ma;古元古代侵入岩——莱州基性一超基性岩组合形成于1900~1850Ma左右,锆石SHRIMPU—Pb年龄(1852±9)Ma,(1868±11)Ma;新元古代侵入岩主要为花岗闪长质-二长花岗质片麻岩,出露于胶南-威海造山带,锆石U~Pb定年结果集中为892~605Ma,其中荣成超单元锆石SHRIMPU—Pb年龄720~780Ma。中生代侵入岩以花岗岩类为主,集中出露于半岛北部和东南沿海一带。燕山早期侵入岩文登超单元、垛崮山超单元、玲珑超单元锆石SHRIMPU—Pb同位素年龄值集中在167~150Ma;燕山晚期侵入岩大店超单元锆石SHRIMPU~Pb年龄120±4Ma,崂山超单元锆石SHRIMPU~Pb同位素年龄值为(120±2)~(114±2)Ma。  相似文献   

2.
采用SHRIMP方法获得绿梁山花岗岩的锆石U-Pb年龄为430±8Ma(12个测点平均),所有测点的Th/U比值均大于0.1,该年龄代表花岗岩的形成年龄.同时获得部分具有核-幔结构的继承锆石,其核部年龄为475~460Ma,Th/U比值为0.01~0.02,为典型的变质锆石,与围岩片麻岩中的锆石类似,反映了花岗岩与片麻岩之间的成因联系.绿梁山花岗岩属于钙碱性系列,SiO2含量为65.63%~74.78%,变化较大,属于过铝质岩石,推测其源岩以沉积岩为主.围岩片麻岩以变质沉积岩为主,可能为花岗岩的主要源岩.花岗岩的(87Sr/86Sr)t为0.71075(t=430Ma),εNd(430Ma)为-5.5~4.6,与围岩片麻岩的Sr-Nd同位素组成存在较大差别,可能反映了花岗岩形成于高温缺水的环境或者成岩时有地幔物质/年轻地壳物质的加入.花岗岩形成时代与片麻岩变质时代的一致性(430Ma),反映了它们为同一区域构造热事件的产物,是俯冲陆壳发生热松弛的记录.  相似文献   

3.
孟繁聪  贾丽辉  任玉峰  刘强  段雪鹏 《岩石学报》2017,33(12):3691-3709
本文采用LA-ICP-MS方法对东昆仑东端温泉地区含榴辉岩的副片麻岩和花岗片麻岩进行了锆石U-Pb年代学研究。副片麻岩中锆石的年龄范围为2400~430Ma,峰值范围为2000~1200Ma,其中检测出少量新元古代(1.0~0.9Ga)和早古生代(430Ma)的变质锆石,进一步限定了原岩的最早沉积时代为中元古代末期-新元古代早期(Pt_(2-3)),指示该沉积岩经历了新元古代早期和志留纪的变质作用。花岗片麻岩的原岩时代为900Ma,1件样品的锆石ε_(Hf)(t)值为-7.0~+5.5,多数为负值,单阶段亏损地幔模式年龄为1.83~1.25Ga,指示它们主要是古老地壳(可能为金水口岩群变沉积岩)熔融的产物。新元古代早期的岩浆-变质事件与全球Rodinia超大陆的形成有关。虽然副片麻岩锆石只给出少量早古生代志留纪变质的信息,考虑到片麻岩中的榴辉岩形成于早古生代(450~430Ma)及邻区柴北缘高压-超高压变质带的演化历史,推测该地区片麻岩也经历了早古生代榴辉岩相变质作用,片麻岩与榴辉岩为原地关系。根据柴达木盆地南北两侧相似的早期构造演化可以推测柴达木盆地基底演化与其类似,至少经历了新元古代和早古生代两期构造活动,并非是元古代以来的稳定克拉通。  相似文献   

4.
采用LA-ICP-MS方法对青藏高原祁漫塔格山西部枯草沟地区花岗岩和闪长岩进行锆石U-Pb测年,获得405.7±1.3Ma、420.8±1.6Ma、423.9±1.5Ma和421.0±1.7Ma四个年龄,属于晚志留世—早泥盆世。这些锆石具有高Th/U值,是典型的岩浆锆石,其结晶年龄代表岩石形成年龄。综合统计目前已有锆石U-Pb年龄数据表明,该地区主要存在2期岩浆活动:350~500Ma和200~350Ma,分别对应早古生代和晚古生代—早中生代。祁漫塔格早古生代岩浆活动年龄数量占统计的60%以上,为主要岩浆活动期,主要分布于祁漫塔格北部和西部。东昆仑晚古生代—早中生代的岩浆约占古生代以来岩浆总量的77%以上,为东昆仑主要岩浆活动期。祁漫塔格晚古生代—早中生代岩浆活动主要分布于其东南部,靠近东昆仑山,暗示其可能受东昆仑主要岩浆活动的影响。以上结果暗示,早古生代期间祁漫塔格洋的活动性强于东昆仑洋的活动性,祁漫塔格和东昆仑可能自晚古生代以来才逐步形成统一的造山带。  相似文献   

5.
杨红  刘福来  刘平华  王舫 《岩石学报》2013,29(6):2161-2170
大红山群是扬子地块西南缘出露的古元古代结晶基底,主要经历了绿片岩相-低角闪岩相变质作用.本研究对大红山群老厂河组变质中酸性岩和变质沉积岩——石榴白云母-长石石英片岩中的白云母进行了40Ar-39Ar测年,得到三个样品的坪年龄和40Ar/39Ar等时线年龄结果较统一,坪年龄代表的变质年龄分别为837.7±4.2Ma、839.6±4.2Ma和844.2±4.2Ma.变质沉积岩和变质中酸性岩的变质时代类似,均介于837~845Ma.大红山群变质基性岩中变质锆石的U-Pb定年年龄为849±12Ma(杨红等,2012),40Ar-39Ar测年数据与锆石定年数据相结合,说明大红山群古元古代结晶基底中的火山岩和沉积岩均在新元古代经历了同期变质作用,其主期低角闪岩相变质作用发生于新元古代837~850Ma.结合前人发表的扬子西缘~750Ma的变质年龄,扬子西缘从北向南的区域变质作用时限可扩展到750 ~850Ma.此外,扬子西缘存在750~850Ma的岩浆事件,本文研究结果说明,扬子地块西缘在新元古代不仅发生了大规模岩浆作用,也发生了750~850Ma的区域变质作用,扬子西缘存在新元古代的岩浆-变质事件.岩浆事件与变质事件之间可能存在相关性,即新元古代岩浆作用引起了扬子西缘的区域动力热流变质作用.  相似文献   

6.
大别造山带南部宿松杂岩中花岗片麻岩和斜长角闪岩的U-Pb锆石年龄和Ar/Ar角闪石年龄测定结果表明,二长花岗片麻岩的形成年龄为2018±73Ma和2010±38Ma,白云斜长片麻岩的形成年龄为741±7Ma,宿松杂岩经过228Ma左右的变质作用。这些结果表明大别山南缘存在较大规模的古元古代花岗质结晶基底,广泛分布在宿松杂岩中的花岗片麻岩和由花岗片麻岩强烈剪切变形而成的白云斜长片麻岩、白云钠长石英片岩形成于新元古代,不整合覆于二长花岗片麻岩之上并被新元古代花岗片麻岩侵入的变质沉积岩形成于中元古代晚期-新元古代早期。由此得出,宿松杂岩主要由古元古代二长花岗片麻岩、中新元古代变质沉积岩和新元古代变质花岗岩和变质基性岩组成,因而也是扬子板块的俯冲陆壳基底的一部分。  相似文献   

7.
祁漫塔格地区晋宁期变质侵入岩(体)的发现及其地质意义   总被引:9,自引:1,他引:9  
东昆仑西段祁漫塔格地区首次发现的晋宁期变质侵入岩(体),侵入于古元古代金水口岩群中,铀-铅同位素年龄值为831±51Ma,时代为新元古代,岩浆成因属地壳物质重熔的MPG型,是同碰撞构造环境下形成。该套变质侵入岩的发现,对于东昆仑西段前震旦纪基底的深入研究及更进一步恢复和确定祁漫塔格构造岩浆带发展演化史具有重要意义。  相似文献   

8.
祁漫塔格韧性剪切带是祁漫塔格蛇绿混杂岩带与北昆仑岩浆弧的区域主构造边界,对剪切带内花岗质糜棱岩中绢云母40Ar-39 Ar法年龄测定,获得了(271.1±2.2) Ma的坪年龄,相应的36Ar/40 Ar-39 Ar/40 Ar反等时线年龄为(270.5±3.7)Ma (MSWD=2.7),39Ar/36 Ar-40 Ar/35 Ar正等时线年龄为(270.9±4.7) Ma (MSWD=0.22);坪年龄(271.1±2.2) Ma接近于绢云母矿物的形成年龄,也代表了祁漫塔格韧性剪切带的形成年龄.通过韧性剪切变形带内运动学特征的研究,表明剪切带具有右旋斜冲的性质.祁漫塔格韧性剪切带的形成与古特提斯洋的俯冲作用有关,是古特提斯洋向北俯冲造山过程的远程效应.  相似文献   

9.
刘丙祥  聂虎  齐玥  杨力  祝禧艳  陈福坤 《岩石学报》2013,29(7):2437-2455
北秦岭地体中新元古代花岗岩类岩石是秦岭造山带的重要组成部分,记录了造山带基底前寒武纪地壳形成和演化历史。本文报道方庄和德河花岗岩岩体的锆石U-Pb年龄和O同位素组成、全岩元素和Sr-Nd同位素地球化学组成,探讨其岩石成因和地壳演化意义。结果表明,方庄花岗质糜棱岩的锆石结晶年龄为933.4±9.2Ma,δ18O值8.3‰~11.9‰,初始87Sr/86Sr比值0.72455,初始εNd值-6.0,Nd模式年龄2.09Ga(tDM2);德河黑云斜长片麻岩的锆石结晶年龄为948.1±8.9Ma,初始87Sr/86Sr比值变化较大,初始εNd值-5.0,Nd模式年龄2.02Ga。结合已报道的新元古代花岗岩类岩体的年龄和地球化学数据,北秦岭地体新元古代岩浆作用可以划分为980~870Ma挤压碰撞作用和~844Ma伸展裂解作用两大阶段,包括~940Ma强烈变形S型同碰撞花岗岩、~880Ma弱-无变形后碰撞I型花岗岩和~844Ma板内A型碱性岩三类花岗岩体。地球化学组成显示,这些花岗岩类岩石可能源自不同时期形成的秦岭群基底杂岩的部分熔融,但在后碰撞阶段幔源物质或年轻地壳物质的加入明显增加。北秦岭地体中新元古代岩浆活动与Rodinia超大陆演化基本同时代,可能记录超大陆形成过程中的地壳响应。在新元古代之前,北秦岭地体或许具有不同于华北陆块和华南陆块的演化历史。  相似文献   

10.
吴祥珂  孟繁聪  许虹  崔美慧 《岩石学报》2011,27(11):3380-3394
青海东昆仑祁漫塔格玛兴大坂岩体岩石类型为二长花岗岩,主要矿物组合为斜长石(30%~35%)+钾长石(25%~33%)+石英(23%~25%)+黑云母(3%~5%),全岩地球化学总体显示SiO2为68.61%~69.37%,K2O为3.95%~4.08%,P2O5为0.11%~0.12%,FeOT/MgO为4.02~4.21,A/CNK(0.96~0.99)<1,为高钾钙碱性系列准铝质花岗岩,具有Ⅰ型花岗岩的特征.其稀土元素配分图和蛛网图显示具有大陆弧花岗岩特点,富集Rb、Th等大离子亲石元素,而相对亏损Sr、P、Ti、Nb和Ta等元素;玛兴大坂二长花岗岩的143Nd/144 Nd比值为0.512326~0.512340、εNd(t)=-2.5~-3.2,指示该花岗岩具有壳幔混合Ⅰ型花岗岩的特征;锆石LA-MC-ICP-MS U-Pb年龄数据显示玛兴大坂二长花岗岩体的侵位时代为218±2Ma;锆石176Hf/177 Hf比值较低(0.28251~0.282623),εHf(t)值为-4.43~-0.62,可能为幔源物质(大的正εHf(t)值)与古老地壳物质(大的负εHf(t)值)混合后的结果.Nd同住素tDM2(1.20~1.25Ga)与Hf同位素tDM2(1.08~1.28Ga)基本一致,推测中元古代末期祁漫塔格地区存在壳幔分异作用,而玛兴大坂二长花岗岩的部分源岩为中元古代以前的物质.认为玛兴大坂二长花岗岩与祁漫塔格晚三叠世火山岩形成时代相近,响应于三叠纪末古特提斯洋的关闭.  相似文献   

11.
东昆仑祁漫塔格地区白干湖钨锡矿田是认识中国西北地区钨锡矿床成矿规律的重要窗口。作者对采自含矿石英脉的2个白云母样品进行40Ar/39Ar定年,获得其坪年龄分别为(422.7±4.5)Ma和(421.8±2.7)Ma。2个样品的等时线年龄与反等时线年龄也在误差范围内一致,分别为(424±15)Ma和(418±24)Ma,表明分析数据可信。获得的白云母40Ar/39Ar坪年龄指示成矿作用发生在晚志留世,与原特提斯洋闭合事件密切相关,闭合后的陆陆碰撞使富含成矿物质的变质沉积物重熔而形成花岗岩浆;花岗岩浆侵入并析出含矿热液,导致钨锡成矿。  相似文献   

12.
本文采用LA-ICP-MS技术,对胶北地体TTG片麻岩和花岗质片麻岩中锆石进行系统原位U-Pb定年和稀土、微量元素的分析,发现研究区早前寒武变质结晶基底存在多期岩浆-变质热事件。4件TTG片麻岩和2件花岗质片麻岩锆石样品记录了2909±13Ma、2738±23Ma、2544±15~2564±12Ma和2095±12Ma 4组岩浆事件年龄,以及2504±16~2513±32Ma和1863±41Ma 2组变质事件年龄。结合以往TTG片麻岩和花岗质片麻岩的地球化学及Nd同位素研究发现,约2738Ma的TTG岩浆事件可能代表胶北地体地壳最主要的生长事件,而2544~2564Ma的岩浆事件则可能代表古老地壳重熔的最强烈岩浆事件,约2095Ma岩浆事件则反映了胶-辽-吉构造带内部在该时期与地壳拉张作用有关的岩浆活动。2504~2513Ma是研究区以及华北克拉通早前寒武基底最主要的一期变质热事件,可能与地幔柱(热点)岩浆的底侵作用有关,而TTG片麻岩记录的约1863Ma的变质年龄与研究区基性和泥质高压麻粒岩相岩石记录的麻粒岩相变质时代一致,暗示TTG片麻岩可能也经历了古元古代高压麻粒岩相变质作用,上述研究进一步表明胶北地体在古元古代的确存在一期陆-陆碰撞的重要造山事件。该项研究成果对于进一步深入探讨胶北乃至华北克拉通早前寒武纪变质基底的形成演化、岩浆-变质热事件序列及其构造背景具有重要的科学意义。  相似文献   

13.
通过对采集到的肯德可克上泥盆统契盖苏群火山岩样品进行锆石LA-ICP-MS U-Pb测年和~(40)Ar/~(39)Ar定年,结合区域地质特征,本文对祁漫塔格构造带的多旋回构造演化进行了总结分析。研究表明,契盖苏群流纹岩形成于晚泥盆世(384.9±6.0 Ma),而契盖苏群的形成时间不晚于晚泥盆世。767±15 Ma、915±18 Ma两个继承性锆石年龄证明研究区响应了Rodinia超大陆聚合—裂解。地层、沉积、变质及变形等证据不支持祁漫塔格地区存在晚古生代洋盆或裂陷槽,晚古生代祁漫塔格地区是发育在柴达木西南缘的陆表海。样品~(40)Ar/~(39)Ar有效坪年龄为220.3±1.7 Ma,代表研究区最后一次埋深达约8000 m。晚三叠世火山活动之后,研究区发生大规模抬升,随后叠加了印支晚期、燕山、喜山等多期构造事件导致中新生代缺少大规模沉降。陆内造山持续到32 Ma左右,随后由于库木库里盆地的伸展,祁漫塔格造山带与东昆仑造山带分离。  相似文献   

14.
东昆仑南地体最古老的变质基底为苦海岩群,出露于苦海-温泉一带。采用LA-ICP-MS方法对苦海岩群副片麻岩中的锆石进行测试,得出苦海岩群副片麻岩的最大沉积时代为新元古代早期且在志留纪(423 Ma)遭受变质。通过与东昆仑北地体变质基底金水口岩群的锆石年龄谱对比,苦海岩群和金水口岩群的锆石年龄谱中都存在1 550~1 650 Ma、1 900~2 100 Ma、2 350~2 550 Ma的年龄段峰值,两岩群可能存在相似的物源区;年龄谱中最年轻的岩浆锆石峰值年龄分别为750~800 Ma和900~1 250 Ma,两岩群的最大沉积时代相近,分别为新元古代早期(Pt_3)、中元古代晚期-新元古代早期(Pt_(2-3));年龄谱中都存在400~450 Ma的变质年龄峰值,两岩群在志留纪均发生角闪岩相变质,说明它们在前志留纪有着相似的演化历史。即使昆南地体和昆北地体之间在早古生代期间存在洋盆,该洋盆也不会太大。  相似文献   

15.
GEOCHRONOLOGY OF ~(Ar)/~(39)Ar DATING IN THE BASEMENT ROCKS IN EASTERN KUNLUN MOUNTAINS AND ITS TECTONIC IMPLICATIONS  相似文献   

16.
The widely distributed high-grade gneisses in the East Kunlun Orogenic Belt (EKOB) are keys to understand the Precambrian tectonic evolution of the Northern Tibetan Plateau. In this study, new LA-ICP-MS zircon U–Pb ages from paragneiss and schist of the Proterozoic Jinshuikou Group and quartzite of the Proterozoic Binggou Group are reported in an attempt to evaluate the Neoproterozoic and Paleozoic tectono-thermal events of the EKOB. These geochronologic data can be classified into 4 groups: Group 1 ages ranging from 2243 Ma to 3701 Ma are represented by inherited zircons from protolith and confirm the existence of Eoarchean to Paleoproterozoic continental nucleus in the source region of the Jinshuikou Group. Group 2 ranging from 928 Ma to 1849 Ma yields lower intercept ages of 0.9–1.0 Ga which represent the Neoproterozoic tectono-thermal event. This event, similar to that of the northern margin of Qaidam, might be a response to the assembly of Rodinia. Group 3 ranges from Neoproterozoic to early Paleozoic with lower intercept ages which are identical to the weighted mean ages of Group 4. These two age groups confirm the tectono-thermal event related to Paleozoic oceanic subduction. Moreover, based on the youngest age of 2.2 Ga in Group 1 and the upper intercept age of 1.8 Ga in Group 2, the depositional timing of the Jinshuikou and Binggou groups can be defined as Paleoproterozoic and Mesoproterozoic, respectively.  相似文献   

17.
《China Geology》2021,4(1):77-94
The Chayu area is located at the southeastern margin of the Qinghai-Tibet Plateau. This region was considered to be in the southeastward extension of the Lhasa Block, bounded by Nujiang suture zone in the north and Yarlung Zangbo suture zone in the south. The Demala Group complex, a set of high-grade metamorphic gneisses widely distributed in the Chayu area, is known as the Precambrian metamorphic basement of the Lhasa Block in the area. According to field-based investigations and microstructure analysis, the Demala Group complex is considered to mainly consist of banded biotite plagiogneisses, biotite quartzofeldspathic gneiss, granitic gneiss, amphibolite, mica schist, and quartz schist, with many leucogranite veins. The zircon U-Pb ages of two granitic gneiss samples are 205 ± 1 Ma and 218 ± 1 Ma, respectively, representing the ages of their protoliths. The zircons from two biotite plagiogneisses samples show core-rim structures. The U-Pb ages of the cores are mainly 644 –446 Ma, 1213 –865 Ma, and 1780 –1400 Ma, reflecting the age characteristics of clastic zircons during sedimentation of the original rocks. The U-Pb ages of the rims are from 203 ± 2 Ma to 190 ± 1 Ma, which represent the age of metamorphism. The zircon U-Pb ages of one sample taken from the leucogranite veins that cut through granitic gneiss foliation range from 24 Ma to 22 Ma, interpreted as the age of the anatexis in the Demala Group complex. Biotite and muscovite separates were selected from the granitic gneiss, banded gneiss, and leucogranite veins for 40Ar/39Ar dating. The plateau ages of three muscovite samples are 16.56 ± 0.21 Ma, 16.90 ± 0.21 Ma, and 23.40 ± 0.31 Ma, and the plateau ages of four biotite samples are 16.70 ± 0.24 Ma, 16.14 ± 0.19 Ma, 15.88 ± 0.20 Ma, and 14.39 ± 0.20 Ma. The mica Ar-Ar ages can reveal the exhumation and cooling history of the Demala Group complex. Combined with the previous research results of the Demala Group complex, the authors refer that the Demala Group complex should be a set of metamorphic complex. The complex includes not only Precambrian basement metamorphic rock series, but also Paleozoic sedimentary rock and Mesozoic granitic rock. Based on the deformation characteristics, the authors concluded that two stages of the metamorphism and deformation can be revealed in the Demala Group complex since the Mesozoic, namely Late Triassic-Early Jurassic (203 –190 Ma) and Oligocene –Miocene (24 –14 Ma). The early stage of metamorphism (ranging from 203 –190 Ma) was related to the Late Triassic tectono-magmatism in the area. The anatexis and uplifting-exhumation of the later stage (24 –14 Ma) were related to the shearing of the Jiali strike-slip fault zone. The Miocene structures are response to the large-scale southeastward escape of crustal materials and block rotation in Southeast Tibet after India-Eurasia collision.©2021 China Geology Editorial Office.  相似文献   

18.
There is a large ductile shear zone, 2 km wide and more than 3SO km long, in the South Qilian Mountains, western China. It is composed of volcanic, granitic and calcareous mylonites. The microstructures of the ductile shear zone show nearly E-W extending subvertical foliation, horizontal and oblique stretching lineations, shearing sense from sinis-tral to oblique sinistral strike-slip from east to west, "A" type folds and abundant granitic veins. Measured lattice preferred orientations (LPOs) of the mylonitic and recrystallized quartz of the granitic mylonite in the west segment suggest a strong LPO characterized by the dominant slip systems {1010} formed at high temperature (>650℃). K-feldspar of the mylonite shows an 39Ar/40Ar high-temperature plateau age of 243.3±1.3 Ma, and biotite, 250.5±0.5 Ma, which represent the formation age of the ductile shear zone. The 39Ar/40Ar plateau ages of 169.7±0.3 Ma and 160.6±0.1 Ma and the 39Ar/40Ar isochron ages of 166.99±2.37 Ma and 160.6±0.1 Ma of biot  相似文献   

19.
Exposed cross‐sections of the continental crust are a unique geological situation for crustal evolution studies, providing the possibility of deciphering the time relationships between magmatic and metamorphic events at all levels of the crust. In the cross‐section of southern and northern Calabria, U–Pb, Rb–Sr and K–Ar mineral ages of granulite facies metapelitic migmatites, peraluminous granites and amphibolite facies upper crustal gneisses provide constraints on the late‐Hercynian peak metamorphism and granitoid magmatism as well as on the post‐metamorphic cooling. Monazite from upper crustal amphibolite facies paragneisses from southern Calabria yields similar U–Pb ages (295–293±4 Ma) to those of granulite facies metamorphism in the lower crust and of intrusions of calcalkaline and metaluminous granitoids in the middle crust (300±10 Ma). Monazite and xenotime from peraluminous granites in the middle to upper crust of the same crustal section provide slightly older intrusion ages of 303–302±0.6 Ma. Zircon from a mafic to intermediate sill in the lower crust yields a lower concordia intercept age of 290±2 Ma, which may be interpreted as the minimum age for metamorphism or intrusion. U–Pb monazite ages from granulite facies migmatites and peraluminous granites of the lower and middle crust from northern Calabria (Sila) also point to a near‐synchronism of peak metamorphism and intrusion at 304–300±0.4 Ma. At the end of the granulite facies metamorphism, the lower crustal rocks were uplifted into mid‐crustal levels (10–15 km) followed by nearly isobaric slow cooling (c. 3 °C Ma?1) as indicated by muscovite and biotite K–Ar and Rb–Sr data between 210±4 and 123±1 Ma. The thermal history is therefore similar to that of the lower crust of southern Calabria. In combination with previous petrological studies addressing metamorphic textures and P–T conditions of rocks from all crustal levels, the new geochronological results are used to suggest that the thermal evolution and heat distribution in the Calabrian crust were mainly controlled by advective heat input through magmatic intrusions into all crustal levels during the late‐Hercynian orogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号