首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six tourmaline samples were investigated as potential reference materials (RMs) for boron isotope measurement by secondary ion mass spectrometry (SIMS). The tourmaline samples are chemically homogeneous and cover a compositional range of tourmaline supergroup minerals (primarily Fe, Mg and Li end‐members). Additionally, they have homogeneous boron delta values with intermediate precision values during SIMS analyses of less than 0.6‰ (2s). These samples were compared with four established tourmaline RMs, that is, schorl IAEA‐B‐4 and three Harvard tourmalines (schorl HS#112566, dravite HS#108796 and elbaite HS#98144). They were re‐evaluated for their major element and boron delta values using the same measurement procedure as the new tourmaline samples investigated. A discrepancy of about 1.5‰ in δ11B was found between the previously published reference values for established RMs and the values determined in this study. Significant instrumental mass fractionation (IMF) of up to 8‰ in δ11B was observed for schorl–dravite–elbaite solid solutions during SIMS analysis. Using the new reference values determined in this study, the IMF of the ten tourmaline samples can be modelled by a linear combination of the chemical parameters FeO + MnO, SiO2 and F. The new tourmaline RMs, together with the four established RMs, extend the boron isotope analysis of tourmaline towards the Mg‐ and Al‐rich compositional range. Consequently, the in situ boron isotope ratio of many natural tourmalines can now be determined with an uncertainty of less than 0.8‰ (2s).  相似文献   

2.
The Qiman Tagh W-Sn belt lies in the westernmost section of the East Kunlun Orogen, NW China, and is associated with early Paleozoic monzogranites, tourmaline is present throughout this belt. In this paper we report chemical and boron isotopic compositions of tourmaline from wall rocks, monzogranites, and quartz veins within the belt, for studying the evolution of ore-forming fluids. Tourmaline crystals hosted in the monzogranite and wall rocks belong to the alkali group, while those hosted in quartz veins belong to both the alkali and X-site vacancy groups. Tourmaline in the walk rocks lies within the schorl-dravite series and becomes increasingly schorlitic in the monzogranite and quartz veins. Detrital tourmaline in the wall rocks is commonly both optically and chemically zoned,with cores being enriched in Mg compared with the rims. In the Al-Fe-Mg and Ca-Fe-Mg diagrams,tourmaline from the wall rocks plots in the fields of Al-saturated and Ca-poor metapelite, and extends into the field of Li-poor granites, while those from the monzogranite and quartz veins lie within the field of Li-poor granites. Compositional substitution is best represented by the MgFe_(-1), Al(NaR)_(-1), and AlO(Fe(OH))_(-1) exchange vectors. A wider range of δ~(11)B values from -11.1‰ to -7.1‰ is observed in the wall-rock tourmaline crystals, the B isotopic values combining with elemental diagrams indicate a source of metasediments without marine evaporates for the wall rocks in the Qiman Tagh belt. The δ~(11)B values of monzogranite-hosted tourmaline range from -10.7‰ and-9.2‰, corresponding to the continental crust sediments, and indicate a possible connection between the wall rocks and the monzogranite. The overlap in δ~(11)B values between wall rocks and monzogranite implies that a transfer of δ~(11)B values by anataxis with little isotopic fractionation between tourmaline and melts. Tourmaline crystals from quartz veins have δ~(11)B values between -11.0‰ and-9.6‰, combining with the elemental diagrams and geological features, thus indicating a common granite-derived source for the quartz veins and little B isotopic fractionation occurred. Tourmalinite in the wall rocks was formed by metasomatism by a granite-derived hydrothermal fluid, as confirmed by the compositional and geological features.Therefore, we propose a single B-rich sedimentary source in the Qiman Tagh belt, and little boron isotopic fractionation occurred during systematic fluid evolution from the wall rocks, through monzogranite, to quartz veins and tourmalinite.  相似文献   

3.
The area of investigation at and around Mashak Pahar, Bankura district, West Bengal, India comprises a number of rock types namely: granite gneiss, migmatized quartz tourmaline gneiss, quartz pebble conglomerate, ferruginous quartzite, quartz tourmaline veins (as veins) and graphite schists. Interestingly, the study area lies in the region extending South Purulia Shear Zone (~Tamar–Porapahar Shear Zone) which marks the boundary between two contrasting tectonic blocks of eastern India, namely, the Chhotanagpur Gneissic Terrane (CGC) to the north and Singhbhum Group of rocks to the south. The rocks of the study area are poly-phasedly deformed by three phases of folding, namely, F1, F2 and F3. All the tourmalines are classified to be of ‘Alkali Group’. Chemistry of tourmalines from migmatized quartz tourmaline gneiss and those from quartz tourmaline veins are in conformity with their relation to (earthquake induced) shear system evolution in this terrain. In general, the compositional evolution of tourmaline during prograde metamorphism (~400°–730°C) has been supported by both petrographic and chemical evidences. Assessment of mineral–chemical data of constituent tourmaline grains clearly suggests compositional variations across zonal boundaries within tourmaline that was controlled by changing metamorphic milieu in this terrane. Field and petrographic evidences clearly indicate activation of earlier and later shears in this region accompanied by infiltration of boron and formation of zoned tourmaline crystals.  相似文献   

4.
Tourmaline-out isograd formed by the breakdown of tourmaline is defined in the upper amphibolite-facies metapelites in the Yanai area, Ryoke metamorphic belt, SW Japan. The rim composition of tourmaline progressively becomes aluminous with ascending metamorphic grade, and the chemical zoning of tourmaline is controlled by X□AlNa–1Mg–1 and MgTiYAl–2 vectors in low- to medium-grade zones where muscovite is stable, whereas it is controlled by Mg(OH)YAl–1O–1, CaMgOX–1 YAl–1(OH)–1 and MgTiYAl–2 vectors in further higher–grade, muscovite-unstable zones. The size of tourmaline increases drastically where breakdown of muscovite+quartz takes place, probably due to the growth of tourmaline during breakdown of muscovite. On the high-temperature side of the tourmaline-out isograd, depletion of whole-rock boron is observed. Escape of boron-bearing melt or the fluid evolved from the melt during its crystallization probably caused this depletion, although locally trapped, boron-bearing melt or fluid formed irregularly shaped tourmaline and dumortierite during retrograde metamorphism.  相似文献   

5.
The fractionation of boron isotopes between synthetic dravitic tourmaline and fluid was determined by hydrothermal experiments between 400 and 700°C at 200 MPa and at 500°C, 500 MPa. Tourmaline was crystallized from an oxide mix in presence of water that contained boron in excess. In one series of experiments, [B]fluid/[B]tour was 9 after the run; in another series it was 0.1. All experiments produced tourmaline as the sole boron-bearing solid, along with traces of quartz and talc. Powder XRD and Rietveld refinements revealed no significant amounts of tetrahedrally coordinated boron in tourmaline. 11B always preferentially fractionated into the fluid. For experiments where [B]fluid/[B]tour was 9, a consistent temperature-dependent boron isotope fractionation curve resulted, approximated by Δ11B(tour–fluid) = −4.20 · [1,000/T (K)] + 3.52; R 2 = 0.77, and valid from 400 to 700°C. No pressure dependence was observed. The fractionation (−2.7 ± 0.5‰ at 400°C; and −0.8 ± 0.5‰ at 700°C) is much lower than that previously presented by Palmer et al. (1992). Experiments where [B]fluid/[B]tour was 0.1 showed a significant larger apparent fractionation of up to −4.7‰. In one of these runs, the isotopic composition of handpicked tourmaline crystals of different size varied by 1.3‰. This is interpreted as resulting from fractional crystallization of boron isotopes during tourmaline growth due to the small boron reservoir of the fluid relative to tourmaline, thus indicating larger fractionation than observed at equilibrium. The effect is eliminated or minimized in experiments with very high boron excess in the fluid. We therefore suggest that values given by the above relation represent the true equilibrium fractionations.  相似文献   

6.
Experiments at 750 °C, 200 MPa(H2O), a (H2O)=1, and fO2∼Ni-NiO established that the equilibrium among tourmaline, biotite, cordierite, and melt (± spinel, aluminosilicate, or corundum) occurs with ∼2 wt% B2O3 in strongly peraluminous melt with an aluminosity, measured by the parameter ASI, of >1.2. The experiments demonstrate the relationship of tourmaline stability to the activity product of the tourmaline components boron and aluminum, which are inversely related to one another. Tourmaline is unstable in metaluminous to mildly peraluminous melts (ASI <1.2) at 750 °C regardless of their boron content. For a given aluminosity, addition of components such as F requires a greater boron content of melt at this equilibrium. The stability of tourmaline increases with decreasing temperatures below 750 °C. At the inception of melting, tourmaline breaks down incongruently to assemblages containing crystalline AFM silicates (biotite, cordierite, garnet, sillimanite), aluminates (spinel, corundum), and B-enriched but Fe-Mg-poor melt. Granitic melts are likely to be undersaturated in tourmaline from the start of their crystallization, and their initial boron contents will be limited by the abundance of tourmaline in their source rocks. Quartzofeldspathic (gneissic, metapelitic) rocks that reached conditions of the granulite facies and still contain (prograde) tourmaline are rare, and probably have never yielded a partial melt. Most leucogranitic magmas will initially crystallize biotite, cordierite, or garnet, but not tourmaline. With crystallization, the Fe-Mg content of melt decreases, and the B2O3 content increases until the tourmaline-biotite and/or tourmaline-cordierite (or garnet) equilibria are attained. The B2O3 content of melt is buffered as long as these equilibria continue to operate, but low initial Fe-Mg contents of the magmas limit the quantity of boron that can be consumed by these reactions to <1 wt% B2O3. Normally, leucogranitic magmas contain insufficient Fe and Mg to conserve all boron as tourmaline and thus lose a large fraction of magmatic boron to wallrocks. Leucogranites and pegmatites with tourmaline as an early and only AFM silicate mineral probably contained >2 wt% B2O3 in their bulk magmas. Received: 6 August 1996 / Accepted: 21 July 1997  相似文献   

7.
任留东  宗师  王彦斌  刘平 《岩石学报》2021,37(2):575-588
东南极拉斯曼丘陵长英质片麻岩中产出大量的电气石-硼柱晶石-硅硼镁铝矿之硼硅酸盐矿物组合,这些矿物(电气石除外)的形成晚于变质峰期一般的硅酸盐矿物.电气石可多次出现,硅硼镁铝矿之后形成硼柱晶石,很少见两种以上的硼硅酸盐矿物能够同时结晶,各种硼硅酸盐矿物在同一期、甚至同一阶段内呈递进关系.在硼硅酸盐矿物的结晶过程中,B2O...  相似文献   

8.
A sharp line delimitating the distribution of tourmaline (termed as a ‘tourmaline‐out isograd’) is defined in the migmatite zone of the Ryoke metamorphic belt, Japan. The trend of the tourmaline‐out isograd closely matches that of the isograds formed through the regional metamorphism, suggesting that it represents the breakdown front of tourmaline during regional metamorphism. This is confirmed by the presence of the reaction textures of tourmaline to sillimanite and cordierite near the tourmaline‐out isograd. The breakdown of tourmaline would release boron into associated melts or fluids and be an important factor in controlling the behaviour of boron in tourmaline‐bearing high‐temperature metamorphic rocks. Near the tourmaline‐out isograd, large tourmaline crystals occur in the centre of interboudin partitions containing leucosome. In the melanosome of the intervening matrix, reaction textures involving tourmaline are locally observed. These observations imply that tourmaline breakdown is related to a melting reaction and that the boron in the leucosome is derived from the breakdown of tourmaline in the melanosome during prograde metamorphism. Boron released by tourmaline breakdown lowers both the solidus temperature of the rock and the viscosity of any associated melt. Considering that the tourmaline‐out isograd lies close to the schist–migmatite boundary, these effects might have enhanced melt generation and segregation in the migmatite zone of the Ryoke belt. The evidence for the breakdown of tourmaline and the almost complete absence of any borosilicates throughout the migmatite zone suggest that boron was effectively removed from this region by the movement of melt and/or fluid. This implies that the tourmaline‐out isograd can reflect a significant amount of mass transfer in the anatectic zones.  相似文献   

9.
The Hattu schist belt is located in the western part of the Archaean Karelian domain of the Fennoscandian Shield. The orogenic gold deposits with Au–Bi–Te geochemical signatures are hosted by NE–SW, N–S and NW–SE oriented shear zones that deform 2.76–2.73 Ga volcanic and sedimentary sequences, as well as 2.75–2.72 Ga tonalite–granodiorite intrusions and diverse felsic porphyry dykes. Mo–W mineralization is also present in some tonalite intrusions, both separate from, and associated with Au mineralization. Somewhat younger, unmineralized leucogranite intrusions (2.70 Ga) also intrude the belt. Lower amphibolite facies peak metamorphism at 3–5 kbar pressures and at 500–600 °C temperatures affected the belt at around 2.70 Ga and post-date hydrothermal alteration and ore formation. In this study, we investigated the potential influence of magmatic-hydrothermal processes on the formation of orogenic gold deposits on the basis of multiple stable isotope (B, S, Cu) studies of tourmaline and sulphide minerals by application of in situ SIMS and LA ICP MS analytical techniques.Crystal chemistry of tourmaline from a Mo–W mineralization hosted by a tonalite intrusion in the Hattu schist belt is characterized by Fe3 +–Al3 +-substitution indicating relatively oxidizing conditions of hydrothermal processes. The range of δ11B data for this kind of tourmaline is from − 17.2‰ to − 12.2‰. The hydrothermal tourmaline from felsic porphyry dyke swith gold mineralization has similar crystal chemistry (e.g. dravite–povondraite compositional trend with Fe3 +–Al3 + substitution) and δ11B values between − 19.0‰ and − 9.6‰. The uvite–foitite compositional trend and δ11B ‰ values between − 24.1% and − 13.6% characterize metasomatic–hydrothermal tourmaline from the metasediment-hosted gold deposits. Composition of hydrothermal vein-filling and disseminated tourmaline from the gold-bearing shear zones in metavolcanic rocks is transitional between the felsic intrusion and metasedimentary rock hosted hydrothermal tourmaline but the range of average boron isotope data is essentially identical with that of the metasediment-hosted tourmaline. Rock-forming (magmatic) tourmaline from leucogranite has δ11B values between − 14.5‰ and − 10.8‰ and the major element composition is similar to that of the metasediment-hosted tourmaline.The range of δ34SVCDT values measured in pyrite, chalcopyrite and pyrrhotite is from − 9.1 to + 8.5‰, which falls within the typical range of sulphur isotope data for Archaean orogenic gold deposits. In the Hattu schist belt, positive δ34SVCDT values characterize metasediment-hosted gold ores with sulphide parageneses dominated by pyrrhotite and arsenopyrite. The δ34SVCDT values are both positive and negative in ore mineral parageneses within felsic intrusive rocks in which variable amounts of pyrrhotite are associated with pyrite. Purely negative values were only recorded from the pyrite-dominated gold mineralization within metavolcanic units. Therefore the shift of δ34SVCDT values to the negative values reflects precipitation of sulphide minerals from relatively oxidizing fluids. The range of measured δ65CuNBS978 values from chalcopyrite is from − 1.11 to 1.19‰. Positive values are common for mineralization in felsic intrusive rocks and negative values are more typical for deposits confined to metasedimentary rocks. Positive and negative δ65CuNBS978 values occur in the ores hosted by metavolcanic rocks. There is no correlation between sulphur and copper isotope data obtained in the same chalcopyrite grains.Evaluation of sulphur and boron isotope data together and comparisons with other Archaean orogenic gold provinces supports the hypothesis that the metasedimentary rocks were the major sources of sulphur and boron in the orogenic gold deposits in the Hattu schist belt. Variations in major element and boron isotope compositions in tourmaline, as well as in the δ34SVCDT values in sulphide minerals are attributed to localized involvement of magmatic fluids in the hydrothermal processes. The results of copper isotope studies indicate that local sources of copper in orogenic gold deposits may potentially be recognized if the original, distinct signatures of the sources have not been homogenized by widespread interaction of fluids with a large variety of rocks and provided that local chemical variations have been too small to trigger changes in the oxidation state of copper during hydrothermal processes.  相似文献   

10.
Pressure–temperature conditions of tourmaline breakdown in a metapelite were determined by high-pressure experiments at 700–900°C and 4–6 GPa. These experiments produced an eclogite–facies assemblage of garnet, clinopyroxene, phengite, coesite, kyanite and rare rutile. The modal proportions of tourmaline clearly decreased between 4.5 and 5 GPa at 700°C, between 4 and 4.5 GPa at 800°C, and between 800 and 850°C at 4 GPa, with tourmaline that survived the higher temperature conditions appearing corroded and thus metastable. Decreases in the modal abundance of tourmaline are accompanied by decreasing modal abundance of coesite, and increasing that of clinopyroxene, garnet and kyanite; the boron content of phengite increases significantly. These changes suggest that, with increasing pressure and temperature, tourmaline reacts with coesite to produce clinopyroxene, garnet, kyanite, and boron-bearing phengite and fluid. Our results suggest that: (1) tourmaline breakdown occurs at lower pressures and temperatures in SiO2-saturated systems than in SiO2-undersaturated systems. (2) In even cold subduction zones, subducting sediments should release boron-rich fluids by tourmaline breakdown before reaching depths of 150 km, and (3) even after tourmaline breakdown, a significant amount of boron partitioned into phengite could be stored in deeply subducted sediments.  相似文献   

11.
Three generations of tourmaline have been identified in propylite in the Vetka porphyry copper-molybdenum deposit of the Chukchi Peninsula of Russia. Tourmaline-I is characterized by its Fetot/(Fetot + Mg) value, which ranges from 0.33 to 0.49. Tourmaline-II, which crystallizes at a lower temperature, overgrowing tourmaline-I or occurring as isolated crystals, is distinguished by a higher Fetot/(Fetot + Mg), which varies from 0.46 to 0.72. The Fetot/(Fetot + Mg) ratio in tourmaline-III, which overgrows tourmaline-II is lower (0.35–0.49), and is identical to that of the first tourmaline generation. This is probably caused by the beginning of sulfide deposition. Tourmalines in the deposit characterized by complex isomorphic substitutions can be attributed to the intermediate members of the dravite—“hydroxy-uvite”-“oxy-uvite” and schorl-“hydroxy-feruvite”-“oxy-feruvite” series. Tourmaline starts to crystallize at temperatures above 340°C. The fluid responsible for the tourmaline deposition was magmatic, with a significant admixture of meteoric water (δ18OH 2O = −0.85 to −0.75‰). The high Fe3+/Fetot ratio (0.50) indicates high oxygen activity when the tourmaline precipitated. It has been established that the isomorphic substitution Fetot → Al is typomorphic of tourmalines from porphyry copper deposits worldwide.  相似文献   

12.
电气石是一类含硼的铝硅酸盐矿物,化学成分复杂、化学稳定性强,不易湿法分解,B_2O_3含量较高,导致其主次量元素的同时测定存在一定困难。本文采用熔融法制样,建立了X射线荧光光谱法测定电气石Na_2O、MgO、Al_2O_3、SiO_2、P_2O_5、K_2O、CaO、TiO_2、V_2O_5、Cr_2O_3、MnO、TFe_2O_3等主次量元素的分析方法。样品与四硼酸锂-偏硼酸锂-氟化锂(质量比为4.5∶1∶0.4)混合熔剂的稀释比例为1∶10,消除了粒度效应和矿物效应;在缺少电气石标准物质的情况下,选择土壤、水系沉积物及多种类型的地质标准物质绘制校准曲线,利用含量与电气石类似的标准物质验证准确度,测定结果的相对标准偏差小于4.2%。采用所建方法测定四种不同类型电气石实际样品,测定值与经典化学法基本吻合。本方法解决了电气石不易湿法分解和硼的干扰问题,测定结果准确可靠,与其他方法相比操作简便,分析周期短。  相似文献   

13.
Identifying evidence of oxidative weathering in the geological record is essential to trace the evolution of Earth's atmosphere oxygenation. Metamorphosed residues of lateritic weathering have been identified as two rock types in the 2.1‐Ga‐old Cercadinho Formation, Piracicaba Group, Quadrilátero Ferrífero of Minas Gerais. One is tourmaline–hematite–sillimanite–kyanite quartzite; the other is rutile–tourmaline–hematite–muscovite phyllite. Both rocks have abundant tourmaline with δ11B values between about ?17‰ and ?13‰. The Cercadinho tourmaline is roughly parallel to the povondraite–“oxy‐dravite” join of meta‐evaporitic tourmaline, in its more aluminous segment, offset to higher contents of iron. These compositional and isotopic characteristics of the Cercadinho tourmaline indicate that continental evaporitic brines interacted with aluminium‐ and iron‐rich residues of lateritic weathering. The abundance of disseminated tourmaline, a mineral poorly reported from palaeosols worldwide, implies a boron‐rich brine overprint on the lateritic profile before the onset of metamorphism, reflecting a climatic change from humid to arid conditions in a continental setting. The recognition of lateritic weathering in the Cercadinho Formation contributes to the amount of evidence for increased levels of atmospheric oxygen between 2.22 and 2.06 Ga ago.  相似文献   

14.
A detailed study of the chemical composition and substitutions in calcium tourmalines from a scapolite-bearing rare-metal pegmatite vein from the Sol’bel’der River basin has shown that their species attribution is determined by occupancy of octahedral site Y. The composition of the yellow tourmaline most abundant in the central part of the pegmatite bodyis rather constant and characterized by the ideal formula Ca(Mg2Li)Al6(Si6O18)(BO3)3(OH)3F. Variations in the chemical composition of zonal tourmaline crystals from the contact part of the pegmatite are controlled by abrupt change in the chemical medium during their formation. The yellow cores of these crystals are close in composition to tourmaline from the central part of the pegmatite vein. The Mg content abruptly decreases toward the crystal margin: Mg2+ → Fe2+, 2Mg2+ → Li+ + Al3+, and Mg2+ + OH → Al3+ + O2−. The composition of dark green marginal zones in tourmaline is characterized by the ideal formula Ca(Al1.5Li1.5)Al6(Si6O18)(BO3)3 (OH2O)(F). The results indicate specific formation conditions of pegmatite. The crystallochemical formulas of the studied tourmalines allow us to regard them as new mineral species in the tourmaline group.  相似文献   

15.
Reactions between hornblende-plagioclase amphibolite and acidic and alkaline B-bearing aqueous fluids have been investigated by experiments at 475°–600° C and 200 MPa. At 600° C, hornblende+calcic plagioclase react to form tourmaline+danburite+clinopyroxene+quartz in acidic fluids containing 0.5–1.0 wt% B2O3.Tourmaline is precipitated directly from acidic fluids, and the reaction is driven by neutralization of fluids by Na±Ca derived from the breakdown of reactant solids. The concentration of B2O3 in fluids needed to stabilize tourmaline increases as pH increases (above approximately 6.0), and tourmaline is unstable in alkaline fluids (pH > approximately 6.5–7.0) regardless of B concentration. In addition to acid-base relations, tourmaline stability is favored by comparatively higher activity coefficients for Al species in acidic fluids. The concentrations of Al and Si in fluid increase with alkalinity, with the eventual production of felsic borosilicate melts through partial melting of the plagioclase component of the amphibolite. In seeded experiments, tourmaline also contributes components to melt. Partial melting is evident in the range 500°–525° C at 200 MPa in experiments with 8wt% B2O3 in fluid as Na2B4O7. The experimental results are applied primarily to metasomatic reactions between mafic rocks and borate fluids derived from granitic magmas, but tourmaline stability and partial melting in mafic regional metamorphic systems are also discussed briefly.  相似文献   

16.
The structure and electronic properties of trigonal and orthorhombic boric oxide (B2O3) are studied using periodic ab initio Hartree-Fock method. The optimised structural parameters for two B2O3 polymorphs are in good agreement with experimental data. The analyses of their electronic structures provide insights into the chemical nature of the B–O bond and the way in which it changes with the coordination number around boron and oxygen. Our quantum-chemical study suggests that the orthorhombic form is more ionic than the trigonal form and that the coordination number of boron around oxygen plays a more dominant role than that of oxygen around boron in B2O3 crystals.  相似文献   

17.
电气石硼肥制作技术的试验研究   总被引:1,自引:0,他引:1  
卢宗柳 《矿产与地质》2006,20(6):702-705
硼元素是农作物生长所需的七种微量元素之一。目前给土壤补充硼元素的主要方式是施硼肥(来自硼砂矿),随着硼砂矿资源的日益减少,寻找硼替代资源日渐紧迫。笔者认为,电气石是可替代硼砂的主要矿物之一。利用电气石中硼的关键是将电气石中的硼变为可溶性硼。实验表明,高温焙烧法对电气石中硼的溶出非常有限,而用添加HF等助剂的化学法将电气石中的硼活化溶出的方法,效果较好。因此,可通过化学法先将电气石中的硼元素溶出,然后再加入部分电气石及辅料来制作电气石硼肥。  相似文献   

18.
Tourmaline in Proterozoic Massive Sulfide Deposits from Rajasthan, India   总被引:1,自引:0,他引:1  
We have analyzed the chemical composition and boron isotope composition of tourmaline from tourmalinites, granite and a quartz-tourmaline vein from the Deri ore zone and from a pegmatitic band in the Rampura-Agucha ore body. These two Proterozoic massive sulfide deposits occur in the Aravalli-Delhi orogenic belt, Rajasthan, northwest India. Tourmaline from stratiform tourmalinites closely associated with the massive sulfides in the Deri deposit have preserved their original chemical compositions despite regional and thermal metamorphism in the area. These tourmalines have low Fe/(Fe + Mg) ratios (0.19–0.30; mean 0.26) that suggest formation close to the sediment-sea water interface. The δ11B values (−15.5 and −16.4‰) are compatible with boron derived from leaching of argillaceous sediments and/or felsic volcanics underlying the original massive sulfide deposit during its formation. Boron isotope compositions measured in tourmaline from a post-ore granite and quartz-tourmaline vein in the Deri deposit indicate that boron in these tourmalines was derived from the tourmalinites produced during ore formation. The boron isotope systematics of a coarse brown tourmaline crystal from a pegmatitic band on the hanging wall contact of the Rampura-Agucha deposit indicate that 45 ± 25% of the boron within the original tourmaline was lost during upper amphibolite facies regional metamorphism. Received: 3 April 1996 / Accepted: 11 April 1996  相似文献   

19.
Tourmaline-rich rocks are common in the lowgrade, interior portions of the Barberton greenstone belt of South Africa, where shallow-marine sediments and underlying altered basaltic and komatiitic lavas contain up to 50% tourmaline. The presence of tourmaline-bearing rip-up clasts, intraformational tourmalinite pebbles, and tourmaline-coated grains indicates that boron mineralization was a low-temperature, surficial process. The association of these lithologies with stromatolites, evaporites, and shallow-water sedimentary structures and the virtual absence of tourmaline in correlative deep-water facies rocks in the greenstone bels strengthens this model.Five tourmaline-bearing lithologic groups (basalts, komatiites, evaporite-bearing sediments, stromatolitic sediments, and quartz veins) are distinguished based on field, petrographic, and geochemical criteria. Individual tourmaline crystals within these lithologies show internal chemical and textural variations that reflect continued growth through intervals of change in bulk-rock and fluid composition accompanying one or more metasomatic events. Large single-crystal variations exist in Fe/Mg, Al/Fe, and alkali-site vacancies. A wide range in tourmaline composition exists in rocks altered from similar protoliths, but tourmalines in sediments and lavas have similar compositional variations. Boron-isotope analysis of the tourmalines suggest that the boron enrichment in these rocks has a major marine evaporitic component. Sediments with gypsum pseudomorphs and lavas altered at low temperatures by shallow-level brines have the highest 11B values (+2.2 to-1.9); lower 11B values of late quartz veins (-3.7 to-5.7) reflect intermediate temperature, hydrothermal remobilization of evaporitic boron. The 11B values of tourmaline-rich stromatolitic sediments (-9.8 and-10.5) are consistent with two-stage boron enrichment, in which earlier marine evaporitic boron was hydrothermally remobilized and vented in shallow-marine or subaerial sites, mineralizing algal stromatolites. The stromatolite-forming algae preferentially may have lived near the sites of hydrothermal discharge in Archean times.  相似文献   

20.
We determined the boron isotope and chemical compositions of tourmaline from the Hira Buddini gold deposit within the Archean Hutti-Maski greenstone belt in southern India to investigate the evolution of the hydrothermal system and to constrain its fluid sources. Tourmaline is a minor but widespread constituent in the inner and distal alteration zones of metabasaltic and metadacite host rocks associated with the hydrothermal gold mineralization. The Hira Buddini tourmaline belongs to the dravite–schorl series with variations in Al, Fe/(Fe+Mg), Ca, Ti, and Cr contents that can be related to their host lithology. The total range of δ11B values determined is extreme, from −13.3‰ to +9.0‰, but 95% of the values are between −4 and +9‰. The boron isotope compositions of metabasalt-hosted tourmaline show a bimodal distribution with peak δ11B values at about −2‰ and +6‰. The wide range and bimodal distribution of boron isotope ratios in tourmaline require an origin from at least two isotopically distinct fluid sources, which entered the hydrothermal system separately and were subsequently mixed. The estimated δ11B values of the hydrothermal fluids, based on the peak tourmaline compositions and a mineralization temperature of 550°C, are around +1 and +10‰. The isotopically lighter of the two fluids is consistent with boron released by metamorphic devolatilization reactions from the greenstone lithologies, whereas the 11B-rich fluid is attributed to degassing of I-type granitic magmas that intruded the greenstone sequence, providing heat and fluids to the hydrothermal system. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号