首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
用混酸(HF-HCl-HNO_3-HClO_4)消解样品-电感耦合等离子体发射光谱法测定地球化学样品中主次量元素效率较高,但易出现标准物质中MgO、CaO等部分项目测定结果偏低的情况,主要原因有基体干扰和样品分解不完全等。本文通过采用加大定容体积与称样量的比值控制基体干扰,分析比较了用两种酸溶方法所得的9种元素的结果,证明采用氢氟酸浸泡的方法可以促进样品分解,可改善MgO、CaO、Na_2O、K_2O、TFe_2O_3、Mn、Al_2O_3的分析质量,而对P、Ti影响不大,两种方法所得Al_2O_3的结果误差均较大;针对较难消解样品通过补加混酸可进一步改善样品分解效果,使包含Al_2O_3在内的测定结果偏低程度有明显改善,所得标准物质测定结果符合地球化学样品分析质量控制规范要求。  相似文献   

2.
X射线荧光光谱法(XRF)已经应用于石膏等非金属矿物的测定,但由于石膏标准物质匮乏、硫含量较高且在高温易挥发损失,给测定带来了一定困难。本文采用石膏标准物质、高纯硫酸钙和其他国家一级标准物质(土壤、水系沉积物、碳酸盐)配制人工标准物质拟合校准曲线,优化稀释比、熔矿温度等熔融制样条件,用理论α系数校正基体效应,建立了采用XRF同时测定石膏矿中10个主次量元素(硅铝铁钙镁钾钠钛硫锶)的分析方法。样品与四硼酸锂-偏硼酸锂熔剂的稀释比为1∶9,在1050℃温度下样品熔融完全。方法检出限为4~135μg/g,精密度(RSD,n=12)小于3.0%。本方法配制的人工校准样品加强了样品基体的适应性,使用的四硼酸锂-偏硼酸锂熔剂在样品熔融过程中可有效地结合硫,抑制了硫的挥发损失,适用于批量分析硫含量高达12.60%~51.91%的实际石膏矿物。  相似文献   

3.
采用熔融制样,以四硼酸锂-偏硼酸锂(质量比为67∶33)作熔剂,溴化铵作脱模剂,硝酸铵作氧化剂制备玻璃熔片。选用土壤、岩石、水系沉积物等国家标准物质拟合校准曲线,用经验系数法校正元素间的基体效应,各组分的线性相关系数均达到了0.999以上。使用日本理学ZSX PrimusⅡ型光谱仪对样品中SiO_2、Al_2O_3、TFe_2O_3、TiO_2、K_2O、Na_2O、CaO、MgO、MnO、P_2O_5等10种组分进行同时测定,分析结果与标准物质认定值或化学方法结果相符,相对标准偏差(RSD,n=12)小于5%,准确度和精密度均已达到地质矿产行业标准规范要求。方法简便、快速、准确、高效且绿色环保,满足了硅酸盐样品中主量元素快速分析测试的需求。实验表明,利用X射线荧光光谱法对硅酸盐主要成分含量进行同时分析是可行的。  相似文献   

4.
X射线荧光光谱法(XRF)是地球化学标准物质均匀性检验的重要方法之一,但目前应用XRF法对标准物质进行均匀性检验还存在争议。由于均匀性检验要求称样量为最小取样量,而采用常规粉末压片或熔融制样进行XRF均匀性检验时称样量一般均大于最小取样量,得到的结果在理论上不足以支撑样品在最小取样量条件下是否均匀。本研究称取0.1 g样品,以四硼酸锂、偏硼酸锂和氟化锂(质量比为45∶10∶5)为混合熔剂,碘化氨为脱模剂,熔融制备样片;采用经验系数法建立了SiO_2、Al_2O_3、TFe_2O_3、MgO、CaO、Na_2O、K_2O、Ti、P和Mn共10个测量组分的标准曲线,各组分校正曲线的相关系数在0.997 3~1.000 0之间。对制样条件的实验优化结果表明,样品与熔剂比为1∶4,以2滴0.2 g/mL碘化氨为脱模剂,在1 050℃熔融10 min,熔融制得的样片成型效果最好。对方法参数进行了研究,各组分相对标准偏差值在0.2%~5.3%之间,相对误差小于6.2%,方法精密度和方法准确度均较高。与常规称样量0.65 g熔片结果相比,两种方法实验结果一致。本研究为X射线荧光光谱法在地球化学标准物质均匀性检验中的应用提供了依据。  相似文献   

5.
热重分析法在碳酸盐岩石矿物定量中的应用   总被引:1,自引:0,他引:1  
热重分析法是测定矿物受热后重量变化的情况。矿物受热后重量的改变是由矿物中水的脱出,矿物分解后放出气体(H_2O,CO,CO_2、SO_2,P_2O_5……),矿物升华和氧化等引起的。矿物受热由于物质减少引起失重,矿物氧化则引起增重。由于矿物分解所引起的失重一般是矿物中的固有组分的排出,因而其失重量反映矿物的含量。我们可以根据矿物的失重量与矿物的分子量计算样品中矿物的含量。  相似文献   

6.
铝土矿中主成分的X射线荧光光谱分析   总被引:1,自引:1,他引:0       下载免费PDF全文
钟代果 《岩矿测试》2008,27(1):71-73
利用X射线荧光光谱法测定铝土矿中主成分A l2O3、SiO2、Fe2O3、TiO2。采用四硼酸锂-偏硼酸锂作熔剂,溴化锂作脱模剂,国产高频熔样炉高温熔融制备玻璃圆片,以标准物质制作校准曲线进行测定,并与化学法进行对照,结果基本一致。方法操作简单、快速,准确度和精密度均达到国家标准方法规定的要求,已用于实际生产中。  相似文献   

7.
波长色散X射线荧光光谱法测定锌精矿中主次量成分   总被引:1,自引:1,他引:0  
采用湿法化学预氧化法结合高温熔融制样,波长色散-X射线荧光光谱法测定锌精矿中铜、硅、镁、锌、铝、铁、硫、铅、钙、砷、钾、镉、锰等主次量元素。通过对锌精矿样品的湿法化学预氧化处理(0.3 g样品+1 g硝酸锂+0.5 mL过氧化氢在铂金合金坩埚中混匀),能够增加样品的使用量,提高了熔片中待测微量元素的X射线荧光光谱强度。采用四硼酸锂熔剂高温熔融制样,降低了元素间的基体效应。针对硫化精矿的灼烧增量现象,提出了灼烧增量的计算方法及校正方法。对于无法使用灼烧增量进行校正的软件,提出将实际样品灼烧增量转换为虚拟样品灼烧失量的方法。用理论α系数和经验系数相结合的方法校正元素间的效应。测定锌精矿各组分(除镉以外)的相对标准偏差(RSD,n=12)均小于3%,方法检出限为6.55~111.24μg/g,测定值与化学分析法结果吻合。  相似文献   

8.
波长色散X射线荧光光谱法同时测定钒渣中的主次量成分   总被引:1,自引:1,他引:0  
采用偏硼酸锂和四硼酸锂混合熔剂熔融法制样,波长色散X射线荧光光谱法同时测定钒渣中的Al2O3、SiO2、CaO、TiO2、MnO、P、V2O5、MgO、Fe、S、Cr2O3等11个主、次量成分。研究了熔剂、预氧化条件、熔样温度、脱模剂等对制样的影响。采用理论α系数校正基体效应及谱线重叠干扰的影响。测定钒渣试样各组分的相对标准偏差(RSD,n=10)在0.1%~7.5%。用钒渣行业级有证标准物质及实际样品验证,测定结果与标准值及其他方法的测定值相符。与化学法相比,该方法具有快速、简便,精密度好,准确度高等优点。  相似文献   

9.
用电感耦合等离子体质谱法(ICP-MS)测定地质样品中的稀土及难熔元素,混合酸敞开酸溶法和碱熔融法是两种主要的溶样方法。但地质样品组分复杂,元素之间存在相互共生的现象,对于特殊元素、特殊样品用传统酸溶法会造成部分元素消解不完全,使测定结果不准确;而碱熔法的操作过程繁琐,且溶液盐度高,易产生基体干扰和堵塞仪器进样系统。本文改进了传统四酸和五酸体系,采用氢氟酸-硝酸-硫酸敞开酸溶体系,用国家一级标准物质制作标准曲线测定15种稀土元素,方法准确度(ΔlgC)为0.001~0.027。同时改进了偏硼酸锂碱熔法,样品用偏硼酸锂碱熔提取,加入氢氧化钠调节溶液至碱性条件,所测元素与偏硼酸锂共沉淀后过滤分离熔剂,再用硝酸复溶测定15种稀土元素及铌钽锆铪。两种溶样方法的测定值与认定值的相对误差为1.09%~9.30%。将混合酸敞开酸溶法测定稀土元素、偏硼酸锂碱熔法测定铌钽锆铪的结果与其他实验室密闭酸溶法相比,两组数据的相对偏差为0.13%~15.32%。本实验表明,混合酸敞开酸溶法适用于测定地质样品中的稀土元素,偏硼酸锂碱熔法不仅适用于测定地质样品中的稀土元素及铌钽锆铪,也适用于测定如古老高压变质岩石及铝含量高的样品中的铌钽锆铪。  相似文献   

10.
较低稀释比熔融制样X射线荧光光谱法分析铬铁矿   总被引:3,自引:3,他引:0  
铬铁矿属难熔矿物,目前对铬铁矿的分析以化学分析为主,方法成熟,但操作麻烦且步骤繁琐;而应用X射线荧光光谱法进行分析测定,一般都采用较高稀释比熔融制样,不利于低含量元素的测定。本文选用四硼酸锂+偏硼酸锂作为混合熔剂,与样品以20:1的稀释比熔融制样,利用波长色散X射线荧光光谱测定铬铁矿中多种元素(Cr、Si、Al、TFe、Mg、Ca、Mn)的方法。采用多种铬铁矿标准物质和人工配制标准物质制作工作曲线,理论α系数及康普顿散射内标法校正元素间的吸收-增强效应,方法精密度(RSD,n=10)为0.2%~5.3%。方法检出限低,如锰元素的检出限可低至60 μg/g;镁元素的检出限为225 μg/g,比文献采用高稀释比XRF测定的方法检出限(250 μg/g)要低。本方法通过选择有效的熔剂和较低的稀释比解决了铬铁矿的制样问题,熔剂的用量减少,称样量增加,提高了低含量元素分析的准确度,相应地降低了分析成本。  相似文献   

11.
不同产地绿碧玺的产出特征、化学成分、致色机理和形成条件都存在差异.目前关于坦桑尼亚绿碧玺的矿物种属及颜色成因等问题还未得到解决,对其科学鉴定和品质评级造成了一定影响.本文采用红外光谱、拉曼光谱、电子探针、紫外可见光谱等测试技术,对坦桑尼亚绿碧玺宝石矿物学特征及颜色成因进行探究.结果表明:坦桑尼亚绿碧玺呈单晶体产出,无解...  相似文献   

12.
A detailed study of the chemical composition and substitutions in calcium tourmalines from a scapolite-bearing rare-metal pegmatite vein from the Sol’bel’der River basin has shown that their species attribution is determined by occupancy of octahedral site Y. The composition of the yellow tourmaline most abundant in the central part of the pegmatite bodyis rather constant and characterized by the ideal formula Ca(Mg2Li)Al6(Si6O18)(BO3)3(OH)3F. Variations in the chemical composition of zonal tourmaline crystals from the contact part of the pegmatite are controlled by abrupt change in the chemical medium during their formation. The yellow cores of these crystals are close in composition to tourmaline from the central part of the pegmatite vein. The Mg content abruptly decreases toward the crystal margin: Mg2+ → Fe2+, 2Mg2+ → Li+ + Al3+, and Mg2+ + OH → Al3+ + O2−. The composition of dark green marginal zones in tourmaline is characterized by the ideal formula Ca(Al1.5Li1.5)Al6(Si6O18)(BO3)3 (OH2O)(F). The results indicate specific formation conditions of pegmatite. The crystallochemical formulas of the studied tourmalines allow us to regard them as new mineral species in the tourmaline group.  相似文献   

13.
X射线荧光光谱-X射线衍射研究宁夏贺兰石岩石矿物学特征   总被引:1,自引:1,他引:0  
宁夏贺兰石是中国砚用名石之一,开发应用越来越广泛,对其进行系统的基础研究具有重要的现实意义。但目前仅有初步的人工实验,缺乏系统的矿物学研究。本文采用常规宝玉石学测试结合薄片鉴定、X射线荧光光谱、X射线粉晶衍射等矿物谱学分析测试方法,解析贺兰石的宝石学特征、化学成分、岩石结构及矿物组成特征。结果表明:贺兰石主要组成矿物为水云母~绢云母,次为褐铁矿(氧化铁质)、石英(砂质碎屑)、绿泥石和微量的赤铁矿、金红石、电气石等;主要化学成分为SiO_2、Al_2O_3、TFe_2O_3、K_2O、MgO、TiO_2、CaO、P_2O_5;折射率1.56~1.57,密度2.81~2.86g/cm~3,摩氏硬度3~4。初步探讨了贺兰石致色成因,基于Fe元素形态及含量与贺兰石颜色具相关关系,认为Fe元素是宁夏贺兰石致色的主要因素。本研究基本确定了贺兰石的大部分特征参数,为后续建立准确的命名及鉴定方法提供了技术支撑。  相似文献   

14.
Experiments at 750 °C, 200 MPa(H2O), a (H2O)=1, and fO2∼Ni-NiO established that the equilibrium among tourmaline, biotite, cordierite, and melt (± spinel, aluminosilicate, or corundum) occurs with ∼2 wt% B2O3 in strongly peraluminous melt with an aluminosity, measured by the parameter ASI, of >1.2. The experiments demonstrate the relationship of tourmaline stability to the activity product of the tourmaline components boron and aluminum, which are inversely related to one another. Tourmaline is unstable in metaluminous to mildly peraluminous melts (ASI <1.2) at 750 °C regardless of their boron content. For a given aluminosity, addition of components such as F requires a greater boron content of melt at this equilibrium. The stability of tourmaline increases with decreasing temperatures below 750 °C. At the inception of melting, tourmaline breaks down incongruently to assemblages containing crystalline AFM silicates (biotite, cordierite, garnet, sillimanite), aluminates (spinel, corundum), and B-enriched but Fe-Mg-poor melt. Granitic melts are likely to be undersaturated in tourmaline from the start of their crystallization, and their initial boron contents will be limited by the abundance of tourmaline in their source rocks. Quartzofeldspathic (gneissic, metapelitic) rocks that reached conditions of the granulite facies and still contain (prograde) tourmaline are rare, and probably have never yielded a partial melt. Most leucogranitic magmas will initially crystallize biotite, cordierite, or garnet, but not tourmaline. With crystallization, the Fe-Mg content of melt decreases, and the B2O3 content increases until the tourmaline-biotite and/or tourmaline-cordierite (or garnet) equilibria are attained. The B2O3 content of melt is buffered as long as these equilibria continue to operate, but low initial Fe-Mg contents of the magmas limit the quantity of boron that can be consumed by these reactions to <1 wt% B2O3. Normally, leucogranitic magmas contain insufficient Fe and Mg to conserve all boron as tourmaline and thus lose a large fraction of magmatic boron to wallrocks. Leucogranites and pegmatites with tourmaline as an early and only AFM silicate mineral probably contained >2 wt% B2O3 in their bulk magmas. Received: 6 August 1996 / Accepted: 21 July 1997  相似文献   

15.
This work provides a measurement procedure for the complete digestion of rock samples containing refractory minerals such as zircon and chromite. Their dissolution by wet acid digestion is often incomplete but, although providing complete digestions, alkali fusion techniques can result in solutions with a high blank and total dissolved solid content. It was established by the systematic study with reference material trachyandesite MTA‐1 that a 1:6 sample to sodium peroxide (Na2O2) ratio is conservative for the complete digestion and recovery of all the analytes especially those contained in zircon. The sample decomposition time was 120 min for the zircon‐bearing rhyolite reference material MRH‐1. Complete digestion of chromite was obtained in the harzburgite RM MUH‐1. The sample solutions were stable for at least 1 year. Accurate measurements of SiO2, Al2O3, TiO2, P2O5 and K2O could be made with ICP‐MS by not discarding the supernatant of the sinter solution and by using geological reference materials for external calibration. HF digestions are slow, not universal, and may form new mineral/phases that are insoluble under high temperature conditions. The validated sample decomposition procedure combined with ICP‐MS presents an alternative to the use of HF in routine analysis of difficult to digest geological materials.  相似文献   

16.
钼矿石与钼精矿成分分析标准物质研制   总被引:2,自引:2,他引:0  
钼矿勘查开发与综合利用评价等工作需对其化学成分进行准确测试,标准物质可为分析测试提供基础标准和技术支撑。我国已有的钼矿石和钼精矿标准物质系列性不足,且余量不多,多数样品已耗尽。本文为满足钼矿资源勘查、开发与贸易的总体需求,研制了3个钼矿石和1个钼精矿成分分析标准物质。根据设计的钼含量的梯度范围和钼矿的矿床成因,在钼矿资源储量最多的河南省采集了1个钼尾矿(Mo含量0.02%)、1个钼矿石(Mo含量0.09%)和1个钼精矿(Mo含量50.0%)。3个钼矿石采用重量法组合制备的方式加工,1个钼精矿为原样粉碎加工,钼精矿在加工制备过程向球磨机内充氩气保护,防止硫化物氧化。按照一级标准物质研制规范,采用13家实验室使用多种准确可靠的方法共同定值,定值元素包括成矿元素(Mo),可综合利用元素(W、S、Cu、Pb、Zn、Fe、Bi),具找矿和矿产评价意义的微量元素(Ag、As、Cd、Mn、P、Pb、Sb)及构成脉石的主成分(SiO2、Al2O3、Fe2O3、CaO、MgO、Na2O、K2O)共计26种。3个钼矿石标准物质Mo的含量分别为0.066%、0.15%、0.54%,1个钼精矿标准物质Mo的含量为50.08%,是已有标准物质的良好补充和完善。标准物质经均匀性和稳定性统计检验具有良好的均匀性和稳定性;标准值计算方法正确,不确定度评定合理,经国家质量监督检验检疫总局批准为国家一级标准物质(编号为GBW 07141~GBW 07144),可用于钼矿的勘查、开发、选冶及贸易中化学成分测试的量值标准与分析质量监控。  相似文献   

17.
An end member of the tourmaline series with a structural formula □(Mg2Al)Al6(BO3)3[Si6O18](OH)4 has been synthesized in the system MgO-Al2O3-B2O3-SiO2-H2O where it represents the only phase with a tourmaline structure. Our experiments provide no evidence for the substitutions Al → Mg + H, Mg → 2H, B + H → Si, and AlAl → MgSi and we were not able to synthesize a phase “Mg-aluminobuergerite” characterized by Mg in the (3a)-site and a strong (OH)-deficiency reported by Rosenberg and Foit (1975). The alkali-free tourmaline has a vacant (3a)-site and is related to dravite by the □ + Al for Na + Mg substitution. It is stable from at least 300°C to about 800°C at low fluid pressures and 100% excess B2O3, and can be synthesized up to a pressure of 20 kbars. At higher temperatures the tourmaline decomposes into grandidierite or a boron-bearing phase possibly related to mullite (“B-mullite”), quartz, and unidentified solid phases, or the tourmaline melts incongruently into corundum + liquid, depending on pressure. In the absence of excess B2O3 tourmaline stability is lowered by about 60°C. Tourmaline may coexist with the other MgO-Al2O3-B2O3-SiO2-H2O phases forsterite, enstatite, chlorite, talc, quartz, grandidierite, corundum, spinel, “B-mullite,” cordierite, and sinhalite depending on the prevailing PTX-conditions.The (3a)-vacant tourmaline has the space group R3m with a =15.90 A?, c = 7.115 A?, and V = 1557.0 A?3. However, these values vary at room temperature with the pressure-temperature conditions of synthesis by ±0.015 A? in a, ±0.010 A? in c, and ±4.0 A?3 in V, probably as a result of MgAl order/disorder relations in the octahedral positions. Despite these variations intensity calculations support the assumed structural formula. Refractive indices are no = 1.631(2), nE = 1.610(2), Δn = 0.021. The infrared spectrum is intermediate between those of dravite and elbaite. The common alkali and calcium deficiencies of natural tourmalines may at least partly be explained by miscibilities towards (3a)-vacant end members. The apparent absence of (3a)-vacant tourmaline in nature is probably due to the lack of fluids that carry boron but no Na or Ca.  相似文献   

18.
直接使用粉末样品,用Minipal 4便携式能量色散X射线荧光光谱仪测定多金属矿样品中的三氧化二铝、氧化镁、二氧化硅、氧化钾、氧化钙、三氧化二铁、硫、铜、锰、锌、铋、锑、铅、镓、银、砷、锡等17种组分,方法简便、快速,用多金属矿石国家一级标准物质验证,分析结果与标准值基本符合;精密度试验表明,各组分的相对标准偏差(RSD,n=12)均小于12%,能够满足矿山和野外现场快速测定的要求。  相似文献   

19.
Tourmaline-out isograd formed by the breakdown of tourmaline is defined in the upper amphibolite-facies metapelites in the Yanai area, Ryoke metamorphic belt, SW Japan. The rim composition of tourmaline progressively becomes aluminous with ascending metamorphic grade, and the chemical zoning of tourmaline is controlled by X□AlNa–1Mg–1 and MgTiYAl–2 vectors in low- to medium-grade zones where muscovite is stable, whereas it is controlled by Mg(OH)YAl–1O–1, CaMgOX–1 YAl–1(OH)–1 and MgTiYAl–2 vectors in further higher–grade, muscovite-unstable zones. The size of tourmaline increases drastically where breakdown of muscovite+quartz takes place, probably due to the growth of tourmaline during breakdown of muscovite. On the high-temperature side of the tourmaline-out isograd, depletion of whole-rock boron is observed. Escape of boron-bearing melt or the fluid evolved from the melt during its crystallization probably caused this depletion, although locally trapped, boron-bearing melt or fluid formed irregularly shaped tourmaline and dumortierite during retrograde metamorphism.  相似文献   

20.
Kornerupine and associated minerals in 31 samples of high-graderocks relatively rich in Al and Mg were analysed by wet chemistry,ion microprobe mass analyser, electron microprobe and X-raypowder diffraction. For 11 samples of kornerupine and threesamples of biotite (F only) analysed by both wet chemical andion microprobe methods, the best agreement was obtained forB2O3, whereas the ion microprobe Li2O values were systematicallysomewhat higher than the wet chemical values. The wet chemicalmethods give Li2O=0–0?19 wt.%; BeO=0–0?032 wt.%;B2O3=0–4?01 wt.%; and F=0?07–0?77 wt.% in kornerupine,whereas ion microprobe analyses on other kornerupines give valuesup to 0?35 wt.% Li2O, O066 wt.% BeO, and 4?72 wt.% B2O3. Thesum B+Al+Fe3++Cr is close to 6?9 atoms per 22 (O, OH, F) or21?5 (O) in kornerupine. In general, Li/Fe ratios decrease as follows: kornerupine ?sapphirinebiotite> Crd (Na<0?03 per 18 oxygens)>tourmaline, garnet,orthopyroxene. However, for cordierite with Na>004, Li/Fedecreases as follows: cordierite>kornerupine. Sapphirineand sillimanite are the only associated minerals to incorporatesignificant boron (0?1–0?85 wt.% B2O3) and then only whenthe single site for B in kornerupine is approaching capacity.Sillimanite B2O3 contents increase regularly with kornerupineF. Fractionation of fluorine increases as follows: kornerupine<biotite<tourmaline,and Kkrn-BtD=(F/OH)Krn/(F/(OH)Bt (assuming ideal anion composition)increases with biotite Ti. Kornerupine B2O3 content is a measureof B2O3 activity in associated metamorphic fluid, whereas sillimaniteB2O3 content increases with temperature, exceeding 0?4 wt.%whenT=900?C at very low water activities. New data on 11 kornerupines and literature data indicate thatthe unit cell parameters a, c, and V decrease with increasingB content and b, c, and V increase with increasing Fe3+ content.In Fe3+-poor kornerupines, b increases with Mg and with (Mg+ Fe2+) but the effect of Mg on b via the substitution VIMg+IVSi=VIAl+IVAloverwhelms the effect of Fe2+=Mg substitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号