首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the effects of natural and anthropogenic changes in confining margin width by applying remote sensing techniques – fusing LiDAR topography with image‐derived bathymetry – over a large spatial extent: 58 km of the Snake River, Wyoming, USA. Fused digital elevation models from 2007 and 2012 were differenced to quantify changes in the volume of stored sediment, develop morphological sediment budgets, and infer spatial gradients in bed material transport. Our study spanned two similar reaches that were subject to different controls on confining margin width: natural terraces versus artificial levees. Channel planform in reaches with similar slope and confining margin width differed depending on whether the margins were natural or anthropogenic. The effects of tributaries also differed between the two reaches. Generally, the natural reach featured greater confining margin widths and was depositional, whereas artificial lateral constriction in the leveed reach produced a sediment budget that was closer to balanced. Although our remote sensing methods provided topographic data over a large area, net volumetric changes were not statistically significant due to the uncertainty associated with bed elevation estimates. We therefore focused on along‐channel spatial differences in bed material transport rather than absolute volumes of sediment. To complement indirect estimates of sediment transport derived by morphological sediment budgeting, we collected field data on bed mobility through a tracer study. Surface and subsurface grain size measurements were combined with bed mobility observations to calculate armoring and dimensionless sediment transport ratios, which indicated that sediment supply exceeded transport capacity in the natural reach and vice versa in the leveed reach. We hypothesize that constriction by levees induced an initial phase of incision and bed armoring. Because levees prevented bank erosion, the channel excavated sediment by migrating rapidly across the restricted braidplain and eroding bars and islands. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Sediment production, transport and yield were quantified over various timescales in response to rainfall and runoff within an alluvial gully (7 · 8 ha), which erodes into dispersible sodic soils of a small floodplain catchment (33 ha) along the Mitchell River, northern Australia. Historical air photographs and recent global positioning system (GPS) surveys and LiDAR data documented linear increases in gully area and volume, indicating that sediment supply has been relatively consistent over the historic period. Daily time lapse photography of scarp retreat rates and internal erosion processes also demonstrated that erosion from rainfall and runoff consistently supplied fine washload (< 63 µm) sediment in addition to coarse lags of sand bed material. Empirical measurements of suspended sediment concentrations (10 000 to >100 000 mg/L) and sediment yields (89 to 363 t/ha/yr) were high for both Australian and world data. Total sediment yield estimated from empirical washload and theoretical bed material load was dominated by fine washload (< 63 µm). A lack of hysteresis in suspended sediment rating curves, scarp retreat and sediment yield correlated to rainfall input, and an equilibrium channel outlet slope supported the hypothesis that partially or fully transport‐limited conditions predominated along the alluvial gully outlet channel. This is in contrast to sediment supply‐limited conditions on uneroded floodplains above gully head scarps. While empirical data presented here can support future modelling efforts to predict suspended sediment concentration and yield under the transport limiting situations, additional field data will also be needed to better quantify sediment erosion and transport rates and processes in alluvial gullies at a variety of spatial and temporal scales. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
We exploit a natural experiment caused by an extreme flood (~500 year recurrence interval) and sediment pulse derived from more than 2500 concurrent landslides to explore the influence of valley‐scale geomorphic controls on sediment slug evolution and the impact of sediment pulse passage and slug deposition and dispersion on channel stability and channel form. Sediment slug movement is a crucial process that shapes gravel‐bed rivers and alluvial valleys and is an important mechanism of downstream bed material transport. Further, increased bed material transport rates during slug deposition can trigger channel responses including increases in lateral mobility, channel width, and alluvial bar dominance. Pre‐ and post‐flood LiDAR and aerial photographs bracketing the 2007 flood on the Chehalis River in south‐western Washington State, USA, document the channel response with high spatial and temporal definition. The sediment slug behaved as a Gilbert Wave, with both channel aggradation and sequestration of large volumes of material in floodplains of headwaters' reaches and reaches where confined valleys enter into broad alluvial valleys. Differences between the valley form of two separate sub‐basins impacted by the pulse highlight the important role channel and channel‐floodplain connectivity play in governing downstream movement of sediment slug material. Finally, channel response to the extreme flood and sediment pulse illustrate the connection between bed material transport and channel form. Specifically, the channel widened, lateral channel mobility increased, and the proportion of the active channel covered by bars increased in all reaches in the study area. The response scaled tightly with the relative amount of bed material sediment transport through individual reaches, indicating that the amount of morphological change caused by the flood was conditioned by the simultaneous introduction of a sediment pulse to the channel network. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Numerous morphological changes can occur where two channels of distinct sediment and flow regimes meet, including abrupt shifts in channel slope, cross‐sectional area, planform style, and bed sediment size along the receiving channel. Along the Rio Chama between El Vado and Abiquiu Dams, northern New Mexico, arroyo tributaries intermittently deliver sediment from erodible sandstone and shale canyon walls to the mainstem channel. Much of the tributary activity occurs in flash floods and debris flows during summer thunderstorms, which often load the channel with sand and deposit coarser material at the mainstem confluence. In contrast, mainstem channel flow is dominated by snowmelt runoff. To examine tributary controls, we systematically collected cross‐section elevation and bed sediment data upstream and downstream of 26 tributary confluences along a 17 km reach. Data from 203 cross‐sections were used to build a one‐dimensional hydraulic model for comparing estimated channel parameters at bankfull and low‐flow conditions at these sites As compared to intermediate reaches, confluences primarily impact gradient and bed sediment size, reducing both parameters upstream of confluences and increasing them downstream. Cross‐section area is also slightly elevated above tributary confluences and reduced below. Major shifts in slope and bed sediment size at confluences appear to drive variations in sediment entrainment and transport capacity and the relative storage of sand along the channel bed. The data were analyzed and compared to models of channel organization based on lateral inputs, such as the Network Variance Model and the Sediment Link Concept. At a larger scale, hillslope ? channel coupling increases in the downstream third of the study reach, where the canyon narrows, resulting in steeper slopes and more continuous coarse bed material along the mainstem, and thus, limiting the contrast with tributary confluences. However, channel form and sediment characteristics are highly variable along the study reach, reflecting variations in the size and volume of sediment inputs related to the surface geology in tributary watersheds, morphology of the Rio Chama at the junction (i.e. bends, confinement), and the relative magnitude and location of past depositional events. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
A 2D depth‐averaged model has been developed for simulating water flow, sediment transport and morphological changes in gravel‐bed rivers. The model was validated with a series of laboratory experiments and then applied to the Nove reach of the Brenta River (Northern Italy) to assess its bed material transport, interpret channel response to a series of intensive flood events (R.I. ≈ 10 years) and provide a possible evolutionary scenario for the medium term. The study reach is 1400 m long with a mean slope of 0.0039 m m?1. High‐resolution digital terrain models were produced combining LiDAR data with colour bathymetry techniques. Extensive field sedimentological surveys were also conducted for surface and subsurface material. Data were uploaded in the model and the passage of two consecutive high intensity floods was simulated. The model was run under several hypotheses of sediment supply: one considering substantial equilibrium between sediment input and transport capacity, and the others reducing the sediment supply. The sediment supply was then calibrated comparing channel morphological changes as observed in the field and calculated by the model. Annual bed material transport was assessed and compared with other techniques. Low‐frequency floods (R.I. ≈ 1.5 years) are expected to produce negligible changes in the channel while high floods may erode banks rather than further incising the channel bed. Location and distribution of erosion and deposition areas within the Nove reach were predicted with acceptable biases stemming from imperfections of the model and the specified initial, boundary and forcing conditions. A medium‐term evolutionary scenario simulation underlined the different response to and impact of a consecutive sequence of floods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
An extensive literature about fluvial sediment waves, slugs or pulses has emerged in the past 20 years. The concept has been useful in many respects, but has been applied to diverse phenomena using a variety of definitions. Moreover, inferred linkages between channel‐bed changes and sediment loads are often not justifiable. This paper reviews concepts of large fluvial sediment waves at scales extending to several tens of kilometres. It points out constraints on the inferences that can be made about sediment loads based on changes in channel‐bed elevation at this scale where channel sediment interacts with storage in floodplain and terrace deposits. The type area of G. K. Gilbert's initial sediment‐wave concept is re‐examined to show that neither wave translation nor dispersion occurred in the simple manner commonly assumed. Channel aggradation and return to graded conditions provide an alternative theory explaining Gilbert's observed bed‐elevation changes. Recognizing the evidence and implications of the former passage of a large‐scale bed wave is essential to the accurate diagnosis of catchment conditions and the adoption of appropriate river restoration goals or methods. Sediment loads, water quality, channel morphologic stability and aquatic ecosystems often reflect changes in sediment storage long after the channel bed has returned to grade. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
The relation between morphological change and patterns of variation in bedload transport rate in braided streams was observed by repeated, daily topographic surveys over a 25 day study period in a 60 m reach of the proglacial Sunwapta River, Alberta, Canada. There are two major periods of morphological change, each lasting several days and each involving the complete destruction and reconstruction of bar complexes. Bar complex destruction was caused by redirection of the flow and by downstream extension of the confluence scour zone upstream. Reconstruction involved accretion of unit bars on bar head, flank and tail and in one case was initiated by disection of a large, lobate unit bar. High rates of sediment movement, measured from net scour and fill of the cross-sections, coincided with these morphological changes. Sediment was supplied from both bed and bank erosion, and patterns and distances of transfer were highly variable. Rates of transport estimated by matching upstream erosional volumes with downstream deposition were much greater than those estimated from either a step-length approach or a sediment budget. Measurements of scour and fill and observations of morphological change indicate that step lengths (virtual transport distances) were typically 40–100m during a diurnal discharge cycle. Shorter step lengths occurred when transfer was confined to a single anabranch and longer steps involved channel changes at the scale of the entire reach. Sediment budgeting was used to describe the spatial patterns of sediment transport associated with the morphological changes and to estimate minimum daily reach-averaged transport rates. Mean bedload transport rates correlate with discharge, but with considerable scatter. The largest deviations from the mean relation can be tied to phases of channel incision, bank erosion, scour hole migration, bar deposition and channel filling apparently controlled by changes and fluctuations in sediment supply from upstream, independent of discharge. These are interpreted as field evidence of ‘autopulses’ or ‘macropulses’ in bedload transport, previously observed only in laboratory models of braided streams.  相似文献   

8.
The geomorphic effect of introducing a gravel augmentation totaling 520 m3 into a gravel‐bed stream during a dam‐controlled flood in May of 2015 was monitored with bedload transport measurements, an array of seismometers, and repeated topographic surveys. Half of the augmented gravel was injected into the flow with front‐end loaders on the rising limb of the flood and the other half was injected on the first day of the peak. Virtually all of the gravel transported past the injection point was deposited within about 7 to 10 channel widths of the injection point. Most of the injected gravel deposited along the left bank of the river whereas the right half of the channel bed was dominated by scour. The downstream third of the depositional area consisted of a small dune field that developed prior to the second gravel injection and subsequently migrated about one channel width downstream. A second depositional front was observed upstream from the gravel injection point, where a delta‐like wedge of bed material developed in the first hours of the flow release and changed little over the remainder of the release. These two depositional areas represent small‐scale bed‐material storage reservoirs with the potential to accumulate and periodically release packets of bed material. Interactions with such storage reservoirs are hypothesized to cause large bed‐material pulses to disperse by fragmenting into multiple smaller pulses. As a refinement to the conceptual model that views sediment pulse evolution in terms of dispersion and translation, the concept of pulse fragmentation has practical implications for gravel management. It implies that gravel augmentations can produce morphologic changes at locations that are separated from the augmentation point by arbitrarily long reaches, and it highlights the dependence of pulse propagation rates on the nature and distribution of the bed‐material storage reservoirs in the channel system. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
As with most Italian rivers, the Reno River has a long history of human modification, related also to morphological changes of the lower Po River since Roman times, but in the last decades, significant land use changes in the headwaters, dam construction, torrent control works and extensive bed material mining have caused important channel morphology and sediment budget changes. In this paper, two main types of channel adjustment, riverbed incision and channel narrowing, are analysed. Riverbed degradation is discussed by comparing four different longitudinal profiles surveyed in 1928, 1951, 1970 and 1998 in the 120 km long reach upstream of the outlet. The analysis of channel narrowing is carried out by comparing a number of cross‐sections surveyed in different years across the same downstream reach. Field sediment transport measurements of seven major floods that occurred between 2003 and 2006 are compared with the bedload transport rates predicted by the most renowned equations. The current low bedload yield is discussed in terms of sediment supply limited conditions due to land use changes, erosion‐control works and extensive and out of control bed material mining that have affected the Reno during the last decades. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
In the last few centuries humans have modified rivers, and rivers have responded with noticeable changes in sedimentary dynamics. The objective of this study is to assess these responses of the sedimentary dynamics. Therefore, we calculated a sediment budget for eroded and deposited sediment volumes in a ~12‐km long floodplain section of the largest semi‐natural embanked but still dynamic lower Rhine distributary, for ~50‐years time slices between ad 1631 and present. This is the period during which embanked floodplains were formed by downstream migration of meander bends between confining dykes. Our sediment budget involves a detailed reconstruction of vertical and lateral accretion rates and erosion rates of floodplain sediment. To do so, we developed a series of historical geomorphological maps, and lithogenetic cross‐sections. Based on the maps and cross‐sections, we divided the floodplain into building blocks representing channel bed and overbank sediment bodies. Chronostratigraphy within the blocks was estimated by interpretation of heavy metal profiles and from optically stimulated luminescence (OSL) dating results. Sediment budgets were hence calculated as a change of volume of each building block between time steps. The amount of lateral accretion initially increased, as a result of island and sand bar formation following embankment. From the eighteenth century onwards, there was a decrease of lateral processes in time, which is a result of straightening of the river by human activities, and a reduction of water and sediment supply due to the construction of a new upstream bifurcation. With straightening of the river, the floodplain area grew. Artificial fixation of the channel banks after ad 1872 prevented lateral activity. From then on, overbank deposition became the main process, leading to a continuous increase of floodplain elevation, and inherent decrease of flooding frequency and sediment accumulation rate. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Downed large wood (LW) in floodplains provides habitat and nutrients for diverse organisms, influences hydraulics and sedimentation during overbank flows, and affects channel form and lateral migration. Very few studies, however, have quantified LW volumes in floodplains that are unaltered by human disturbance. We compare LW volumes in relatively unaltered floodplains of semiarid boreal lowland, subtropical lowland, and semiarid temperate mountain rivers in the United States. Average volumes of downed LW are 42.3 m3 ha?1, 50.4 m3 ha?1, and 116.3 m3 ha?1 in the semiarid boreal, subtropical, and semiarid temperate sites, respectively. Observed patterns support the hypothesis that the largest downed LW volumes occur in the semiarid temperate mountain sites, which is likely linked to a combination of moderate‐to‐high net primary productivity, temperature‐limited decomposition rates, and resulting slow wood turnover time. Floodplain LW volumes differ among vegetation types within the semiarid boreal and semiarid temperate mountain regions, reflecting differences in species composition. Lateral channel migration and flooding influence vegetation communities in the semiarid boreal sites, which in turn influences floodplain LW loads. Other forms of disturbance such as fires, insect infestations, and blowdowns can increase LW volumes in the semiarid boreal and semiarid temperate mountain sites, where rates of wood decay are relatively slow compared with the subtropical lowland sites. Although sediment is the largest floodplain carbon reservoir, floodplain LW stores substantial amounts of organic carbon and can influence floodplain sediment storage. In our study sites, floodplain LW volumes are lower than those in adjacent channels, but are higher than those in upland (i.e. non‐floodplain) forests. Given the important ecological and physical effects of floodplain LW, efforts to add LW to river corridors as part of restoration activities, and the need to quantify carbon stocks within river corridors, we urge others to quantify floodplain and instream LW volumes in diverse environments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
In‐channel sand mining by dredge removes large quantities of bed sediment and alters channel morphodynamic processes. While the reach‐scale impacts of dredging are well documented, the effects of the dredged borrow pit on the local flow and sediment transport are poorly understood. These local effects are important because they control the post‐dredge evolution of the borrow pit, setting the pit lifespan and affecting reach‐scale channel morphology. This study documents the observed morphological evolution of a large (1·46 million m3) borrow pit mined on a lateral sandbar in the lower Mississippi River using a time‐series of multibeam bathymetric surveys. During the 2·5 year time‐series, 53% of the initial pit volume infilled with sediment, decreasing pit depth by an average of 0·88 m yr?1. To explore the controls of the observed infilling, a morphodynamic model (Delft3D) was used to simulate flow and sediment transport within the affected river reach. The model indicated that infilling rates were primarily related to the riverine sediment supply and pit geometry. The pit depth and length influenced the predicted magnitude of the pit bed shear stress relative to its pre‐dredged value, i.e. the bed‐stress reduction ratio (R*), a metric that was correlated with the magnitude and spatial distribution of infilling. A one‐dimensional reduced‐complexity model was derived using predicted sediment supply and R* to simulate patterns of pit infilling. This simplified model of borrow‐pit evolution was able to closely approximate the amount and patterns of sediment deposition during the study period. Additional model experiments indicate that, for a borrow pit of a set volume, creating deep, longitudinally‐shorter borrow pits significantly increased infilling rates relative to elongated pits. Study results provide insight into the resilience of alluvial river channels after a disturbance and the sustainability of sand mining as a sediment source for coastal restoration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
We analyzed variation of channel–floodplain suspended sediment exchange along a 140 km reach of the lower Amazon River for two decades (1995–2014). Daily sediment fluxes were determined by combining measured and estimated surface sediment concentrations with river–floodplain water exchanges computed with a two‐dimensional hydraulic model. The average annual inflow to the floodplain was 4088 ± 2017 Gg yr?1 and the outflow was 2251 ± 471 Gg yr?1, respectively. Prediction of average sediment accretion rate was twice the estimate from a previous study of this same reach and more than an order of magnitude lower than an estimate from an earlier regional scale study. The amount of water routed through the floodplain, which is sensitive to levee topography and increases exponentially with river discharge, was the main factor controlling the variation in total annual sediment inflow. Besides floodplain routing, the total annual sediment export depended on the increase in sediment concentration in lakes during floodplain drainage. The recent increasing amplitude of the Amazon River annual flood over two decades has caused a substantial shift in water and sediment river–floodplain exchanges. In the second decade (2005–2014), as the frequency of extreme floods increased, annual sediment inflow increased by 81% and net storage increased by 317% in relation to the previous decade (1995–2004). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
We use field measurements and airborne LiDAR data to quantify the potential effects of valley geometry and large wood on channel erosional and depositional response to a large flood (estimated 150-year recurrence interval) in 2011 along a mountain stream. Topographic data along 3 km of Biscuit Brook in the Catskill Mountains, New York, USA reveal repeated downstream alternations between steep, narrow bedrock reaches and alluvial reaches that retain large wood, with wood loads as high as 1261 m3 ha−1. We hypothesized that, within alluvial reaches, geomorphic response to the flood, in the form of changes in bed elevation, net volume of sediment eroded or aggraded, and grain size, correlates with wood load. We hypothesized that greater wood load corresponds to lower modelled average velocity and less channel-bed erosion during the flood, and finer median bed grain size and a lower gradation coefficient of bed sediment. The results partly support this hypothesis. Wood results in lower reach-average modelled velocity for the 2011 flood, but the magnitude of change in channel-bed elevation after the 2011 flood among alluvial and bedrock reaches does not correlate with wood load. Wood load does correlate with changes in sediment volume and bed substrate, with finer grain size and smaller sediment gradation in reaches with more wood. The proportion of wood in jams is a stronger predictor of bed grain-size characteristics than is total wood load. We also see evidence of a threshold: greater wood load correlates with channel aggradation at wood loads exceeding approximately 200 m3 ha−1. In this mountain stream, abundant large wood in channel reaches with alluvial substrate creates lower velocity that results in finer bed material and, when wood load exceeds a threshold, reach scale increases in aggradation. This suggests that reintroducing small amounts of wood or one logjam for river restoration will have limited geomorphic effects. © 2020 John Wiley & Sons, Ltd.  相似文献   

15.
16.
This study uses a unique 10‐year tracer dataset from a small gravel‐bed stream to examine bed mobility and sediment dispersion over long timescales and at a range of spatial scales. Seasonal tracer data that captured multiple mobilizing events was examined, while the effects of morphology on bed mobility and sediment dispersion were captured at three spatial scales: within morphological units (unit scale), between morphological units (reach scale) and between reaches with different channel morphologies (channel scale). This was achieved by analyzing both reach‐average mobility and travel distance data, as well as the development of ‘mobility maps’ that capture the spatial variability in tracer mobility within the channel. The tracer data suggest that sediment transport in East Creek remains near critical the majority of the time, with only rare large events resulting in high mobility rates and grain travel distances large enough to move sediment past dominant bedforms. While a variable capturing both the magnitude and frequency of flow events within a season yielded a better predictor to sediment mobility and dispersion than peak discharge alone, the distribution of events of different magnitude within the season played a large role in determining tracer mobility rates and travel distances. The effects of morphology differed depending on the analysis scale, demonstrating the importance of scale, and therefore study design, when examining the effect of morphology on sediment transport. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Geomorphological analyses of the morphology, lithostratigraphy and chronology of Holocene alluvial fills in a 2·75 km long piedmont reach of the wandering gravel‐bed River South Tyne at Lambley in Northumberland, northern England, have identified spatial and temporal patterns of late Holocene channel and floodplain development and elucidated the relationship between reach‐ and subreach‐scale channel transformation and terrace formation. Five terraced alluvial fills have been dated to periods sometime between c. 1400 BC –AD 1100, AD 1100–1300, AD 1300–1700, AD 1700–1850 and from AD 1850 to the present. Palaeochannel morphology and lithofacies architecture of alluvial deposits indicate that the past 3000 years has been characterized by episodic channel and floodplain change associated with development and subsequent recovery of subreach‐scale zones of instability which have been fixed in neither time nor space. Cartographic and photographic evidence spanning the past 130 years suggests channel transformation can be accomplished in as little as 50 years. The localized and episodic nature of fluvial adjustment at Lambley points to the operation of subreach‐scale controls of coarse sediment transfers. These include downstream propagation of sediment waves, as well as internal controls imposed by differing valley floor morphology, gradient and boundary materials. However, the preservation of correlated terrace levels indicates that major phases of floodplain construction and entrenchment have been superimposed over locally complex patterns of sediment transfer. Reach‐scale lateral and vertical channel adjustments at Lambley appear to be closely related to climatically driven changes in flood frequency and magnitude, with clusters of extreme floods being particularly important for accomplishing entrenchment and reconfiguring the pattern of localized instability zones. Confinement of flood flows by valley entrenchment, and contamination of catchment river courses by metal‐rich fine sediments following recent historic mining operations, have combined to render the South Tyne at Lambley increasingly sensitive to changes in flood regimes over the past 1000 years. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Anthropogenic climate change is expected to change the discharge and sediment transport regime of river systems. Because rivers adjust their channels to accommodate their typical inputs of water and sediment, changes in these variables can potentially alter river morphology. In this study, a hierarchical modeling approach was developed and applied to examine potential changes in reach‐averaged bedload transport and spatial patterns of erosion and deposition for three snowmelt‐dominated gravel‐bed rivers in the interior Pacific Northwest. The modeling hierarchy was based on discharge and suspended‐sediment load from a basin‐scale hydrologic model driven by a range of downscaled climate‐change scenarios. In the field, channel morphology and sediment grain‐size data for all three rivers were collected. Changes in reach‐averaged bedload transport were estimated using the Bedload Assessment of Gravel‐bedded Streams (BAGS) software, and the Cellular Automaton Evolutionary Slope and River (CAESAR) model was used to simulate the spatial pattern of erosion and deposition within each reach to infer potential changes in channel geometry and planform. The duration of critical discharge was found to control bedload transport. Changes in channel geometry were simulated for the two higher‐energy river reaches, but no significant morphological changes were found for a lower‐energy reach with steep, cohesive banks. Changes in sediment transport and river morphology resulting from climate change could affect the management of river systems for human and ecological uses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The composition, grain‐size, and flux of stream sediment evolve downstream in response to variations in basin‐scale sediment delivery, channel network structure, and diminution during transport. Here, we document downstream changes in lithology and grain size within two adjacent ~300 km2 catchments in the northern Rocky Mountains, USA, which drain differing mixtures of soft and resistant rock types, and where measured sediment yields differ two‐fold. We use a simple erosion–abrasion mass balance model to predict the downstream evolution of sediment flux and composition using a Monte Carlo approach constrained by measured sediment flux. Results show that the downstream evolution of the bed sediment composition is predictably related to changes in underlying geology, influencing the proportion of sediment carried as bedload or suspended load. In the Big Wood basin, particle abrasion reduces the proportion of fine‐grained sedimentary and volcanic rocks, depressing bedload in favor of suspended load. Reduced bedload transport leads to stronger bed armoring, and coarse granitic rocks are concentrated in the stream bed. By contrast, in the North Fork Big Lost basin, bedload yields are three times higher, the stream bed is less armored, and bed sediment becomes dominated by durable quartzitic sandstones. For both basins, the geology‐based mass balance model can reproduce within ~5% root‐mean‐square error the composition of the bed substrate using realistic erosion and abrasion parameters. As bed sediment evolves downstream, bedload fluxes increase and decrease as a function of the abrasion parameter and the frequency and size of tributary junctions, while suspended load increases steadily. Variable erosion and abrasion rates produce conditions of variable bed‐material transport rates that are sensitive to the distribution of lithologies and channel network structure, and, provided sufficient diversity in bedrock geology, measurements of bed sediment composition allow for an assessment of sediment source areas and yield using a simple modeling approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
The sediment delivery ratio was estimated for two periods (28 years and eight years) following reforestation of seven tributary catchments (0·33 to 0·49 km2) in the headwaters of the Waipaoa River basin, North Island, New Zealand. In these catchments, gully erosion, which largely resulted from clearance of the natural forest between 1880 and 1920, is the main source of sediment to streams. Reforestation commenced in the early 1960s in an attempt to stabilize hillslopes and reduce sediment supply. Efforts have been partially successful and channels are now degrading, though gully erosion continues to supply sediment at accelerated rates in parts of the catchment. Data from the area indicate that the sediment delivery ratio (SDR) can be estimated as a function of two variables, ψ (the product of catchment area and channel slope) and A g (the temporally averaged gully area for the period). Sediment input from gullies was determined from a well defined relationship between sediment yield and gully area. Sediment scoured from channels was estimated from dated terrace remnants and the current channel bed. Terrace remnants represent aggradation during major floods. This technique provides estimates of SDR averaged over periods between large magnitude terrace‐forming events and with the present channel bed. The technique averages out short‐term variability in sediment flux. Comparison of gully area and sediment transport between two periods (1960–1988 and 1988–1996) indicates that the annual rate of sediment yield from gullies for the later period has decreased by 77 per cent, sediment scouring in channels has increased by 124 per cent, and sediment delivered from catchments has decreased by 78 per cent. However, average SDR for the tributaries was found to be not significantly different between these periods. This may reflect the small number of catchments examined. It is also due to the fact that the volume of sediment scoured from channels was very small relative to that produced by gullies. According to the equation for SDR determined for the Waipaoa headwaters, SDR increases with increasing catchment area in the case where A g and channel slope are fixed. This is because the amount of sediment produced from a channel by scouring increases with increasing catchment area. However, this relationship does not hold for the main stem of the study catchments, because sediment delivered from its tributaries still continues to accumulate in the channel. Higher order channels are, in effect, at a different stage in the aggradation/degradation cycle and it will take some time until a main channel reflects the effects of reforestation and its bed adjusts to net degradation. Results demonstrate significant differences among even low order catchments, and such differences will need to be taken into consideration when using SDR to estimate sediment yields. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号