首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The purpose of this study is to evaluate the ultimate strength and ductility capacity of stiffened steel box columns failed by local and overall interaction instability under a constant compressive axial force and cyclic lateral loading. In a companion paper, a finite element formulation accounting for both geometrical and material non‐linearity was developed to obtain cyclic hysteretic behaviour of such columns. In this paper, the effect of loading patterns on the cyclic inelastic behaviour is first studied; then, a parametric study is carried out to investigate the effects of flange plate width–thickness ratio parameter, column slenderness ratio parameter, stiffener's equivalent slenderness ratio parameter, magnitude of axial load, and material type of stiffeners on the strength and ductility of the columns. Last but not least, empirical formulae of both the ultimate strength and ductility capacities are proposed for stiffened steel box columns, and the limit values of various parameters for the required ductility demand are also discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
Concrete‐filled steel columns have been widely used in civil and architectural constructions throughout the world in recent years. This study is concerned with the cyclic elastoplastic analysis and capacity prediction of concrete‐filled steel columns having thick‐ and thin‐walled stiffened box‐shaped sections. An analytical procedure for determining the ultimate state of the concrete‐filled steel column is proposed based on the fiber analysis technique. Strength and ductility predictions are made by means of a new failure criterion. This is proposed based on the average failure strain of concrete and steel at critical regions. A recently developed monotonic stress–strain relation for confined concrete is modified so that it can be used in the analysis of thin‐ or thick‐walled section columns with stiffeners. A simple cyclic rule is introduced into this model in order to be used in cyclic analysis. Material non‐linearity of steel is represented by the modified two surface model developed at Nagoya University. The predictions are then compared with the existing experimental results and found to exhibit satisfactory agreement. Both small‐ and large‐scaled columns are considered in the comparisons. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
The aim of this work is to model beam‐column behavior in a computationally effective manner, revealing reliably the overall response of reinforced concrete members subjected to intensive seismic loading. In this respect, plasticity and damage are considered in the predominant longitudinal direction, allowing for fiber finite element modeling, while in addition the effect of inelastic buckling of longitudinal rebars, which becomes essential at later stages of intensive cyclic loading, is incorporated. Α smooth plasticity‐damage model is developed for concrete, accounting for unilateral compressive and tensile behavior, nonlinear unloading and crack closure phenomena. This is used to address concrete core crushing and spalling, which triggers the inelastic buckling of longitudinal rebars. For this reason, a uniaxial local stress‐strain constitutive relation for steel rebars is developed, which is based on a combined nonlinear kinematic and isotropic hardening law. The proposed constitutive model is validated on the basis of existing experimental data and the formulation of the buckling model for a single rebar is developed. The cross section of rebar is discretized into fibers, each one following the derived stress‐strain uniaxial law. The buckling curve is determined analytically, while equilibrium is imposed at the deformed configuration. The proposed models for concrete and rebars are embedded into a properly adjusted fiber beam‐column element of reinforced concrete members and the proposed formulation is verified with existing experimental data under intensive cyclic loading.  相似文献   

4.
This study details a new moment connection that overcomes difficulties in achieving field‐weld quality and eliminates steel beam buckling encountered in steel moment connections. This study presents cyclic test and finite element analysis results of full‐scale subassemblies using steel reduced flange plates (RFPs) to connect steel beam flanges and the column without any other direct connection. Since the RFP connection is designed as strong column‐strong beam‐weak RFPs, the RFP functions as a structural fuse that eliminates weld fractures and beam buckling. Test and analytical results show that (1) the connections transferred the entire beam flexural strength to the column and reached an interstorey drift of 4% with minor strength degradation, (2) failure of the connections was owing to buckling or fracturing of the RFP and not of the beam, and (3) the RFP connection subassembly, modelled using the nonlinear finite element computer program ABAQUS, exhibited hysteretic behaviour similar to that of the flange plate (FP) moment connection subassembly. The inelastic buckling force of the RFP was also evaluated by nonlinear regression analyses performed on a nonlinear model that relates buckling force to RFP geometries. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents the results of a multi‐level pseudo‐dynamic seismic test program that was performed to assess the performance of a full‐scale three‐bay, two‐storey steel–concrete composite moment‐resisting frame built with partially encased composite columns and partial‐strength beam‐to‐column joints. The system was designed to develop a ductile response in the joint components of beam‐to‐column joints including flexural yielding of beam end plates and shear yielding of the column web panel zone. The ground motion producing the damageability limit state interstorey drift caused minor damage while the ultimate limit state ground motion level entailed column web panel yielding, connection yielding and plastic hinging at the column base connections. The earthquake level chosen to approach the collapse limit state induced more damage and was accompanied by further column web panel yielding, connection yielding and inelastic phenomena at column base connections without local buckling. During the final quasi‐static cyclic test with stepwise increasing displacement–amplitudes up to an interstorey drift angle of 4.6%, the behaviour was ductile although cracking of beam‐to‐end‐plate welds was observed. Correlations with numerical simulations taking into account the inelastic cyclic response of beam‐to‐column and column base joints are also presented in the paper together. Inelastic static pushover and time history analysis procedures are used to estimate the structural behaviour and overstrength factors of the structural system under study. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
In order to effectively utilize results from quasi-static cyclic testing on structural components for the earthquake-induced collapse risk quantification of structures, the need exists to establish collapse-consistent loading protocols representing the asymmetric lateral drift demands of structures under low-probability of occurrence earthquakes. This paper summarizes the development of such protocols for experimental testing of steel columns prone to inelastic local buckling. The protocols are fully defined with a deformation- and a force-controlled parameter. They are generally applicable to quantify the capacity and demands of steel columns experiencing constant and variable axial load coupled with lateral drift demands. Through rigorous nonlinear earthquake collapse simulations, it is found that the building height, the column's local slenderness ratio, and ground motion type have the largest influence on the dual-parameter loading protocol indexes. Comprehensive comparisons with measured data from full-scale shake table collapse tests suggest that unlike routinely used symmetric cyclic loading histories, the proposed loading protocol provides sufficient information for modeling strength and stiffness deterioration in steel columns at large inelastic deformations.  相似文献   

7.
An experimental investigation of the cyclic shear behaviour of steel box girders was conducted on one‐quarter scale models, comprising of two specimens with longitudinally unstiffened webs and one specimen with longitudinally stiffened webs. All the specimens exhibited ductile behaviour. The tests evidenced significant increases in the shear strength and energy dissipation capacity regarding the use of thicker webs and the provision of longitudinal web stiffeners. The web stiffeners also enhanced the stable hysteresis behaviour without substantial degradation in the energy dissipation due to pinching. The test results are compared with the shear behaviour simulated by inelastic large deformation analysis incorporated with a sophisticated constitutive model. The hysteresis behaviour, peak cyclic shear stresses, energy dissipation, and deformation shapes of the three specimens are satisfactorily predicted by the analysis. It is verified that the presented analytical method can be used precisely for further investigations of box girders in shear. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents the results of 12 full‐scale tests on buckling‐restrained brace (BRB) specimens. A simple‐to‐fabricate all‐steel encasing joined by high‐strength bolts was used as the buckling‐restrainer mechanism. Steel BRBs offer significant energy dissipation capability through nondeteriorating inelastic response of an internal ductile core. However, seismic performance of BRBs is characterized by interaction between several factors. In this experimental study, the effects of core‐restrainer interfacial condition, gap size, loading history, bolt spacing, and restraining capacity are evaluated. A simple hinge detail is introduced at the brace ends to reduce the flexural demand on the framing components. Tested specimens with bare steel contact surfaces exhibited satisfactory performance under the American Institute of Steel Construction qualification test protocol. The BRBs with friction‐control self‐adhesive polymer liners and a graphite‐based dry lubricant displayed larger cumulative inelastic ductility under large‐amplitude cyclic loading, exceeding current code minimum requirements. The BRB system is also examined under repeated fast‐rate seismic deformation history. This system showed significant ductility capacity and remarkable endurance under dynamic loading. Furthermore, performance is qualified under long‐duration loading history from subduction zone's megathrust type of earthquake. Predictable and stable performance of the proposed hinge detail was confirmed by the test results. Internally imposed normal thrust on the restrainer is measured using series of instrumented bolts. Weak‐ and strong‐axis buckling responses of the core are examined. Higher post‐yield stiffness was achieved when the latter governed, which could be advantageous to the overall seismic response of braced frames incorporating BRBs.  相似文献   

9.
A one‐dimensional model is proposed for the static and dynamic analysis of tubular steel bridge piers subjected to strong ground motions. The present formulation does not require experimental results nor shell analysis to obtain the constitutive equation of the model, which shows strength deterioration. The material properties and dimensions of bridge piers are required for static and dynamic analysis of the present model. The present analysis consists of two steps. The first step is to obtain the stress and strain relationship of the base plastic‐hinge region, where local inelastic buckling is observed. The modified Shanley's model and fiber elements are used to establish the compressive skeleton curve. The strength deterioration is taken into account in the resulting constitutive model. The second step is to analyze static and dynamic responses of tubular steel bridge piers. For overall analysis, the base plastic‐hinge region is discretized in the circumferential direction by using fiber elements whose constitutive equation was obtained in the first step. The validity of the present model has been confirmed through comparisons with existing experimental results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Dynamic instability of single storey frames having thin-walled columns has been investigated. The lateral loads sustained by the frame are dynamic in character, while the axial loads are deemed to be quasi-statically applied. The analytical model employed by the authors has the capability of modelling the combined action of the two ‘companion’ local modes whose amplitudes are variable along the length of the column and any type of end conditions of the members. For given levels of axial loads sustained by the columns, the magnitudes of lateral loads causing instability can be significantly smaller than those corresponding to static buckling, provided the dynamic load is of sufficient duration. There exists, however, a threshold value of axial force carried by the columns, below which there is no elastic instability—static or dynamic. For columns with overall critical loads several times greater than the local critical load, there is no danger of elastic instability, but the deflections under dynamic lateral loads of less than 1 per cent of the axial load may reach such huge values that there is a serious danger of localized plastic collapse. It is also shown that moment frames having thin-walled columns such as those fabricated out of cold formed steel are extremely vulnerable to moderate seismic excitations.  相似文献   

11.
Reinforced concrete columns with non‐ductile detailing typically exhibit a softening behavior characterized by severe degradation when subjected to cyclic lateral loads. Whether the response is brittle or ductile, shear failure occurs with an inclined through crack along which sliding occurs coupled with loss of horizontal and vertical load‐bearing capacity of the member. The rapid loss of resistance after the peak strength is reached is because of one or more of the following local failure mechanisms: brittle failure of poorly confined concrete; buckling of longitudinal reinforcing bars because of lack of adequate transverse reinforcement or following opening of stirrups after spalling of cover concrete; bond failure. In this study, a modeling strategy to build a detailed 3D finite element model capable of capturing all of the above‐mentioned local failure mechanisms is presented. In particular, a steel–concrete interface model for representing the interaction within the member between concrete core, cover and longitudinal and transverse reinforcement is proposed. Comparison with results of an experimental test of a shear‐sensitive column demonstrates the effectiveness of the simulation up to failure of the element. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A beam–column‐type finite element for seismic assessment of reinforced concrete (R/C) frame structures is presented. This finite element consists of two interacting, distributed flexibility sub‐elements representing inelastic flexural and shear response. Following this formulation, the proposed model is able to capture spread of flexural yielding, as well as spread of shear cracking, in R/C members. The model accounts for shear strength degradation with inelastic curvature demand, as well as coupling between inelastic flexural and shear deformations after flexural yielding, observed in many experimental studies. An empirical relationship is proposed for evaluating the average shear distortion of R/C columns at the onset of stirrup yielding. The proposed numerical model is validated against experimental results involving R/C columns subjected to cyclic loading. It is shown that the model can predict well the hysteretic response of R/C columns with different failure modes, i.e. flexure‐critical elements, elements failing in shear after flexural yielding, and shear‐critical R/C members. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
A series of hybrid and cyclic loading tests were conducted on a three‐story single‐bay full‐scale buckling‐restrained braced frame (BRBF) at the Taiwan National Center for Research on Earthquake Engineering in 2010. Six buckling‐restrained braces (BRBs) including two thin BRBs and four end‐slotted BRBs, all using welded end connection details, were installed in the frame specimen. The BRBF was designed to sustain a design basis earthquake in Los Angeles. In the first hybrid test, the maximum inter‐story drift reached nearly 0.030 rad in the second story and one of the thin BRBs in the first story locally bulged and fractured subsequently before the test ended. After replacing the BRBs in the first story with a new pair, a second hybrid test with the same but reversed direction ground motion was applied. The maximum inter‐story drifts reached more than 0.030 rad and some cracks were found on the gusset welds in the second story. The frame responses were satisfactorily predicted by both OpenSees and PISA3D analytical models. The cyclic loading test with triangular lateral force distribution was conducted right after the second hybrid test. The maximum inter‐story drift reached 0.032, 0.031, and 0.008 rad for the first to the third story, respectively. This paper then presents the findings on the local bulging failure of the steel casing by using cyclic test results of two thin BRB specimens. It is found that the steel casing bulging resistance can be computed from an equivalent beam model constructed from the steel core plate width and restraining concrete thickness. This paper concludes with the recommendations on the seismic design of thin BRB steel casings against local bulging failure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
An efficient component model has been developed that captures strength and stiffness deterioration of steel hollow structural section (HSS) columns. The proposed model consists of two fiber-based segments at a member's ends along with an elastic segment in between. The fibers exhibit nonlinear uniaxial stress–strain behavior, which is explicitly defined by uniaxial monotonic tensile and cyclic round coupon tests. The postbuckling behavior of an HSS column is traced through a proposed uniaxial effective stress–strain constitutive formulation, which includes a softening branch in compression and an energy-based deterioration rule to trace the influence of cyclic deterioration in the inelastic cyclic straining. These may be inferred by uniaxial stub-column tests. The component model captures the coupling between the column axial force and flexural demands. Consistent model parameters for a number of steel materials used in the steel construction in North America and Japan are proposed along with the associated model calibration process. The efficiency of the proposed model in predicting the hysteretic behavior of HSS columns is demonstrated by comparisons with physical steel column tests subjected to various loading histories, including representative ones of ratcheting prior to earthquake-induced collapse. The proposed model is implemented in an open-source finite element software for nonlinear response history analysis of frame structures. The effectiveness of the proposed model in simulating dynamic instability of steel frame buildings is demonstrated through nonlinear response simulations of a four-story steel frame building, which was tested at full-scale through collapse. Limitations as well as suggestions for future work are discussed.  相似文献   

15.
A modified force analogy method (MFAM) is developed to simulate the nonlinear inelastic response of reinforced concrete (RC) structures. Beam–column elements with three different plastic mechanisms are utilized to simulate inelastic response caused by moment and shear force. A multi‐linear hysteretic model is implemented to simulate the nonlinear inelastic response of RC member. The P‐Δ effect of the structure is also addressed in MFAM. Static and dynamic inelastic response of structure, damage condition and failure type for structural element, structural limit state and collapse time can also be simulated using MFAM. Compared with the general algorithm, the MFAM provides less computational time especially in the case of large structural system. It is also easier to be written as computer program. Three test data groups, which include cyclic loading test data of a non‐ductile RC bridge column, a two‐storey RC frame, and dynamic collapse test data of a non‐ductile RC portal frame, are selected to confirm the effectiveness of applying MFAM to simulate the inelastic behaviour of structures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The collapse of the Olive View Hospital Psychiatric Day Clinic is studied using three biaxial force-deflection models to represent the columns of the building. These models are: shear collapse, elastic and inelastic. The biaxial models for shear and inelastic behaviour are new developments and are useful for non-linear structural dynamic studies. In the present study, the shear collapse model is intended to represent the actual prototype behaviour. The inelastic model, which is based on a hardening rule of plasticity, is used to study the performance of a hypothetical structure with the same storey shear capacity as the prototype but which exhibits ductile behaviour. The prototype structure had a base storey shear capacity of 25 per cent, and actually failed by shearing of all of the first floor columns. In the present study, the shear collapse model predicted this behaviour even with the El Centro accelerogram as input. This result may have far-reaching significance because many low-rise reinforced concrete buildings which were designed according to recent codes have similar storey shear capacity coefficients and column properties. According to this study, such buildings may collapse even in a moderate earthquake. In the inelastic representation, the structure was found to have a base storey shear capacity of 80 per cent when moment hinging was assumed to occur at the top and bottom of the columns. Even with this high strength capacity, the permanent offset computed from the inelastic model corresponded to a ductility factor of 5 when the Pacoima Dam accelerogram was used as input. On the basis of damage to other structures observed on the site, it seems likely that ground motion of about the Pacoima Dam intensity occurred at Olive View. From this it is concluded that a low-rise ductile frame concrete building, even with this high shear force capacity, may not prove satisfactory for hospital use when subjected to strong ground motion.  相似文献   

17.
A test on a full‐scale model of a three‐storey steel moment frame was conducted, with the objectives of acquiring real information about the damage and serious strength deterioration of a steel moment frame under cyclic loading, studying the interaction between the structural frame and non‐structural elements, and examining the capacity of numerical analyses commonly used in seismic design to trace the real cyclic behaviour. The outline of the test structure and test program is presented, results on the overall behaviour are given, and correlation between the experimental results and the results of pre‐test and post‐test numerical analyses is discussed. Pushover analyses conducted prior to the test predicted the elastic stiffness and yield strength very reasonably. With proper adjustment of strain hardening after yielding and composite action, numerical analyses were able to accurately duplicate the cyclic behaviour of the test structure up to a drift angle of 1/25. The analyses could not trace the cyclic behaviour involving larger drifts in which serious strength deterioration occurred due to fracture of beams and anchor bolts and progress of column local buckling. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The seismic performance of composite steel plate shear walls (CSPSWs) that consist of a steel plate shear wall (SPSW) with reinforced concrete (RC) panels attached to one or both sides by means of bolts or connectors is experimentally studied. The shear wall is connected to the frame beams but not to the columns. This arrangement restrains the possible out-of-plane buckling of the thin-walled steel plate, thus significantly increasing the bearing capacity and ductility of the overall wall, and prevents the premature overall or local buckling failure of the frame columns. From a practical viewpoint, these solutions can provide open space in a floor as this type of composite shear walls with a relatively small aspect ratio can be placed parallel along a bay. In this study, four CSPSWs and one SPSW were tested and the results showed that both CSPSWs and SPSW possessed good ductility. For SPSW alone, the buckling appeared and resulted in a decrease of bearing capacity and energy dissipation capacity. In addition, welding stiffeners at corners were shown to be an effective way to increase the energy dissipation capacity of CSPSWs.  相似文献   

19.
It is well known that axial force – bending moment interaction (N–M interaction) affects to a large extent the cyclic inelastic behaviour of structural elements, especially columns in framed structures, with reduction in bending capacity and loss of available ductility. A few studies have also shown that significant inelastic axial shortening affects the response of column elements subjected to medium–high levels of axial loads and cyclic bending. This paper is primarily aimed at evaluating the effects of column N–M interaction on the inelastic seismic response of steel frames. By considering the contemporaneous action of vertical loads, due to gravity, and of horizontal seismic excitation, it is shown that the progressive axial shortening of adjacent columns may differ substantially, thus inducing significant relative settlements at the ends of the connecting beams and, then, remarkable amplifications in beam plastic rotations. An evaluation of additional beam plastic rotations induced by column N–M interaction is carried out for real structures by investigating the inelastic response of steel frames designed according to European standards under horizontal and vertical earthquake excitations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
An experimental study on the seismic performance of recycled concrete-filled square steel tube (RCFST) columns is carried out. Six specimens were designed and tested under constant axial compression and cyclic lateral loading. Two parameters, replacement percentage of recycled coarse aggregate (RCA) and axial compression level, were considered in the test. Based on the experimental data, the hysteretic loops, skeleton curves, ductility, energy dissipation capacity and stiffness degradation of RCFST columns were analyzed. The test results indicate that the failure modes of RCFST columns are the local buckling of the steel tube at the bottom of the columns, and the hysteretic loops are full and their shapes are similar to normal CFST columns. Furthermore, the ductility coefficient of all specimens are close to 3.0, and the equivalent viscous damping coefficient corresponding to the ultimate lateral load ranges from 0.323 to 0.360, which demonstrates that RCFST columns exhibit remarkable seismic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号