首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper focusses on seismic damage analysis of reinforced concrete (R/C) members, accounting for shear–flexure interaction in the inelastic range. A finite element of the beam-column type recently proposed by the writers for the seismic analysis of R/C structures is first briefly described. The analytical model consists of two distributed flexibility sub-elements which interact throughout the analysis to simulate inelastic flexural and shear response. The finite element accounts for shear strength degradation with inelastic curvature demand, as well as coupling between inelastic flexural and shear deformations after flexural yielding. Based on this model, a seismic damage index is proposed taking into account both inelastic flexural and shear deformations, as well as their interaction. The finite element and the seismic damage index are used to analyse the response of R/C columns tested under cyclic loading and failing either in shear or in flexure. It is shown that the analytical model and damage index can predict and describe well the hysteretic response of R/C columns with different types of failure.  相似文献   

2.
Reinforced concrete (R/C) frame buildings designed according to older seismic codes represent a large part of the existing building stock worldwide. Their structural elements are often vulnerable to shear or flexure‐shear failure, which can eventually lead to loss of axial load resistance of vertical elements and initiate vertical progressive collapse of a building. In this study, a hysteretic model capturing the local shear response of shear‐deficient R/C elements is described in detail, with emphasis on post‐peak behaviour; it differs from existing models in that it considers the localisation of shear strains after the onset of shear failure in a critical length defined by the diagonal failure planes. Additionally, an effort is made to improve the state of the art in post‐peak shear response modelling, by compiling the largest database of experimental results for shear and flexure‐shear critical R/C columns cycled well beyond the onset of shear failure and/or up to the onset of axial failure, and developing empirical relationships for the key parameters defining the local backbone post‐peak shear response of such elements. The implementation of the derived local hysteretic shear model in a computationally efficient beam‐column finite element model with distributed shear flexibility, which accounts for all deformation types, will be presented in a companion paper.  相似文献   

3.
Reinforced concrete (R/C) frame buildings designed according to older seismic codes represent a large part of the existing building stock worldwide. Their structural elements are often vulnerable to shear or flexure‐shear failure, which can eventually lead to loss of axial load resistance of vertical elements and initiate vertical progressive collapse of a building. In this study, a computationally efficient member‐type finite element model for the hysteretic response of shear critical R/C frame elements up to the onset of axial failure is presented; it accounts for shear‐flexure interaction and considers, for the first time, the localisation of shear strains, after the onset of shear failure, in a critical length defined by the diagonal failure plane. Its predictive capabilities are verified against experimental results of column and frame specimens and are shown to be accurate not only in terms of total response, but also with regard to individual deformation components. The accuracy, versatility, and simplicity of this finite element model make it a valuable tool in seismic analysis of complex R/C buildings with shear deficient structural elements.  相似文献   

4.
5.
Recent studies reveal that R/C structural members subjected to biaxial flexure due to two-dimensional earthquake excitation can deform much more than would be predicted by conventional one-dimensional response analysis. The biaxial flexure may therefore have a significant effect on the dynamic collapse process of structures subjected to intense ground motions. The present paper is intended to develop a new formulation of the two-dimensional restoring force model of R/C columns acted upon by biaxial bending moments, and to discuss the dynamic response properties of R/C structures. The model considered is a two-dimensional extension of various non-linear models for one-dimensional response analysis, including the degrading trilinear stiffness model which is one of the simpler idealizations of the restoring force characteristics of flexural-failure-type R/C structures. The modelling validity is then examined by comparison with experimental data on the biaxial bending behaviour of R/C columns. Calculations are made to study the role of different system properties on the influence of inelastic biaxial bending on the dynamic structural response. It is shown that the inelastic biaxial effect is generally significant and, in some cases, critical in the case of R/C structures with stiffness-degrading properties, while the effect is not so important for the non-degrading inelastic cases.  相似文献   

6.
Reinforced concrete bridge columns exhibit complex hysteretic behavior owing to combined action of shear, bending moment, and axial force under multi‐directional seismic shakings. The inelastic displacement of columns can be increased by shear–flexure interaction (SFI). This paper develops a simple yet reliable demand model for estimating the inelastic displacement and ductility based on the nonlinear time history analyses of 24 full‐size columns subject to a suite of near‐fault ground motions. A coupled hysteretic model is used to simulate the shear‐flexure interactive (SFI) behavior of columns and the accumulated material damage during loading reversals, including pinching, strength deterioration, and stiffness softening. Guided by rigorous dimensional analysis, the inelastic displacement responses of bridge columns are presented in dimensionless form showing remarkable order. A dimensionless nonlinearity index is derived taking into account of the column strength, ground motion amplitude, and softening or hardening post‐yield behavior. Strong correlation is revealed between the normalized inelastic displacement and the dimensionless structure‐to‐pulse frequency, the dimensionless nonlinearity index as well as the aspect ratio. Two regressive equations for displacement and ductility demands are proposed and validated against the simulation results. The SFI effects are discussed and included explicitly through the aspect ratio in the proposed model. This study offers a new way to realistically predict the inelastic displacement of columns directly from structural and ground motion characteristics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The nonlinear behavior of reinforced concrete (RC) members represents a key issue in the seismic performance assessment of structures. Many structures constructed in the 1980s or earlier were designed based on force limits; thus they often exhibit brittle failure modes, strength and stiffness degradation, and severe pinching effects. Field surveys and experimental evidence have demonstrated that such inelastic responses affect the global behavior of RC structural systems. Efforts have been made to consider the degrading stiffness and strength in the simplified nonlinear static procedures commonly adopted by practitioners. This paper investigates the accuracy of such procedures for the seismic performance assessment of RC structural systems. Refined finite element models of a shear critical bridge bent and a flexure‐critical bridge pier are used as reference models. The numerical models are validated against experimental results and used to evaluate the inelastic dynamic response of the structures subjected to earthquake ground motions with increasing amplitude. The maximum response from the refined numerical models is compared against the results from the simplified static procedures, namely modified capacity spectrum method and coefficient method in FEMA‐440. The accuracy of the static procedures in estimating the displacement demand of a flexure‐critical system and shear‐critical system is discussed in detail. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
在不考虑结构整体扭转的前提下,假定异形柱框架结构中的异形柱为单向偏心受压且为弯曲型破坏,给出了异形柱正截面受弯承载力和异形柱框架结构楼层受剪承载力计算方法。方法简便实用,与试验结果比较吻合。  相似文献   

9.
Distributed plasticity beam elements are commonly used to evaluate limit state demands for performance‐based analysis of reinforced concrete (RC) structures. Strain limits are often preferred to drift limits because they directly relate to damage and are therefore less dependent on member geometry and boundary conditions. However, predicting accurately strain demands still represents a major simulation challenge. Tension shift effects, which induce a linear curvature profile in the plastic hinge region of RC columns and walls, are one of the main causes for the mismatch between experimental and numerical estimates of local level quantities obtained through force‐based formulations. Classical displacement‐based approaches are instead suitable to simulate such linear curvature profile. Unfortunately, they verify equilibrium only on an average sense due to the wrong assumption on the axial displacement field, leading to poor deformation and force predictions. This paper presents a displacement‐based element in which axial equilibrium is strictly verified along the element length. The assumed transversal displacement field ensures a linear curvature profile, connecting accurately global displacement and local strain demands. The proposed finite element is validated against two sets of quasi‐static cyclic tests on RC bridge piers and walls. The results show that curvature and strain profiles for increasing ductility demands are significantly improved when axially equilibrated rather than classical displacement‐based or force‐based elements are used to model the structural members. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
The aim of this work is to model beam‐column behavior in a computationally effective manner, revealing reliably the overall response of reinforced concrete members subjected to intensive seismic loading. In this respect, plasticity and damage are considered in the predominant longitudinal direction, allowing for fiber finite element modeling, while in addition the effect of inelastic buckling of longitudinal rebars, which becomes essential at later stages of intensive cyclic loading, is incorporated. Α smooth plasticity‐damage model is developed for concrete, accounting for unilateral compressive and tensile behavior, nonlinear unloading and crack closure phenomena. This is used to address concrete core crushing and spalling, which triggers the inelastic buckling of longitudinal rebars. For this reason, a uniaxial local stress‐strain constitutive relation for steel rebars is developed, which is based on a combined nonlinear kinematic and isotropic hardening law. The proposed constitutive model is validated on the basis of existing experimental data and the formulation of the buckling model for a single rebar is developed. The cross section of rebar is discretized into fibers, each one following the derived stress‐strain uniaxial law. The buckling curve is determined analytically, while equilibrium is imposed at the deformed configuration. The proposed models for concrete and rebars are embedded into a properly adjusted fiber beam‐column element of reinforced concrete members and the proposed formulation is verified with existing experimental data under intensive cyclic loading.  相似文献   

11.
基于OpenSees的钢筋混凝土桥墩拟静力试验数值分析   总被引:3,自引:1,他引:2  
以4个呈弯曲破坏形态的圆形钢筋混凝土桥墩的拟静力试验结果为依据,基于OpenSees中的Beamwith Hinges Element单元,建立了相应的桥墩滞回分析纤维单元模型。由模拟结果与试验结果对比可知,所建立的纤维单元模型对桥墩的骨架曲线及滞回曲线都有良好的模拟效果,且能体现桥墩在反复加载过程中刚度、强度退化现象,表明了模型的有效性。  相似文献   

12.
A new deformation-based design method concerning 3D reinforced concrete (R/C) buildings is presented, which involves the use of advanced analysis tools, i.e. response-history analysis for appropriately scaled input motions, for multiple levels of earthquake action. The critical issues concerning the inelastic response-history analysis used for the design, namely the definition of the appropriate input, the set up of the analytical model that should account for post-yield behaviour of plastic hinge zones, and the direction of loading, are discussed. The proposed method is based on a partially inelastic model, while the design of structural members is carried out for different performance levels related to their inelastic behaviour. The aforementioned method builds on previous proposals by the first author and his co-workers, nevertheless a new procedure for the design of members that are expected to develop inelastic behaviour for the serviceability earthquake is proposed; its aim is the reduction of member design forces and the a-priori definition of their inelastic performance, by exploiting the deformation limits for the specific performance level, which are related to the damage level of the structural members. The proposed method was applied to irregular multistorey R/C 3D frame buildings with setbacks, and their performance for several levels of earthquake action was assessed using a fully inelastic model and additional ground motions not used at the design phase. The same buildings were designed according to the provisions of Eurocode 8. Comparison of the two methods of seismic design, revealed the advantages of the proposed design method, in particular the more economic detailing of transverse reinforcement in the members that develop very little inelastic behaviour even for very strong earthquakes.  相似文献   

13.
This paper presents the results of a multi‐level pseudo‐dynamic seismic test program that was performed to assess the performance of a full‐scale three‐bay, two‐storey steel–concrete composite moment‐resisting frame built with partially encased composite columns and partial‐strength beam‐to‐column joints. The system was designed to develop a ductile response in the joint components of beam‐to‐column joints including flexural yielding of beam end plates and shear yielding of the column web panel zone. The ground motion producing the damageability limit state interstorey drift caused minor damage while the ultimate limit state ground motion level entailed column web panel yielding, connection yielding and plastic hinging at the column base connections. The earthquake level chosen to approach the collapse limit state induced more damage and was accompanied by further column web panel yielding, connection yielding and inelastic phenomena at column base connections without local buckling. During the final quasi‐static cyclic test with stepwise increasing displacement–amplitudes up to an interstorey drift angle of 4.6%, the behaviour was ductile although cracking of beam‐to‐end‐plate welds was observed. Correlations with numerical simulations taking into account the inelastic cyclic response of beam‐to‐column and column base joints are also presented in the paper together. Inelastic static pushover and time history analysis procedures are used to estimate the structural behaviour and overstrength factors of the structural system under study. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
In order to further improve the seismic performance of RC shear walls, a new composite shear wall with concrete filled steel tube (CFT) columns and concealed steel trusses is proposed. This new shear wall is a double composite shear wall; the first composite being the use of three different force systems, CFT, steel truss and shear wall, and the second the use of two different materials, steel and concrete. Three 1/5 scaled experimental specimens: a traditional RC shear wall, a shear wall with CFT columns, and a shear wall with CFT columns and concealed steel trusses, were tested under cyclic loading and the seismic performance indices of the shear walls were comparatively analyzed. Based on the data from these experiments, a thorough elastic-plastic finite element analysis and parametric analysis of the new shear walls were carried out using ABAQUS software. The finite element results of deformation, stress distribution, and the evolution of cracks in each phase were compared with the experimental results and showed good agreement. A mechanical model was also established for calculating the load-carrying capacity of the new composite shear walls. The results show that this new type of shear wall has improved seismic performance over the other two types of shear walls tested.  相似文献   

15.
This paper describes an experiment to investigate the seismic design and responses of the bottom column, also called the bottom vertical boundary element (VBE), in steel plate shear walls (SPSWs). The main objectives of this experiment include validating the effectiveness of the design method developed in the companion paper, investigating the experimental performance of VBEs under large interstory drifts, and calibrating analytical models for earthquake engineering of SPSWs. Three full‐scale two‐story SPSWs were cyclically tested at the Taiwan National Center for Research on Earthquake Engineering in 2011. Test results and numerical simulations confirm that the proposed design procedures are effective in predicting the plastic zone forming elevation in the lower half of the bottom VBE and the occurrence of yielding at the VBE's top end. Test results show that the premature yielding occurring at the top end of a bottom VBE would result in a deformation concentration at the bottom of SPSWs. In addition, lateral torsional buckling could take place on the bottom VBE after significant plastic rotations have developed at the top end. Test results suggest that preventing the VBE's top end from yielding is the key issue in the seismic design of SPSWs, and the proposed method can be effectively adopted to achieve this objective. Furthermore, the inelastic responses of the SPSW specimens were satisfactorily simulated by using detailed finite shell elements or simplified frame response analysis models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
基于柔度法的异形截面钢筋混凝土构件非线性分析   总被引:2,自引:0,他引:2  
钢筋混凝土异形截面构件在住宅建筑中已被广泛应用,但适合此类长细比较小的异形截面构件空间分析模型并不成熟.目前国内外学者提出的基于有限单元柔度法的纤维单元模型,还不能考虑剪切变形对构件刚度的影响,对于短肢剪力墙这类长细比较小的构件是不适用的.本文建立了考虑剪切变形的基于柔度法的弹塑性纤维单元,对L形钢筋混凝土构件进行了算例分析.模拟计算结果与试验结果显示出良好的一致性,L形截面构件在侧力作用下会发生斜弯曲现象,钢筋混凝土构件在纯弯矩作用下杆件具有伸长特性.  相似文献   

17.
The seismic vulnerability of old multi‐storey reinforced concrete (R.C.) buildings reinforced with substandard details is assessed as a function of interstorey drift demand imposed by the design earthquake while considering brittle termination of elastic response of the critical members of the structure due to a premature shear failure. Interstorey drift demand is related to column and wall translational stiffnesses which are expressed through analytical derivations in terms of the floor area ratios of gravity and lateral load bearing members in the critical floor. Interstorey drift capacity is related to the available transverse reinforcement and the axial load ratio of the vertical members. The significance of the area ratio of vertical members in the typical floor as an index of vulnerability is explored with reference to the limitations in the value of axial load ratio used in R.C. design in order to secure ductile flexural behavior, and also with reference to the stability index of gravity load bearing members. Interstorey Drift Spectra are derived for the existing R.C. buildings suitable for rapid seismic vulnerability screening but also as a guide for rehabilitation of the existing structures. Lightly reinforced or substandard reinforced concrete buildings that reportedly collapsed during previous earthquakes are used as example case studies in order to calibrate the proposed methodology. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
A procedure for displacement‐based seismic design (DBD) of reinforced concrete buildings is described and applied to a 4‐storey test structure. The essential elements of the design procedure are: (a) proportioning of members for gravity loads; (b) estimation of peak inelastic member deformation demands in the so‐designed structure due to the design (‘life‐safety’) earthquake; (c) revision of reinforcement and final detailing of members to meet these inelastic deformation demands; (d) capacity design of members and joints in shear. Additional but non‐essential steps between (a) and (b) are: (i) proportioning of members for the ULS against lateral loads, such as wind or a serviceability (‘immediate occupancy’) earthquake; and (ii) capacity design of columns in flexure at joints. Inelastic deformation demands in step (b) are estimated from an elastic analysis using secant‐to‐yield member stiffnesses. Empirical expressions for the deformation capacity of RC elements are used for the final proportioning of elements to meet the inelastic deformation demands. The procedure is applied to one side of a 4‐storey test structure that includes a coupled wall and a two‐bay frame. The other side is designed and detailed according to Eurocode 8. Major differences result in the reinforcement of the two sides, with significant savings on the DBD‐side. Pre‐test calculations show no major difference in the seismic performance of the two sides of the test structure. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
An efficient component model has been developed that captures strength and stiffness deterioration of steel hollow structural section (HSS) columns. The proposed model consists of two fiber-based segments at a member's ends along with an elastic segment in between. The fibers exhibit nonlinear uniaxial stress–strain behavior, which is explicitly defined by uniaxial monotonic tensile and cyclic round coupon tests. The postbuckling behavior of an HSS column is traced through a proposed uniaxial effective stress–strain constitutive formulation, which includes a softening branch in compression and an energy-based deterioration rule to trace the influence of cyclic deterioration in the inelastic cyclic straining. These may be inferred by uniaxial stub-column tests. The component model captures the coupling between the column axial force and flexural demands. Consistent model parameters for a number of steel materials used in the steel construction in North America and Japan are proposed along with the associated model calibration process. The efficiency of the proposed model in predicting the hysteretic behavior of HSS columns is demonstrated by comparisons with physical steel column tests subjected to various loading histories, including representative ones of ratcheting prior to earthquake-induced collapse. The proposed model is implemented in an open-source finite element software for nonlinear response history analysis of frame structures. The effectiveness of the proposed model in simulating dynamic instability of steel frame buildings is demonstrated through nonlinear response simulations of a four-story steel frame building, which was tested at full-scale through collapse. Limitations as well as suggestions for future work are discussed.  相似文献   

20.
An improved linear‐elastic analysis procedure is developed in this paper as a simple approximate method for displacement‐based seismic assessment of the existing buildings. The procedure is mainly based on reducing the stiffness of structural members that are expected to respond in the inelastic range in a single global iteration step. Modal spectral displacement demands are determined from the equal displacement rule. Response predictions obtained from the proposed procedure are evaluated comparatively by using the results of benchmark nonlinear response history analysis, and both the conventional and the multi‐mode pushover analyses. In comparative evaluations, a twelve‐story RC plane frame and a six‐story unsymmetrical‐plan RC frame are employed by using 91 ground motion components. It is observed that the proposed procedure estimates the flexural deformation demands in deformation‐controlled members and the shear forces in force‐controlled members with reasonable accuracy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号