首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Résumé De travaux menés dans les zones littorales de l'Afrique du Nord et dans tout le S de l'Espagne, l'auteur tire une nouvelle définition des grands ensembles structuraux péri-méditerranéens. Ces ensembles sont, dans les Cordillères bétiques, du N au S: zones externes (Prébétique, Subbétiques, Pénibétiques), zones internes (Flyschs gaditans, Malaguides, Alpujarrides, Nevadides 1). Dans le Rif marocain, symétriquement, on rencontre du S au N: zones externes (Autochtone de l'Atlas, nappes prérifaines et intrarifaines), zones internes (Flyschs nord-rifains, Tétouanides 2), Ghomarides 3), Sebtides 4); la plupart de ces zones se poursuivent vers l'E, jusqu'en Tunisie et en Sicile.Le fait majeur, à souligner au départ, est la parfaite symétrie de la chaîne alpine de la Méditerranée occidentale: les nappes rifaines ne le cèdent pas en importance aux nappes bétiques. Les diverses unités des deux systèmes se raccordent de manière évidente par la courbure de Gibraltar. L'âge du paroxysme tectonique paraît entièrement compris entre Oligocène supérieur et Miocène supérieur, aucune preuve objective n'existant de nappes plus anciennes.La remise en place des divers ensembles structuraux dépend de l'hypothèse générale définie au départ. Il est d'abord fait allusion à l'interprétation classique, par charriages modérés, ne faisant pas appel à des modifications importantes dans l'emplacement des bassins sédimentaires, actuellement visibles en plan. Les objections à ce premier schéma paraissent déterminantes.Une deuxième interprétation, que l'auteur a déjà partiellement esquissée auparavant, sera envisagée: les unités externes (s'empilant sur elles-mêmes) et leurs socles s'enfonceraient sous les zones internes qui, par réaction, seraient poussées vers l'extérieur de la chaîne: chacune des nappes dépasserait la nappe plus basse, au cours de ce mouvement. Dans le cas de l'Espagne, avant les charriages, les domaines sédimentaires des zones internes se placeraient à l'inverse de la disposition actuelle, soit du N au S: Nevadides, Alpujarrides, Malaguides, Pénibétique et Flyschs gaditans (ultras). Du côté marocain, nous aurions de même du S au N: Sebtides, Ghomarides, Tétouanides, Flyschs nord-rifains (ultras). Cela obligerait, au total, à faire rapprocher l'un de l'autre, en profondeur, les bâtis de la Meseta ibérique et de l'Atlas marocain, d'environ 300 à 500 km, l'actuelle largeur de la mer d'Alboran (150 km) ne permettant pas de reloger les domaines de toutes les nappes. Un axe d'enfouissement serait à rechercher sous l'actuelle Méditerranée.Une troisième interprétation, proposée aujourd'hui par l'auteur, considère que la chaîne péri-méditerranéenne montre une cicatrice structurale fondamentale, qui séparerait domaines internes bétiques et rifains, d'une part, domaines bétiques et rifains plus externes, de l'autre. Cette cicatrice se couderait au niveau de Gibraltar. Les nappes internes seraient comme aspirées vers la cicatrice ainsi que, en sens inverse, les nappes externes. La reconstitution paléogéographique finale est fort satisfaisante et l'ampleur des rétrécissements sensiblement diminuée.La position du domaine des Flyschs kabyles, nord-rifains et gaditans, fait enfin l'objet d'un examen nouveau: sans rejeter l'origine ultra, déjà proposée, l'auteur envisage d'autres solutions, qui auraient l'avantage de mieux s'intégrer dans l'image proposée aujourd'hui.  相似文献   

2.
Petrogenetic grids in the system NCKFMASH (Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O)and the subsystems NCKMASH and NCKFASH calculated with the softwareTHERMOCALC 3.1 are presented for the PT range 7–30kbar and 450–680°C, for assemblages involving garnet,chloritoid, biotite, carpholite, talc, chlorite, kyanite, staurolite,paragonite, glaucophane, jadeite, omphacite, diopsidic pyroxene,plagioclase, zoisite and lawsonite, with phengite, quartz/coesiteand H2O in excess. These grids, together with calculated compatibilitydiagrams and PT and TXCa and PXCa pseudosectionsfor different bulk-rock compositions, show that incorporationof Ca into the NKFMASH system leads to many of the NKFMASH invariantequilibria moving to lower pressure and/or lower temperature,which results, in most cases, in the stability of jadeite andgarnet being enlarged, but in the reduction of stability ofglaucophane, plagioclase and AFM phases. The effect of Ca onthe stability of paragonite is dependent on mineral assemblageat different PT conditions. The calculated NCKFMASH diagramsare powerful in delineating the phase equilibria and PTconditions of natural pelitic assemblages. Moreover, contoursof the calculated phengite Si isopleths in PT and PXCapseudosections confirm that phengite barometry in NCKFMASH isstrongly dependent on mineral assemblage. KEY WORDS: phase relations; metapelites; NCKFMASH; THERMOCALC; phengite geobarometry  相似文献   

3.
A series of high temperature experiments was undertaken to study partitioning of several highly siderophile elements (HSE; Ru, Rh, Pd, Re, Os, Ir, Pt and Au) between Cr-rich spinel, olivine, pyroxene and silicate melt. Runs were carried out on a Hawaiian ankaramite, a synthetic eucrite basalt, and a DiAn eutectic melt, at one bar, 19 kbar, and 20 kbar, respectively, in the temperature range of 1200 to 1300°C, at oxygen fugacities between the nickel-nickel oxide (NNO) and hematite-magnetite (HM) oxygen buffers. High oxygen fugacities were used to suppress the formation of HSE-rich “nuggets” in the silicate melts. The resulting oxide and silicate crystals (<100 μm) were analyzed using both SIMS and LA-ICP-MS, with a spatial resolution of 15 to 50 μm. Rhenium, Au and Pd were all found to be incompatible in Cr-rich spinel (DResp/melt = 0.0012-0.21, DAusp/melt = 0.076, DPdsp/melt = 0.14), whereas Rh, Ru and Ir were all found to be highly compatible (DRhsp/melt = 41-530, DRusp/melt = 76-1143, DIrsp/melt = 5-22000). Rhenium, Pd, Au and Ru were all found to be incompatible in olivine (DReoliv/melt = 0.017-0.073, DPdoliv/melt = 0.12, DAuoliv/melt = 0.12, DRuoliv/melt = 0.23), Re is incompatible in orthopyroxene and clinopyroxene (DReopx/melt = 0.013, DRecpx/melt = 0.18-0.21), and Pt is compatible in clinopyroxene (DPtcpx/melt = 1.5). The results are compared to and combined with previous work on HSE partitioning among spinel-structured oxides, and applied to some natural magmatic suites to demonstrate consistency.  相似文献   

4.
Résumé On peut, en résumé, caractériser ainsi les principales provinces de la Bulgarie: — les Rhodopes constituent une zone typiquement polymétallique avec une prépondérance soulignée de Pb, Zn; le F, Cr, Ni, y existent en quantité subordonnée; en traces viennent encore: le Ba, Mn, Cd, Sb, W, Mo, Bi, As, Au, Ag, V; — la Sredna Gora est caractérisée comme une zone de cuivre typique, avec la présence de Fe, Mn, et en quantitée subordonnée de Pb, Zn, Mo, Ti, V, Au. — les Balkans portent les particularités d'une zone polymétallique (Pb, Zn, Cu) avec fer. On y remarque souvent des gîtes individualisés de cuivre, polymétallique avec fer, argent, ainsi que des gîtes complexes. Le Mn, Ba, Au, Ag, Co, Mo, As, Hg, V, W viennent en quantité subordonnée; — la zone des Kraistides, analogue à la précédente, se caractérise par des gisements polymétalliques pauvres et des gîtes à or et scheelite. Les éléments principaux sont: Au, Ba et secondaires: Pb, Zn, Cu, V et en partie du Fe et Hg; — la plateforme mésique, outre le gaz, se caractérise par le manganèse de la dépression de Varna.
The metallogenic map of Bulgaria displays the following four major and distinct provinces: The Rhodopes as a typically polymetallic zone, mainly with Pb and Zn, but also with F, Cr and Ni, and minor or trace amounts of Ba, Mn, Cd, Sb, Mo, Bi, As, Au, Ag, V. The Sredna-gora is a distinct copper zone, with Fe and Mn, and minor amounts of Pb, Zn, Mo, Ti, V, Au. The Balkan is again a polymetallic zone of Pb, Zn and Cu with Fe; but Cu-Fe-Ag-deposits also occur. The other elements are present in minor quantities only. The Kraiste-Zone resembles the previous one and contains low grade polymetallic and scheelite deposits. The main elements are Au, Ba, and minor quantities of Pb, Zn, Cu, V and in part Fe and Hg. The zone of the Mésie platform contains only the manganese deposits of the Varna depression, in addition to natural gas.
  相似文献   

5.
The Cu–Co–Ni Texeo mine has been the most important source of Cu in NW Spain since Roman times and now, approximately 40,000 m3 of wastes from mine and metallurgical operations, containing average concentrations of 9,263 mg kg−1 Cu, 1,100 mg kg−1 As, 549 mg kg−1 Co, and 840 mg kg−1 Ni, remain on-site. Since the cessation of the activity, the abandoned works, facilities and waste piles have been posing a threat to the environment, derived from the release of toxic elements. In order to assess the potential environmental pollution caused by the mining operations, a sequential sampling strategy was undertaken in wastes, soil, surface and groundwater, and sediments. First, screening field tools were used to identify hotspots, before defining formal sampling strategies; so, in the areas where anomalies were detected in a first sampling stage, a second detailed sampling campaign was undertaken. Metal concentrations in the soils are highly above the local background, reaching up to 9,921 mg kg−1 Cu, 1,373 mg kg−1 As, 685 mg kg−1 Co, and 1,040 mg kg−1 Ni, among others. Copper concentrations downstream of the mine works reach values up to 1,869 μg l−1 and 240 mg kg−1 in surface water and stream sediments, respectively. Computer-based risk assessment for the site gives a carcinogenic risk associated with the presence of As in surface waters and soils, and a health risk for long exposures; so, trigger levels of these elements are high enough to warrant further investigation.  相似文献   

6.
Coal being a limited source of energy, extraction of energy from other sources like lignite, coal-refuse, and biomass is being attempted worldwide. The minerals and inorganic elements present in fuel feeds pose different technological and environmental concerns. Lignite ash, refuse ash, and biomass ash collected from Indian power plants burning lignite, coal-refuse, and mustard stalk, respectively, were analyzed for physico-chemical characteristics and trace elements. The lignite ash has high SiO2, CaO, MgO, Al2O3, and SO3; the refuse ash has high SiO2 and Fe2O3, but low SO3; the biomass ash has high SiO2 (but low Al2O3), and high CaO, MgO, K2O, Na2O, SO3, and P2O5. A substantial presence of chloride (2.1%) was observed in the biomass ash. Quartz is the most abundant mineral species. Other minerals are mullite, hematite, gehlenite, anhydrite, and calcite in the lignite ash; orthoclase in the refuse ash; albite, sanidine, gehlenite, anhydrite, and calcite in the biomass ash. Ashes with high concentrations (> 100 mg/kg) of trace elements are: lignite ash (V < La < Mn < Cr < Ni < Nd < Ba < Ce, Zn < Sr); refuse ash (Cr < Ce < V < Rb < Mn < Sr, Zn < Ba); biomass ash (Cu < Zn < Ba, Sr). Based on Earth crust normalization, Co, Ni, As, Se, Mo, Zn, Pb, U, and REEs (except Pr and Er) are enriched in the lignite ash; molybdenum, Zn, Cs, Pb, Th, U, La, Ce, and Lu in the refuse ash; and Mo, Zn, Sr, Cs, Pb, and Lu in the biomass ash. Elements As, Zn, Mo, Ni, Pb, Rb, Cr, V, Ba, Sr, and REEs are correlated with Al, indicating the possibilities of their association with aluminum silicates minerals. Similarly, barium, Cs, Th, and U are correlated with iron oxides; molybdenum and Sr may also be associated with sulfates and chlorides. Due to the alkaline nature of these ashes, the high concentrations of As and Se in the lignite ash; molybdenum in the biomass ash; and Se in the refuse ash may pose environmental concerns.  相似文献   

7.
The nine elastic constants of andalusite and sillimanite have been determined, using the technique of Brillouin scattering. They are, in megabars, for andalusite: c 11=2.334, c 22=2.890, c 33=3.801, c 44=0.995, c 55=0.878, c 66=1.123, c 23=0.977, c 13=1.162, c 12=0.814; for sillimanite: c 11=2.873, c 22=2.319, c 33=3.884, c 44=1.224, c 55=0.807, c 66=0.893, c 23=1.586, c 13=0.834, c 12=0.947. Both structures are characterized by chains of edge-linked coordination octahedra extending parallel to the crystallographic c direction, cross-linked by polyhedra of lower coordination. In each structure the stiffness measured parallel to c is greater than that measured normal to c. The shear moduli can be directly correlated with the relative rigidity of the cross-linking structures.  相似文献   

8.
Present study addresses the role of major plate-driving forces, particularly the slab pull and slab resistive forces, for the generation of 26 December 2004 M w > 9.0 off Sumatra megathrust earthquake. Major controls on the plate-driving forces are normally visualized through age, speed, and average dip of the slab during subduction. Wide variation in age, plate obliquity, stress obliquity, subduction rate, dip angle, and flexing depth of the subducting oceanic lithosphere between Andaman and Sumatra thus allowed us for quantitative evaluation of the slab pull (F SP) and slab resistive (F SR) forces in three well-defined sectors (I, II and III). Computed values of these forces in the three sectors: (1) F SP = 1.29 × 1013 N/m, F SR = 1.41 × 1013 N/m; sector I, (2) F SP = 2.10 × 1013 N/m, F SR = 1.13 × 1013 N/m; sector II, and (3) F SP = 2.08 × 1013 N/m, F SR = 2.72 × 1013 N/m; sector III clearly suggest a spatial variation of stress regime in the subducting oceanic lithosphere. Excess F SR in sectors I and III are interpreted as the causative forces behind the triggering of major seismic energy bursts near Sumatra and Andaman on 26 December 2004. A gap of minimum seismic energy burst near Great Nicobar possibly was controlled by the excess of F SP in sector II. This study further advocates that the cyclic stress, resulted from unbalanced component of slab resistive force, had a definite control on the occurrence of 2004 off Sumatra megathrust earthquake around the flexing zone of the subducting lithosphere.  相似文献   

9.
Analysis of external stability of vertical geosynthetic-reinforced soil (GRS) walls is very important in the seismic prone zone. The scope of this paper is to obtain required minimum reinforcement length, L min, for external seismic stability of vertical GRS walls by pseudo-static limit equilibrium method. Then, L min can be calculated to resist sliding, eccentricity, and bearing capacity failure modes. The parameters considered include both horizontal and vertical seismic coefficients (k h and k v ), surcharge load (q), wall height (H) and the properties of retained backfill, GRS, and foundation soil. Results show that L min against sliding failure mode, L min,S , increases more quickly than that against the other two failure modes with the increase in k h , q, or unit weight of retained backfill, γ b , while L min,S decreases more quickly than that against the other two failure modes with increase in friction angle of retained backfill, ? b , or unit weight of GRS, γ r . For the different failure modes, the effect of k v on L min is not identical with the change of k h , and in addition, L min/H will tend to remain unchanged with the increase in H. In general, L min against bearing capacity failure mode, L min,BC, is larger than L min against the other two failure modes. However, L min,BC will be less than L min against eccentricity failure mode, L min,E , for k h exceeding 0.35, or friction angle of foundation soil, ? f , exceeding 37°, and L min,BC will also be less than L min,S for friction angle of GRS, ? r , being no more than 26°.  相似文献   

10.
Summary The crystal structure of arsentsumebite, ideally, Pb2Cu[(As, S)O4]2(OH), monoclinic, space group P21/m, a = 7.804(8), b = 5.890(6), c = 8.964(8) ?, β = 112.29(6)°, V = 381.2 ?3, Z = 2, dcalc. = 6.481 has been refined to R = 0.053 for 898 unique reflections with I> 2σ(I). Arsentsumebite belongs to the brackebuschite group of lead minerals with the general formula Pb2 Me(XO4)2(Z) where Me = Cu2+, Mn2+, Zn2+, Fe2+, Fe3+; X = S, Cr, V, As, P; Z = OH, H2O. Members of this group include tsumebite, Pb2Cu(SO4)(PO4)(OH), vauquelinite, Pb2Cu(CrO4)(PO4)(OH), brackebuschite, Pb2 (Mn, Fe)(VO4)2(OH), arsenbracke buschite, Pb2(Fe, Zn)(AsO4)2(OH, H2O), fornacite, Pb2Cu(AsO4)(CrO4)(OH), and feinglosite, Pb2(Zn, Fe)[(As, S)O4]2(H2O). Arsentsumebite and all other group members contain M = MT chains where M = M means edge-sharing between MO6 octahedra and MT represents corner sharing between octahedra and XO4 tetrahedra. A structural relationship exists to tsumcorite, Pb(Zn, Fe)2(AsO4)2 (OH, H2O)2 and tsumcorite-group minerals Me(1)Me(2)2(XO4)2(OH, H2O)2. Received June 24, 2000; revised version accepted February 8, 2001  相似文献   

11.
The supposedly second finding of rare arsenosilicate cervandonite-(Ce) in the world is characterized. The mineral was recognized in the ore-bearing metasomatic rocks of the Berezitovoe gold-base metal deposit (Upper Priamurye, Russian Far East) in association with quartz, biotite, muscovite, orthoclase, garnet (almandine-spessartine), tourmaline, basic plagioclase, and sulfides. The cervandonite is represented by optically homogeneous and heterogeneous aggregates with visible crystals from 10 fum to 0.1–0.3 mm in size. Based on the microprobe analysis, the average chemical composition of the homogeneous cervandonite-(Ce) aggregates is as follows (wt %): Ce2O3 - 13.00, La2O3 - 5.70, Nd2O3 - 5.20, Pr2O3 - 1.41, Y2O3 - 0.77, Sm2O3 - 0.77, Eu2O3 - 0.23, Gd2O3 - 0.54, Dy2O3 - 0.31, ThO2 - 1.12, UO2 - 0.30, TiO2 - 12.86, Al2O3 - 9.24, Fe2O3 - 8.93, FeO - 2.68, CaO - 0.14, SiO2 - 19.98, As2O3 - 16.19. The comparative study of the cervandonite-(Ce) from the Berezitovoe deposit and the analogous minerals from the Alpine mica gneiss of Mt. Pizzo Cervandone (Central Alps) showed that the former mineral can be assigned to a new variety of cervandonite-(Ce) in terms of its compositional features. This variety is characterized by an ordered stoichiometric composition corresponding to the simpler theoretical formula (Ce,Nd,La)(Fe3+, Fe2+, Ti4+, Al)3 (Si2As3+)3O12.  相似文献   

12.
We determined experimentally the Nernst distribution coefficient between orthopyroxene and anhydrous silicate melt for trace elements i in the system Na2O–CaO–MgO–Al2O3–SiO2 (NCMAS) along the dry model lherzolite solidus from 1.1 GPa/1,230°C up to 3.2 GPa/1,535°C in a piston cylinder apparatus. Major and trace element composition of melt and orthopyroxene were determined with a combination of electron microprobe and ion probe analyses. We provide partitioning data for trace elements Li, Be, B, K, Sc, Ti, V, Cr, Co, Ni, Rb, Sr, Y, Zr, Nb, Cs, Ba, La, Ce, Sm, Nd, Yb, Lu, Hf, Ta, Pb, U, and Th. The melts were chosen to be boninitic at 1.1 and 2.0 GPa, picritic at 2.3 GPa and komatiitic at 2.7 and 3.2 GPa. Orthopyroxene is Tschermakitic with 8 mol% Mg-Tschermaks MgAl[AlSiO6] at 1.1 GPa while at higher pressure it has 18–20 mol%. The rare earth elements show a continuous, significant increase in compatibility with decreasing ionic radius from D Laopx−melt ∼ 0.0008 to D Luopx−melt ∼ 0.15. For the high-field-strength elements compatibility increases from D Thopx−melt ∼ 0.001 through D Nbopx−melt ∼ 0.0015, D Uopx−melt ∼ 0.002, D Taopx−melt ∼ 0.005, D Zropx−melt ∼ 0.02 and D Hfopx−melt ∼ 0.04 to D Tiopx−melt ∼ 0.14. From mathematical and graphical fits we determined best-fit values for D 0M1, D 0M2, r 0M1, r 0M2, E 0M1, and E 0M2 for the two different M sites in orthopyroxene according to the lattice strain model and calculated the intracrystalline distribution between M1 and M2. Our data indicate extreme intracrystalline fractionation for most elements in orthopyroxene; for the divalent cations D i M2−M1 varies by three orders of magnitude between D CoM2−M1 = 0.00098–0.00919 and D BaM2−M1 = 2.3–28. Trivalent cations Al and Cr almost exclusively substitute on M1 while the other trivalent cations substitute on M2; D LaM2−M1 reaches extreme values between 6.5 × 107 and 1.4 × 1016. Tetravalent cations Ti, Hf, and Zr almost exclusively substitute on M1 while U and Th exclusively substitute on M2. Our new comprehensive data set can be used for polybaric-polythermal melting models along the Earth’s mantle solidus. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
In this study, we measure proton, Pb, and Cd adsorption onto the bacteria Deinococcus radiodurans, Thermus thermophilus, Acidiphlium angustum, Flavobacterium aquatile, and Flavobacterium hibernum, and we calculate the thermodynamic stability constants for the important surface complexes. These bacterial species represent a wide genetic diversity of bacteria, and they occupy a wide range of habitats. All of the species, except for A. angustum, exhibit similar proton and metal uptake. The only species tested that exhibits significantly different protonation behavior is A. angustum, an acidophile that grows at significantly lower pH than the other species of this study. We demonstrate that a single, metal-specific, surface complexation model can be used to reasonably account for the acid/base and metal adsorption behaviors of each species. We use a four discrete site non-electrostatic model to describe the protonation of the bacterial functional groups, with averaged pKa values of 3.1 ± 0.3, 4.8 ± 0.2, 6.7 ± 0.1, and 9.2 ± 0.3, and site concentrations of (1.0 ± 0.17) × 10−4, (9.0 ± 3.0) × 10−5, (4.6 ± 1.8) × 10−5, and (6.1 ± 2.3) × 10−5 mol of sites per gram wet mass of bacteria, respectively. Adsorption of Cd and Pb onto the bacteria can be accounted for by the formation of complexes with each of the bacterial surface sites. The average log stability constants for Cd complexes with Sites 1-4 are 2.4 ± 0.4, 3.2 ± 0.1, 4.4 ± 0.1, and 5.3 ± 0.1, respectively. The average log stability constants for Pb complexes with Sites 1-4 are 3.3 ± 0.2, 4.5 ± 0.3, 6.5 ± 0.1, and 7.9 ± 0.5, respectively. This study demonstrates that a wide range of bacteria exhibit similar proton and metal adsorption behaviors, and that a single set of averaged acidity constants, site concentrations, and stability constants for metal-bacterial surface complexes yields a reasonable model for the adsorption behavior of many of these species. The differences in adsorption behavior that we observed for A. angustum demonstrate that genetic differences do exist between the cell wall functional group chemistries of some bacterial species, and that significant exceptions to the typical bacterial adsorption behavior do exist.  相似文献   

14.
盐湖沉积具有成盐多期性和长期性、沉积连续性、淡化-咸化周期性等特色,因而成为在恢复古气候环境、进行全球变化研究的重要研究对象之一。本文以我国东部独具特色的古近纪古盐湖盆地--江汉盆地潜江凹陷潜江组盐韵律为例,通过对王平1等3口井连续取心段的精细研究,在前人划分Ⅰ、Ⅱ、Ⅲ级盐韵律的基础上,首次划分出组成含盐层系基础韵律单元--Ⅳ级盐韵律,弄清了其沉积过程基本遵循从盐岩→(含泥)钙芒硝岩→含云泥岩(含泥云岩)→泥岩→白云岩→钙芒硝岩→盐岩的淡化-咸化序列和盐类矿物的析出顺序;解析了Ⅳ级盐韵律及其沉积组合记录与水体古盐度波动和短尺度(0.05ka -1.0ka)古气候干-湿变化之间的对应关系。根据典型暖相盐类矿物原生钙芒硝及其薄层在潜江组中广泛发育,可以推断江汉盆地流域在晚始新世-早渐新世潜江组沉积期间,所出现的干旱古气候背景属于暖旱型而非寒旱型。  相似文献   

15.
Our studies show that the granite bodies (γ 5 2 − 1 and γ 5 3 ) which constitute the Huangsha-Tieshanlong composite granitic intrusion in Jiangxi are characterized by their similarities in mineral assemblage, petrochemistry, trace element and REE distribution pattern. The values of ΣREE, ΣLREE, ΣHREE, ΣCe/ΣY, δEu and La/Yb apparently decrease from γ 5 2 − 1a to γ 5 2 − 1b , γ 5 3 and γ 5 3 . It is shown that the early Yenshanian W(Ta, Nb)-bearing granite (γ 5 2 − 1 ) and late Yenshanian Ta, Nb-bearing granite (γ 5 3 ) may have been derived from the differentiation and evolution of granitic magmas due to repeated remelting of the crust and their earlier and later intrusion. Although the earlier (γ 5 2 − 1b and later (γ 5 3 ) albitized Ta, Nb-bearing granites show some obvious differences in REE content, their δEu values and La/Yb ratios are similar to each other. Therefore, it may be concluded that the early and late Ta, Nb-bearing granites were derived from a congenetic magma.  相似文献   

16.
The Sarcheshmeh copper mine smelter plant is one of the biggest copper producers in Iran. Long-time operation of about 25 years of the smelter plant causes release of potentially toxic heavy metals into the environment. In this paper, geochemical distribution of toxic heavy metals in 28 soil samples was evaluated around the Sarcheshmeh smelter plant. Soils developed over the nonmineralized and uncontaminated areas have an average background concentration of 41.25 mg kg−1 Cu, 26.6 mg kg−1 As, 12.7 mg kg−1 Pb, 0.9 mg kg−1 Sb, 1.9 mg kg−1 Mo, 1.7 mg kg−1 Sn, 0.2 mg kg−1 Cd, 0.15 mg kg−1 Bi, 235 mg kg−1 S and 73.4 mg kg−1 Zn, respectively. As a result of smelting process, the upper soil layers (0–5 cm) were polluted by Cu (>1,397 mg kg−1), Cd (>3.42 mg kg−1), S (>821 mg kg−1), Mo (>10.3 mg kg−1), Sb (>11.7 mg kg−1), As (>120.6 mg kg−1), Pb (>83.8 mg kg−1), Zn (>214.9 mg kg−1), and Sn (>3.7 mg kg−1), respectively. These values are much higher than the normal concentration of the elements in the uncontaminated soil layers. The elemental values decrease with distance travelled away of the smelter plant, especially at minimum wind direction. Furthermore, high contaminated values of Cu (8,430 mg kg−1), As (500 mg kg−1), Pb (331 mg kg−1), Mo (61 mg kg−1), Sb (56.2 mg kg−1), Zn (664 mg kg−1), Cd (17.2 mg kg−1), Bi (13.4 mg kg−1), and S (3,780 mg kg−1) were observed in the upper soil layers close to the smelting waste dumps. Sequential extraction analysis shows that about 270 mg kg−1 Cu, 28 mg kg−1 Pb, 50.33 mg kg−1 Zn, and 47.84 mg kg−1 As were adsorbed by Fe and Mn oxides. The carbonate phases include 151 mg kg−1 Cu, 28 mg kg−1 Pb, 25 mg kg−1 Zn, and 32.99 mg kg−1 As. Organic matter adsorbed 314.6 mg kg−1 Cu and 29.18 mg kg−1 Zn.  相似文献   

17.
Althausite occurs as cleavable masses in serpentine-magnesite deposits at Modum, Norway. The proposed formula in Mg2PO4 (OH0.37F0.25O0.10)0.81 with partly vacant halide sites. It is orthorhombic, space group Pna21, a = 8.258, b = 14.383, c = 6.054 A?, Z = 8. D(meas)=2.97, ?(calc) = 2.91 g/cm3 (X-ray), ?(calc) = 3.06 g/cm3 (Gladstone-Dale), H = 3 12 ?4. The strongest X-ray powder lines (41 given, Fe radiation) with intensities and indices are 3.593 (100)(040), 3.316 (90)(211), 3.024 (80)(002), 2.786 (60)(112), 2641 (60)(122).The mineral is light grey with vitreous lustre, running brown on alteration to apatite. Non-fluorescent. Perfect cleavage {001}, distinct cleavage {101}. It is biaxial positive, α=1.588, β=1.592, γ=1.598, 2Vγ(calc)=78.5°, negative elongation, X=b, Y=c, Z=a. IR, DTA and TGA data are given.  相似文献   

18.
Iron, Cu and Zn stable isotope systems are applied in constraining a variety of geochemical and environmental processes. Secondary reference materials have been developed by the Institute of Geology, Chinese Academy of Geological Sciences (CAGS), in collaboration with other participating laboratories, comprising three solutions (CAGS‐Fe, CAGS‐Cu and CAGS‐Zn) and one basalt (CAGS‐Basalt). These materials exhibit sufficient homogeneity and stability for application in Fe, Cu and Zn isotopic ratio determinations. Reference values were determined by inter‐laboratory analytical comparisons involving up to eight participating laboratories employing MC‐ICP‐MS techniques, based on the unweighted means of submitted results. Isotopic compositions are reported in per mil notation, based on reference materials IRMM‐014 for Fe, NIST SRM 976 for Cu and IRMM‐3702 for Zn. Respective reference values of CAGS‐Fe, CAGS‐Cu and CAGS‐Zn solutions are as follows: δ56Fe = 0.83 ± 0.07 and δ57Fe = 1.20 ± 0.13, δ65Cu = 0.57 ± 0.06, and δ66Zn = ?0.79 ± 0.12 and δ68Zn = ?1.65 ± 0.24, respectively. Those of CAGS‐Basalt are δ56Fe = 0.15 ± 0.07, δ57Fe = 0.22 ± 0.10, δ65Cu = 0.12 ± 0.08, δ66Zn = 0.17 ± 0.13, and δ68Zn = 0.34 ± 0.26 (2s).  相似文献   

19.
A new mineral species has been discovered at the calc-skarnoid occurrence near the mouth of the Tashelga River, Kuznetsky Alatau, Gorny Shoria, Russia, and named after the locality of its discovery. Associated minerals are calcite, hibonite, grossular, vesuvianite, hercynite, magnetite, corundum, perovskite, scapolite, diopside, and apatite. The new mineral occurs as prismatic or finely fibrous crystals up to 1.5–2.0 mm in length, their parallel intergrowths, and felty aggregates as large as 10 mm across. Tashelgite is bluish green, translucent to transparent, with vitreous luster; D calc = 3.67 g/cm3. The IR spectrum does not contain bands of OH groups. Tashelgite is biaxial (−), with α = 1.736(2), β = 1.746(2), γ = 1.750(2); 2V meas = −20(2)°. Dispersion is strong, r < ν. Pleochroism is distinct: X (blue-green) > Y (yellowish green) > Z (almost colorless). Chemical composition (electron microprobe, average of five-point analyses, Fe2O3 is estimated from the ratio of intensities I(FeKb5 )/I(FeKb1 )I(Fe_{K\beta _5 } )/I(Fe_{K\beta _1 } ) in the X-ray spectrum, H2O was determined as a weight loss on heating in vacuum up to 1000°C), wt %: 7.98 CaO, 6.75 MgO, 0.45 MnO, 11.32 FeO, 1.40 Fe2O3, 70.70 Al2O3, 1.8(2) H2O, 100.40 in total. The empirical formula calculated on the basis of 17 oxygen atoms is H1.27Ca0.90Mg1.06Mn0.04 Fe1.002+Fe0.113+Al8.80O17.00. The idealized formula is CaMgFe2+Al9O16(OH). According to single-crystal X-ray structural data, tashelgite is monoclinic, pseudoorthorhombic, space group Pc; unit cell parameters are: a = 5.6973(1), b = 17.1823(4), c = 23.5718(5)?; β = 90.046(3)°; V = 2307.5(1)?3, Z = 8. The crystal structure of tashelgite is unique and characterized by ordering of all cations; Al occupies sites with octahedral and tetrahedral coordination. The cation ordering has also been confirmed by IR spectroscopy. The strongest lines of the X-ray powder diffraction pattern (d, ?]-I[hkl] are: 11.79–48 [002], 2.845–43 [061], 2.616–100 [108], 2.584–81 [146], 2.437–44 [163], 2.406–61 [057], 2.202–72 [244]. The type specimen of tashlegite has been deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia.  相似文献   

20.
Analyses of co-existing silicate melt and fluid inclusions, entrapped in quartz crystals in volatile saturated magmatic systems, allowed direct quantitative determination of fluid/melt partition coefficients. Investigations of various granitic systems (peralkaline to peraluminous in composition, log fO2 = NNO−1.7 to NNO+4.5) exsolving fluids with various chlorinities (1-14 mol/kg) allowed us to assess the effect of these variables on the fluid/melt partition coefficients (D). Partition coefficients for Pb, Zn, Ag and Fe show a nearly linear increase with the chlorinity of these fluid (DPb ∼ 6 ∗ mCl, DZn ∼ 8 ∗ mCl, DAg ∼ 4 ∗ mCl, DFe ∼ 1.4 ∗ mCl, where mCl is the molinity of Cl). This suggests that these metals are dissolved primarily as Cl-complexes and neither oxygen fugacity nor the composition of the melt affects significantly their fluid/melt partitioning. By contrast, partition coefficients for Mo, B, As, Sb and Bi are highest in low salinity (1-2 mol/kg Cl) fluids with maximum values of DMo ∼ 20, DB ∼ 15, DAs ∼ 13, DSb ∼ 8, DBi ∼ 15 indicating dissolution as non-chloride (e.g., hydroxy) complexes. Fluid/melt partition coefficients of copper are highly variable, but highest between vapor like fluids and silicate melt (DCu ? 2700), indicating an important role for ligands other than Cl. Partition coefficients for W generally increase with increasing chlorinity, but are exceptionally low in some of the studied brines which may indicate an effect of other parameters. Fluid/melt partition coefficients of Sn show a high variability but likely increase with the chlorinity of the fluid (DSn = 0.3-42, DW = 0.8-60), and decrease with decreasing oxygen fugacity or melt peraluminosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号