首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为研究华北平原区域背景气溶胶成分及其变化特征,2010年6月至2011年7月在泰山顶采集了64个PM10滤膜样品,分析了样品的PM10及其中无机盐离子和有机碳(OC)、元素碳(EC)的质量浓度,并对各成分相关性等进行了分析。泰山PM10年均质量浓度约为68.4 mg/m3,其中无机盐离子约占总质量的64.8%,碳气溶胶约占17.4%。无机盐离子的质量浓度从春季逐渐增大,夏季达到峰值,秋季下降,冬季最小;OC质量浓度从春季至秋季逐渐增高,冬季最低,EC变化类似,但夏秋两季差别不大。二次有机碳(SOC)与OC的比值四季均在50%以上,年均值约为58.5%。通过后向轨迹聚类分析发现,在经过城市的较短轨迹以及南方较短混合轨迹的影响下,泰山PM10质量浓度较高,而西北长距离传输气团PM10浓度均较低。  相似文献   

2.
春季中国东部气溶胶化学组成及其分布的模拟研究   总被引:2,自引:0,他引:2  
本文利用区域空气质量模式RAQMS(Regional Air Quality Model System),对2009年春季中国东部气溶胶主要化学成分及其分布进行了模拟研究。与泰山站观测资料的对比结果显示,模式能比较合理地反映气溶胶浓度的逐日变化特征。整体上,模式对无机盐气溶胶的模拟好,分别高估和低估黑碳和有机碳气溶胶浓度,其原因与排放源、二次有机气溶胶化学机制和模式分辨率的不确定性有关。模拟结果显示,春季气溶胶浓度高值主要集中于华北、四川东部、长江中下游等地区。受东南亚生物质燃烧和大气输送的影响,中国的云南和广西等地区有机碳浓度高于中国其他地区。中国西北部沙尘浓度较高,而且向东输送并影响到中国东部和南方部分地区。中国东部的华北、四川东部、长江中下游等地PM2.5(空气动力学直径在2.5微米以下的颗粒物)污染严重,4月平均PM2.5浓度超过了我国日平均PM2.5浓度限值。中国东部泰山站的观测和模拟结果都显示近地面硝酸盐浓度超过硫酸盐,中国北部对流层中硝酸盐的柱含量也大于硫酸盐,而在中国南部则相反,这一方面与春季中国云量 南多北少的分布特征以及云内液相化学反应有关,另一方面也与南北温差对气溶胶形成的影响有关。就整个中国东部而言,虽然硫酸盐的柱含量(46 Gg)仍大于硝酸盐(42 Gg),但比较接近,反映出我国氮氧化物排放迅速增加的趋势。春季中国地区对流层中PM10(空气动力学直径在10微米以下的颗粒物)及其化学成分柱含量分别为:990.8 Gg(PM10),52.6 Gg(硫酸盐),48.2 Gg(硝酸盐),32.1 Gg(铵盐),22.9 Gg(黑碳)和74.1 Gg(有机碳),有机碳(OC)中一次有机碳(POC)和二次有机碳(SOC)分别占60%和40%,中国东部PM10中人为气溶胶和沙尘分别占30%和70%,反映了春季沙尘对我国大气气溶胶的重要贡献。  相似文献   

3.
The formation of secondary organic aerosol (SOA) results from the absorption of gas-phase organic oxidation products by airborne aerosol. Historically, modeling the formation of SOA has relied on relatively crude estimates of the capability of given parent hydrocarbons to form SOA. In more recent work, surrogate organic oxidation products have been separated into two groups, hydrophobic and hydrophilic, depending on whether the product is more likely to dissolve into an organic or an aqueous phase, respectively. The surrogates are then allowed to partition only via the dominant mechanism, governed by molecular properties of the surrogate molecules. The distinction between hydrophobic and hydrophilic is based on structural and physical characteristics of the compound. In general, secondary oxidation products, because of low vapor pressures and high polarities, express affinity for both the organic and aqueous aerosol phases. A fully coupled hydrophobic-hydrophilic organic gas-particle partitioning model is presented here. The model concurrently achieves mass conservation, equilibrium between the gas phase and the organic aerosol phase, equilibrium between the gas phase and the aqueous aerosol phase, and equilibrium between molecular and ionic forms of the partitioning species in the aqueous phase. Simulations have been performed using both a zero-dimensional model and the California Institute of Technology three-dimensional atmospheric chemical transport model. Simultaneous partitioning of species by both mechanisms typically leads to a shift in the distribution of products to the organic aerosol phase and an increase in the total amount of SOA predicted as compared to previous work in which partitioning is assumed to occur independently to organic and aqueous phases.  相似文献   

4.
(NH4)2SO4, CaCl2, Na2SiO3 and NaNO3 were selected as surrogates of inorganic seed aerosols of ambient atmosphere of Chinese urban areas, respectively, to study their effects on the formation of secondary organic aerosol (SOA) in the toluene/CH3ONO/NOx photooxidation system. The SMPS and aerosol laser time-of-flight mass spectrometer (ALTOFMS) was used to measure the aerodynamic size and chemical composition of individual SOA particles in real-time. Experimental results indicate that either the growth or products of SOA is affected by the presence of inorganic seed aerosol. Inorganic seed aerosols would promote growth rates of SOA formation at the start of the reaction and inhibits its formation rate with prolonging the reaction time. In the case of about 100 μg m?3 seed aerosol load, the addition of Na2SiO3 induced a same growth rate of SOA formation as NaNO3. The influence of four individual seed aerosols on the generation of SOA decreased in the order of CaCl2 > (NH4)2SO4 > NaNO3, Na2SiO3. The presence of Na2SiO3 or NaNO3 has no obvious effect on the growth rates of SOA formation, but it does increase the yield of organic acid and nitrogen-containing organic compounds, respectively. Besides the significantly effect on the growth rate of SOA formation, the presence of CaCl2 or (NH4)2SO4 can lead to the formation of high-molecular weight species which is found to be positively correlated with the hygroscopic behavior of seed aerosols. The CaCl2 shows the strongest hygroscopic behavior among the four individual seed aerosols, and the most significant promotion effect on the formation of the high-molecular weight species. It is proposed that the SOA generation enhancement and high-molecular weight products are achieved by particle-phase heterogeneous reactions induced and catalyzed by the acidity of CaCl2 and (NH4)2SO4 seed aerosols.  相似文献   

5.
Measurements of aerosol physical, chemical and optical parameters were carried out in Guangzhou, China from 1 July to 31 July 2006 during the Pearl River Delta Campaign. The dry aerosol scattering coefficient was measured using an integrating nephelometer and the aerosol scattering coefficient for wet conditions was determined by subtracting the sum of the aerosol absorption coefficient, gas scattering coefficient and gas absorption coefficient from the atmospheric extinction coefficient. Following this, the aerosol hygroscopic growth factor, f(RH), was calculated as the ratio of wet and dry aerosol scattering coefficients. Measurements of size-resolved chemical composition, relative humidity (RH), and published functional relationships between particle chemical composition and water uptake were likewise used to find the aerosol scattering coefficients in wet and dry conditions using Mie theory for internally- or externally-mixed particle species [(NH4)2SO4, NH4NO3, NaCl, POM, EC and residue]. Closure was obtained by comparing the measured f(RH) values from the nephelometer and other in situ optical instruments with those computed from chemical composition and thermodynamics. Results show that the model can represent the observed f(RH) and is appropriate for use as a component in other higher-order models.  相似文献   

6.
《Atmospheric Research》2009,91(2-4):253-263
A high-volume cascade impactor, equipped with a PM10 inlet, was used to collect size-segregated aerosol samples during the summer of 2004 at two Portuguese locations: a coastal-rural area (Moitinhos) and an urban area (Oporto). Concentrations of airborne particulate matter (PM), total carbon (TC), organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC) were determined for the following particle size ranges: < 0.49, 0.49–0.95, 0.95–3.0, and 3.0–10 µm. The total PM mass concentrations at the urban and coastal-rural sites ranged from 22.8 to 79.6 μg m 3 and 19.9 to 28.2 μg m 3, respectively, and more than 56% of the total aerosol mass was found in the fractions below 3.0 μm. At both locations the highest concentrations of OC and EC were found in the submicrometer size range. The regional variability for the OC and EC concentrations, with the highest concentrations being found in the urban area, was related to the contribution of local primary sources (mostly traffic emissions). It was also verified an enrichment of the small size particles in WSOC, representing on average 37.3(± 12.4)% and 59.7(± 18.0)% of OC in the very fine aerosol at the coastal-rural and urban areas, respectively. The amount of secondary OC calculated by the minimum OC/EC ratio method indicates that secondary organic aerosol formation was important throughout the study at both sites. The obtained results suggest that long-range transport and favourable summer conditions for photochemical oxidation are key factors determining secondary OC formation in the coastal-rural and urban areas. The ultraviolet absorption properties of the chromophoric constituents of the WSOC fractions were also different among the different particle size ranges and also between the two sampling locations, thus suggesting the strong impact of the diverse emission sources into the composition of the size-segregated organic aerosol.  相似文献   

7.
Aerosols in the atmosphere not only degrade visibility, but are also detrimental to human health and transportation. In order to develop a method to estimate PM_(2.5) mass concentration from the widely measured visibility, a field campaign was conducted in Southwest China in January 2019. Visibility, ambient relative humidity(RH), PM_(2.5) mass concentrations and scattering coefficients of dry particles were measured. During the campaign, two pollution episodes, i.e., from 4-9 January and from 10-16 January, were encountered. Each of the two episodes could be divided into two periods. High aerosol hygroscopicity was found during the first period, when RH was higher than 80% at most of the time, and sometimes even approached 100%. The second period experienced a relatively dry but more polluted condition and aerosol hygroscopicity was lower than that during the first period. An empirical relationship between PM_(2.5) mass concentration and visibility(ambient aerosol extinction) under different RH conditions could thus be established. Based on the empirical relationship,PM_(2.5) mass concentration could be well estimated from visibility and RH. This method will be useful for remote sensing of PM_(2.5) mass concentration.  相似文献   

8.
A high-volume cascade impactor, equipped with a PM10 inlet, was used to collect size-segregated aerosol samples during the summer of 2004 at two Portuguese locations: a coastal-rural area (Moitinhos) and an urban area (Oporto). Concentrations of airborne particulate matter (PM), total carbon (TC), organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC) were determined for the following particle size ranges: < 0.49, 0.49–0.95, 0.95–3.0, and 3.0–10 µm. The total PM mass concentrations at the urban and coastal-rural sites ranged from 22.8 to 79.6 μg m− 3 and 19.9 to 28.2 μg m− 3, respectively, and more than 56% of the total aerosol mass was found in the fractions below 3.0 μm. At both locations the highest concentrations of OC and EC were found in the submicrometer size range. The regional variability for the OC and EC concentrations, with the highest concentrations being found in the urban area, was related to the contribution of local primary sources (mostly traffic emissions). It was also verified an enrichment of the small size particles in WSOC, representing on average 37.3(± 12.4)% and 59.7(± 18.0)% of OC in the very fine aerosol at the coastal-rural and urban areas, respectively. The amount of secondary OC calculated by the minimum OC/EC ratio method indicates that secondary organic aerosol formation was important throughout the study at both sites. The obtained results suggest that long-range transport and favourable summer conditions for photochemical oxidation are key factors determining secondary OC formation in the coastal-rural and urban areas. The ultraviolet absorption properties of the chromophoric constituents of the WSOC fractions were also different among the different particle size ranges and also between the two sampling locations, thus suggesting the strong impact of the diverse emission sources into the composition of the size-segregated organic aerosol.  相似文献   

9.
A series of 60-year numerical experiments starting from 1851 was conducted using a global climate model coupled with an aerosol-cloud-radiation model to investigate the response of the Asian summer monsoon to variations in the secondary organic aerosol (SOA) flux induced by two different estimations of biogenic volatile organic compound (BVOC) emissions. One estimation was obtained from a pre-existing archive and the other was generated by a next-generation model (the Model of Emissions of Gases and Aerosols from Nature, MEGAN). The use of MEGAN resulted in an overall increase of the SOA production through a higher rate of gasto-particle conversion of BVOCs. Consequently, the atmospheric loading of organic carbon (OC) increased due to the contribution of SOA to OC aerosol. The increase of atmospheric OC aerosols was prominent in particular in the Indian subcontinent and Indochina Peninsula (IP) during the pre- and early-monsoon periods because the terrestrial biosphere is the major source of BVOC emissions and the atmospheric aerosol concentration diminishes rapidly with the arrival of monsoon rainfall. As the number of atmospheric OC particles increased, the number concentrations of cloud droplets increased, but their size decreased. These changes represent a combination of aerosol-cloud interactions that were favorable to rainfall suppression. However, the modeled precipitation was slightly enhanced in May over the oceans that surround the Indian subcontinent and IP. Further analysis revealed that a compensating updraft in the surrounding oceans was induced by the thermally-driven downdraft in the IP, which was a result of surface cooling associated with direct OC aerosol radiative forcing, and was able to surpass the aerosolcloud interactions. The co-existence of oceanic ascending motion with the maximum convective available potential energy was also found to be crucial for rainfall formation. Although the model produced statistically significant rainfall changes with locally organized patterns, the suggested pathways should be considered guardedly because in the simulation results, 1) the BVOC-induced aerosol direct effect was marginal; 2) cloud-aerosol interactions were modeldependent; and 3) Asian summer monsoons were biased to a nonnegligible extent.  相似文献   

10.
Nitrogen-containing organic compounds (NOC) formed from secondary organic aerosols (SOA) age via reaction with reduced nitrogen species are a vital class of brown carbon compounds. NOC compounds from ammonia (NH3) gas-aging of benzene SOA were investigated in present study, and the experiments were performed by irradiating benzene/CH3ONO/NO/NH3 air mixtures in a home-made smog chamber. The particulate NOC products of aged benzene SOA in the presence of NH3 were measured by UV-Vis spectrophotometer, attenuated total reflectance-Fourier transform infrared (ATR-FTIR), and aerosol laser time-of-flight mass spectrometer (ALTOFMS) coupled with Fuzzy C-Means (FCM) clustering algorithm, respectively. Experimental results demonstrated that NH3 has significant promotion effect on benzene SOA formation. Organic ammonium salts, such as ammonium glyoxylate, ammonium 6-oxo-2,4-hexadienoiclate, which are formed from NH3 reactions with gaseous organic acids were detected as the major particulate NOC products of NH3-aged benzene SOA. 1H–imidazole, 1H–imidazole-2-carbaldehyde and other imidazole products via the heterogeneous reactions between NH3 and dialdehydes of benzene SOA were successfully detected as important brown carbon constituents. The formation of imidazole products suggests that some ambient particles contained organonitrogen compounds may be come from this mechanism. The results of this study may provide valuable information for discussing NH3 deposition and SOA aging mechanisms.  相似文献   

11.
The influence of surface tension on the formation of secondary organic aerosol (SOA) is investigated in this study using a size-dependent absorptive partitioning model. A theoretical framework is offered to estimate the surface tension of multi-component aerosols consisting of organic compounds and water. The size-dependent influence of surface tension on the absorptive partitioning of semi-volatile organic compounds is examined via numerical simulations of systems of representative pre-existing aerosol (PA) components and semi-volatile organic compounds that have been observed to constitute SOA. Results indicate that if nonpolar organic species constitute a significant fraction of the PA, the Kelvin effect on SOA formation may be negligible. However, if PA is dominated by polar organic compounds, the Kelvin effect on SOA formation is significant when the PA initial diameter is smaller than approximately 200 nm. If the PA is an aqueous aerosol, the Kelvin effect on SOA formation is most important. A simplified computational scheme for estimation of the Kelvin effect is developed in this study and feasibly could be coupled into three-dimensional air quality models that simulate SOA formation. Available observations also suggest that future modeling and analysis of SOA formation may need to consider the Kelvin effect. Concrete testing of the purely theoretical model presented here requires carefully designed observations that examine the phase distribution of secondary organic compounds between the gas phase and aerosol particles small enough to be affected by surface tension.  相似文献   

12.
Organic compounds in the atmosphere can influence the activation, growth and lifetimes of haze, fog and cloud droplets by changing the condensation and evaporation rates of liquid water by these aqueous aerosol particles. Depending on the nature and properties of the organic compounds, the change can be to enhance or reduce these rates. In this paper we used a tandem differential mobility analyzer (TDMA) to examine the effect of tetracosane, octanoic acid, and lauric acid on the hygroscopic properties of NaCl aerosol particles at relative humidities (RH) between 30 and 95%. These organic compounds have been identified in ambient aerosol particle samples. A slight lowering of the deliquescence relative humidity (DRH) and suppression of hygroscopic growth for the NaCl-organic compound mixtures were observed when compared to pure NaCl particles. The growth of pure NaCl particles was 2.25 in diameter at 85% RH while the growth of the mixed particles was 1.3 to 1.7 in particle diameter at 85% RH with organic mass fraction of 30–50%. This shows that these organic compounds have to be present in rather large mass fractions to effect the hygroscopic behavior to a similar degree observed for ambient aerosol during field measurements. Despite the mixing of the organic material with NaCl, hysteresis was observed for decreasing RH histories, suggesting the formation of metastable droplets. These laboratory results are strikingly similar to ambient field results. For example, if the total organic mass fraction of the particles is between 0.30 and 0.50, the particle growth at 85% RH is about a factor of 1.4 for the laboratory and field measurements. Such reduction in growth compared to the pure inorganic salt is in contradiction to speculations concerning significant effects by organic compounds on cloud condensation nuclei and thus formation on clouds.  相似文献   

13.
Five aromatic hydrocarbons – benzene, toluene, ethylbenzene, p-xylene and 1,2,4-trimethylbenzene – were selected to investigate the laser desorption/ionization mass spectra of secondary organic aerosols (SOA) resulting from OH-initiated photooxidation of aromatic compounds. The experiments were conducted by irradiating aromatic hydrocarbon/CH3ONO/NO X mixtures in a home-made smog chamber. The aerosol time-of-flight mass spectrometer (ATOFMS) was used to measure the aerodynamic size and chemical composition of individual secondary organic aerosol particles in real-time. Experimental results showed that aerosol created by aromatics photooxidation is predominantly in the form of fine particles, which have diameters less than 2.5 μm (i.e. PM2.5), and different aromatic hydrocarbons SOA mass spectra have eight same positive laser desorption/ionization mass spectra peaks: m/z = 18, 29, 43, 44, 46, 57, 67, 77. These mass spectra peaks may come from the fragment ions of the SOA products: oxo-carboxylic acids, aldehydes and ketones, nitrogenated organic compounds, furanoid and aromatic compounds. The possible reaction mechanisms leading to these products were also discussed.  相似文献   

14.
生物源与人为源有机气体氧化形成的二次有机气溶胶(SOA)对气候变化和人类健康具有重要影响。SOA的产生与其前体物研究已取得了一些进展,但由于有机气体之间存在复合相互作用以及SOA形成机制复杂,目前对不同有机气体混合体系中SOA的形成认知还比较匮乏。因此,深入了解有机气体多源、复杂的相互作用,摸清有机气体的大气氧化机制、SOA的形成及影响等对深入理解真实大气有机气体化学演变具有指导意义。本文旨在了解复合体系有机气体氧化生成SOA的相关研究进展。一方面总结了复合体系有机气体产生SOA质量浓度、产率、成分、挥发性、光学性质等的变化,侧重于实验室复合体系有机气体氧化对SOA形成的多重影响以及SOA组成元素、分子构成的变化特征,并总结了目前实验室基于模型对复合体系SOA生成的模拟研究和拟合情况;另一方面探究了环境因素,如相对湿度(RH)、温度(T)以及无机气体,如氮氧化物(NOx)、二氧化硫(SO2)、氨气(NH3)等对复合体系有机气体形成SOA的影响。  相似文献   

15.
A laboratory study was carried out to investigate the secondary organic aerosol products from photooxidation of the aromatic hydrocarbon toluene. The laboratory experiments consisted of irradiating toluene/propylene/NOx/air mixtures in a smog chamber operated inthe dynamic mode and collecting submicron secondary organic aerosol samples through a sampling train that consisted of an XAD denuder and a ZefluorTM filter. Oxidation products in the filter extracts were treated using O-(2,3,4,5,6,-pentafluorobenzyl)-hydroxylamine (PFBHA) to derivatize carbonyl groups followed by treatment with N,O-Bis(trimethylsilyl)-acetamide (BSTFA) to derivatize OH groups. The derivatized products were detected with a positive chemical ionization (CI) gas chromatography ion trap mass spectroscopy (GC-ITMS) system. The results of the GC-ITMS analyses were consistent with the previous studies that demonstrated the formation of multi-functional oxygenates. Denuder results showed that many of these same compounds were present in the gas, as well as, the particle phase. Moreover, evidence was found for a series of multifunctional acids produced as higher order oxidation products of the toluene/NOx system. Products having nearly the same mass spectrumwere also found in the ambient environment using identical analytical techniques. These products having multiple acid and alcoholic-OH moieties have substantially lower volatility than previously reported SOA products of the toluene photooxidation and might serve as an indicator for aromatic oxidation in the ambient atmosphere.  相似文献   

16.
实验室模拟研究大气二次有机气溶胶的形成   总被引:1,自引:0,他引:1  
徐永福  贾龙 《大气科学》2018,42(4):767-785
二次有机气溶胶(SOA)是大气中重要的气溶胶组分,主要由挥发性有机物(VOCs)经化学转化形成,对天气、气候、大气环境和人体健康有重要影响,但至今其确切的化学成分和形成机制还十分不清楚。研究SOA的方法主要采用实验室单个物种或多物种的化学过程的模拟研究,野外实际大气的SOA化学成分、源汇和多尺度分析的观测研究,以及大气中SOA形成的数值模拟的回报和预报研究。实验室研究是对SOA形成过程中获取基础数据和推究SOA生成机制的最主要手段。在过去的几十年中,特别是近五年,SOA的研究取得了较大的进展,其中包括SOA前体物、SOA形成机制及影响因子的进一步理解。本文就这些方面展开了概要性的综述,重点强调了我国研究人员所做的研究工作。在采用实验室烟雾箱系统模拟研究SOA方面,首先简述了烟雾系统的发展以及表征,讨论了跟烟雾箱箱体相关的壁效应问题,重点综述了萜烯类、芳香烃类、小分子类等化学物种转化形成SOA的研究进展。在采用流动管和其他反应器类模拟研究SOA方面,重点讨论了挥发性有机物在颗粒物表面或在液相中所形成的SOA的主要化学成分及其可能的作用。  相似文献   

17.
Assessment of the radiative forcing of aerosols in models still lacks sufficient input data for aerosol hygroscopicity. The light scattering enhancement factor [ f(RH, λ)] is a crucial parameter for describing aerosol hygroscopic growth properties.In this paper, we provide a survey of f(RH, λ) studies in China for the past seven years, including instrument developments of humidified nephelometers, ambient f(RH, λ) measurements in China, f(RH, λ) parameterization schemes, and f(RH, λ)applications in aerosol measurements. Comparisons of different f(RH, λ) parameterizations are carried out to check their performance in China using field measurement datasets. We also summary the parameterization schemes for predicting f(RH, λ)with aerosol chemical compositions. The recently developed methods to observe other aerosol properties using f(RH, λ)measurements, such as calculating the aerosol hygroscopicity parameter, cloud condensation nuclei number concentration,aerosol liquid water content, and aerosol asymmetry factor, are introduced. Suggestions for further research on f(RH, λ) in China are given.  相似文献   

18.
A humidification system was deployed to measure aerosol hygroscopicity at a rural site of the North China Plain during the haze red-alert period 17–22 December 2016. The aerosol scattering coefficients under dry [relative humidity (RH) < 30%] and wet (RH in the range of 40%–85%) conditions were simultaneously measured at wavelengths of 450, 550, and 700 nm. It is found that the aerosol scattering coefficient and backscattering coefficient increased by only 29% and 10%, respectively when RH went up from 40% to 80%, while the hemispheric backscatter fraction went down by 14%, implying that the aerosol hygroscopicity represented by the aerosol scattering enhancement factor f(RH) is relatively low and RH exerted little effects on the aerosol light scattering in this case. The scattering enhancement factors do not show significant differences at the three wavelengths, only with an approximate 2% variation, suggesting that the aerosol hygroscopicity is independent of the wavelength. Aerosol hygroscopicity is highly dependent on the aerosol chemical composition. When there is a large mass fraction of inorganics and a small mass fraction of organic matter, f(RH) reaches a high value. The fraction of NO3 was strongly correlated with the aerosol scattering coefficient at RH = 80%, which suggests that NO3 played an important role in aerosol hygroscopic growth during the heavy pollution period.  相似文献   

19.
2016年11月13日在北京地区上空存在持续稳定的层状云天气背景下,利用飞机开展气溶胶粒径谱、化学组成、云滴谱等参量的垂直观测,研究该个例云底气溶胶的活化能力。结果表明:探测期间北京地区为轻度污染天气,地面气溶胶浓度(0.11~3 μm)达到4600 cm-3。云层高度为800~1200 m,云底气溶胶数浓度相对于近地面大幅度降低,有效粒径显著增大(0.3~0.6 μm)。同时,近地面气溶胶中疏水性的一次有机气溶胶贡献显著,而云底气溶胶中一次有机气溶胶的贡献大幅降低,无机组分和二次有机气溶胶的贡献明显增大,造成吸湿性参数κ由0.25(地面)增大至0.32(云底)。云中气溶胶和云滴的谱分布衔接较好,且两者的数浓度之和与云底气溶胶浓度一致,可分别代表未活化和已活化的粒子。基于云底气溶胶粒径谱和吸湿性参数计算得到不同过饱和比下云凝结核的活化率,通过与云中观测结果对比,反推得到云底过饱和度约为0.048%。  相似文献   

20.
Anthropogenic emissions alter biogenic secondary organic aerosol(SOA) formation from naturally emitted volatile organic compounds(BVOCs). We review the major laboratory and field findings with regard to effects of anthropogenic pollutants(NOx, anthropogenic aerosols, SO_2, NH_3) on biogenic SOA formation. NOx participate in BVOC oxidation through changing the radical chemistry and oxidation capacity, leading to a complex SOA composition and yield sensitivity towards NOx level for different or even specific hydrocarbon precursors. Anthropogenic aerosols act as an important intermedium for gas–particle partitioning and particle-phase reactions, processes of which are influenced by the particle phase state, acidity, water content and thus associated with biogenic SOA mass accumulation. SO_2 modifies biogenic SOA formation mainly through sulfuric acid formation and accompanies new particle formation and acid-catalyzed heterogeneous reactions. Some new SO_2-involved mechanisms for organosulfate formation have also been proposed.NH_3/amines, as the most prevalent base species in the atmosphere, influence biogenic SOA composition and modify the optical properties of SOA. The response of SOA formation behavior to these anthropogenic pollutants varies among different BVOCs precursors. Investigations on anthropogenic–biogenic interactions in some areas of China that are simultaneously influenced by anthropogenic and biogenic emissions are summarized. Based on this review, some recommendations are made for a more accurate assessment of controllable biogenic SOA formation and its contribution to the total SOA budget. This study also highlights the importance of controlling anthropogenic pollutant emissions with effective pollutant mitigation policies to reduce regional and global biogenic SOA formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号