首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the calibration of Omori's aftershock occurrence rate model for Turkey and the resulting likelihoods. Aftershock occurrence rate models are used for estimating the probability of an aftershock that exceeds a specific magnitude threshold within a time interval after the mainshock. Critical decisions on the post-earthquake safety of structures directly depend on the aftershock hazard estimated using the occurrence model. It is customary to calibrate models in a region-specific manner. These models depend on rate parameters(a, b, c and p) related to the seismicity characteristics of the investigated region. In this study, the available well-recorded aftershock sequences for a set of Mw ≥ 5.9 mainshock events that were observed in Turkey until 2012 are considered to develop the aftershock occurrence model. Mean estimates of the model parameters identified for Turkey are a =-1.90, b = 1.11, c = 0.05 and p = 1.20. Based on the developed model, aftershock likelihoods are computed for a range of different time intervals and mainshock magnitudes. Also, the sensitivity of aftershock probabilities to the model parameters is investigated. Aftershock occurrence probabilities estimated using the model are expected to be useful for post-earthquake safety evaluations in Turkey.  相似文献   

2.
A version of the restricted trigger model is used to analyse the temporal behaviour of some aftershock sequences. The conditional intensity function of the model is similar to that of the Epidemic Type Aftershock-Sequence (ETAS) model with the restriction that only the aftershocks of magnitude bigger than or equal to some threshold Mtr can trigger secondary events. For this reason we have named the model Restricted Epidemic Type Aftershock-Sequence (RETAS) model. Varying the triggering threshold we examine the variants of the RETAS model which range from the Modified Omori Formula (MOF) to the ETAS model, including such models as limit cases. In this way we have a quite large set of models in which to seek the model that fits best an aftershock sequence bringing out the specific features of the seismotectonic region struck by the crisis. We have applied the RETAS model to the analysis of two aftershock sequences: The first is formed by the events which followed the strong earthquake of M=7.8 which occurred in Kresna, SW Bulgaria, in 1904. The second includes three main shocks and a large swarm of minor shocks following the quake of 26 September 1997 in the Umbria-Marche region, central Italy. The MOF provides the best fit to the sequence in Kresna; that leads to the thought that just the stress field changes due to the very strong main shock generate the whole sequence. On the contrary, the complex behaviour of the seismic sequence in Umbria-Marche appears when we make the threshold magnitude vary. Setting the cut-off magnitude M0=2.9 the best fit is provided by the ETAS model, while if we raise the threshold magnitude M0=3.6 and set Mtr=5.0, the RETAS model turns out to be the best model. In fact, observing the time distribution of this reduced data set, it appears more evident that especially the strong secondary events are followed by a cluster of aftershocks.  相似文献   

3.
杨成荣 《内陆地震》1991,5(4):352-357
1990年4月17日乌恰6.4级地震序列有以下特征:(1)主震型序列;(2)强余震前小地震震中向强余震的震中附近迁移;(3)余震频度衰减快;(4)余震在主震和最大余震之间活动;(5)较大余震存在“密集-平静-发震”的规律;(6)存在晚期较强余震。  相似文献   

4.
The rate of aftershock occurrence after the M6 Ston-Slano (Croatia) earthquake is modeled as the Epidemic Type Aftershock Sequence (ETAS). Increase of the modeled cumulative number of aftershocks with time was fitted to observations by the least-squares criterion using the combined grid-search and Monte-Carlo approach. This enabled not only the estimation of the most probable ETAS parameters, but also the determination of their confidence limits, as well as the estimation of the bias between them. It has been found that the bias is significant for some of the parameter pairs, regardless of the threshold magnitude assumed. Residual analyses revealed that all strong aftershocks (M L 4.5) occurred during the periods of normal to high aftershock activity. There were two periods of quiescence in the sequence, both of which were followed by a strong aftershock.  相似文献   

5.
A stochastic triggering (epidemic) model incorporating short-term clustering was fitted to the instrumental earthquake catalog of Italy for event with local magnitudes 2.6 and greater to optimize its ability to retrospectively forecast 33 target events of magnitude 5.0 and greater that occurred in the period 1990–2006. To obtain an unbiased evaluation of the information value of the model, forecasts of each event use parameter values obtained from data up to the end of the year preceding the target event. The results of the test are given in terms of the probability gain of the epidemic-type aftershock sequence (ETAS) model relative to a time-invariant Poisson model for each of the 33 target events. These probability gains range from 0.93 to 32000, with ten of the target events yielding a probability gain of at least 10. As the forecasting capability of the ETAS model is based on seismic activity recorded prior to the target earthquakes, the highest probability gains are associated with the occurrence of secondary mainshocks during seismic sequences. However, in nine of these cases, the largest mainshock of the sequence was marked by a probability gain larger than 50, having been preceded by previous smaller magnitude earthquakes. The overall evaluation of the performance of the epidemic model has been carried out by means of four popular statistical criteria: the relative operating characteristic diagram, the R score, the probability gain, and the log-likelihood ratio. These tests confirm the superior performance of the method with respect to a spatially varying, time-invariant Poisson model. Nevertheless, this method is characterized by a high false alarm rate, which would make its application in real circumstances problematic.  相似文献   

6.
Aftershock rates seem to follow a power law decay, but the assessment of the aftershock frequency immediately after an earthquake, as well as during the evolution of a seismic excitation remains a demand for the imminent seismic hazard. The purpose of this work is to study the temporal distribution of triggered earthquakes in short time scales following a strong event, and thus a multiple seismic sequence was chosen for this purpose. Statistical models are applied to the 1981 Corinth Gulf sequence, comprising three strong (M = 6.7, M = 6.5, and M = 6.3) events between 24 February and 4 March. The non-homogeneous Poisson process outperforms the simple Poisson process in order to model the aftershock sequence, whereas the Weibull process is more appropriate to capture the features of the short-term behavior, but not the most proper for describing the seismicity in long term. The aftershock data defines a smooth curve of the declining rate and a long-tail theoretical model is more appropriate to fit the data than a rapidly declining exponential function, as supported by the quantitative results derived from the survival function. An autoregressive model is also applied to the seismic sequence, shedding more light on the stationarity of the time series.  相似文献   

7.
The Visibility Graph (VG) method maps time series into networks or graphs, converting dynamical properties of time series in topological properties of networks. The VG method was applied to the aftershock depleted catalogue of the Kachchh Gujarat (Western India) seismicity from 2003 to 2012, in order to identify possible precursory signatures in the pattern of the VG parameters. The k–M slope (the slope of the line fitting the relationship between the magnitude of the events and their connectivity degrees) seems to sharply increase significantly before the occurrence of the largest shocks (M  4.5) of the sequence.  相似文献   

8.
Aftershock activity following the April 25, 1989 (M S =6.9) earthquake near San Marcos, Guerrero, Mexico, was monitored by a temporary network installed twelve hours after the mainshock and remaining in operation for one week. Of the 350 events recorded by this temporary array, 103 were selected for further analysis in order to determine spatial characteristics of the aftershock activity. An aftershock area of approximately 780 km2 is delimited by the best quality locations. The area of highest aftershock density lies inside an area delimited by the aftershocks of the latest large event in the region in 1957 (M S =7.5) and it partially overlaps the zone of maximum intensity of the earlier 1907 (M S =7.7) shock. Aftershocks also appear to cluster close to the mainshock hypocenter. This clustering agrees with the zone of maximum slip during the mainshock, as previously determined from strong motion records. A low angle Benioff zone is defined by the aftershock hypocenters with a slight tendency for the slab to follow a subhorizontal trajectory after a 110 km distance from the trench axis, a feature which has been observed in the neighboring Guerrero Gap. A composite focal mechanism for events close to the mainshock which also coincides with the zone of largest aftershock density, indicates a thrust fault similar to the mainshock fault plane solution.The San Marcos event took place in an area which could be considered as a mature seismic gap. Due to the manner in which strain release has been observed to previously occur, the occurrence of a major event, overlapping both the neighboring Guerrero Gap and the San Marcos Gap segments of the Mexican thrust, cannot be overlooked.  相似文献   

9.
Major earthquakes (i.e., mainshocks) typically trigger a sequence of lower magnitude events clustered both in time and space. Recent advances of seismic hazard analysis stochastically model aftershock occurrence (given the main event) as a nonhomogeneous Poisson process with rate that decays in time as a negative power law. Risk management in the post‐event emergency phase has to deal with this short‐term seismicity. In fact, because the structural systems of interest might have suffered some damage in the mainshock, possibly worsened by damaging aftershocks, the failure risk may be large until the intensity of the sequence reduces or the structure is repaired. At the state‐of‐the‐art, the quantitative assessment of aftershock risk is aimed at building tagging, that is, to regulate occupancy. The study, on the basis of age‐dependent stochastic processes, derived closed‐form approximations for the aftershock reliability of simple nonevolutionary elastic‐perfectly‐plastic damage‐cumulating systems, conditional on different information about the structure. Results show that, in the case hypotheses apply, the developed models may represent a basis for handy tools enabling risk‐informed tagging by stakeholders and decision makers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
W. B. Liu  L. Ma 《Pure and Applied Geophysics》2006,163(11-12):2513-2528
In this paper, 28 aftershock sequences are selected, which are distributed in different areas including north China, southwest of China, northwest of China, Taiwan area, Turkey and Greece. In order to investigate the characteristics of these sequences along with different temporal and spatial coordinates, each sequence has been divided into dozens of segments called ``sub-sequences''. The ETAS (Epidemic Type Aftershock Sequences) model is applied to each ``sub-sequence'', and therefore the vectors of parameters of ETAS could be evaluated. Another model named LR (Logistic Regression) model is used to seek the correlate relation between the parameters of ETAS applied to every earthquake ``sub-sequence'' and seismicity. All the analyses and estimations imply that the characteristic of decay of aftershock sequences in different temporal and spatial domains seems to be characterized by the parameters of the ETAS model applied to some aftershock sequences or ``sub-sequences'', and there are some proportional correlate relations between the evaluation of LR model and the occurrence probability of the succeeding strong seismic energy release.  相似文献   

11.
Summary The time of occurrence and the magnitude of the largest aftershock in relation to the main shock have been studied for India and its neighbourhood based on the USCGS data during the years 1963–1971. It is found that the largest aftershock occurs within 2 hours after the main shock in about 50% of the cases and frequency of occurrencen(t) of the largest aftershocks decreases hyper-bolically with the intervalt after the main event and could be represented by a law of the formn(t)=At –h whereA andh are constants. The probability of occurrence of the largest aftershock within 2 hours of the main shock is found to be higher over island are regions of the world. The difference (M 0M 1) of the magnitude of the largest aftershockM 1 to that of the main shockM 0 as a measure of aftershock activity does not show any marked regional variation over India and its neighbourhood, as was reported by Mogifor Japan. Examination of the values ofM 1/M 0 and the constantb in Gutenberg-Richter's frequency magnitude relationship reveals a range of variation in both; high values ofM 1/M 0 have been found to be associated with high values ofb in many tectonic earthquakes and thus not, restricted to reservoir associated seismic activity.  相似文献   

12.
王鹏  侯金欣  吴朋 《中国地震》2017,33(4):453-462
中强地震序列的主震发生后,短时间内受台站距震中较远、尾波干扰和波形重叠等因素的影响,往往会遗漏大量的地震,而地震目录的完整性会直接影响到震后趋势判定和余震序列特征分析的科学性和可靠性。本文利用基于GPU加速的模板匹配方法对2017年8月1~12日的连续波形进行扫描计算,检测九寨沟MS7.0地震前后遗漏的地震事件,选取台网目录中信噪比较高的1033个地震事件作为模板,在主震前7天至震后5天期间识别出4854个检测地震事件,为台网可定位目录的3.3倍,除去对台网单台地震事件的修正外,还检测到1797个遗漏地震事件,将完备震级从1.6级降低到1.4级。基于补充了遗漏地震的完整地震目录,对2017年8月8日九寨沟MS7.0地震序列活动特征进行分析。结果表明,前震序列在主震前短时间内出现了地震活动的密集增强,b值也显示为低值状态,可能是深部断层发生破裂之前的加速蠕动的结果。随着时间的推移,余震序列的完备震级逐渐下降并趋于稳定,b值存在缓慢升高的趋势,未来较长时期内余震序列仍将处于持续衰减的状态。  相似文献   

13.
The post-earthquake assessment of existing structures can be further complicated by the progressive damage induced by the occurrence of a sequence of aftershocks. This work presents a simple methodology for the calculation of the probability of exceeding a certain limit state in a given interval of time. The time-decaying mean daily rate of occurrence of significant aftershock events is modeled by employing a site-specific aftershock model for the L??Aquila 2009 aftershock sequence (central Italy). The number of aftershock events occurring in a given interval of time elapsed after the main event is modeled using a non-homogenous Poisson model. An equivalent single-degree of freedom structure with cyclic stiffness degradation is used in order to evaluate the progressive damage caused by a sequence of aftershock events. Given the time history of the main-shock and the residual damage caused by it, the probability of exceeding a set of discrete limit states in a given interval of time is calculated. Of particular importance is the time-variant probability of exceeding the limit state in a 24-h (a day) interval of time which can be used as a proxy for the life-safety considerations regarding the re-occupancy of the structure and to complement the results of visual inspections for prioritizing the emergency operations. The method presented herein can also be used in an adaptive manner, progressively conditioned on the time-histories of aftershock events following the main-shock and on the corresponding residual damage caused by them.  相似文献   

14.
Aftershock statistics provide a wealth of data that can be used to better understand earthquake physics. Aftershocks satisfy scale-invariant Gutenberg–Richter (GR) frequency–magnitude statistics. They also satisfy Omori’s law for power-law seismicity rate decay and Båth’s law for maximum-magnitude scaling. The branching aftershock sequence (BASS) model, which is the scale-invariant limit of the epidemic-type aftershock sequence model (ETAS), uses these scaling laws to generate synthetic aftershock sequences. One objective of this paper is to show that the branching process in these models satisfies Tokunaga branching statistics. Tokunaga branching statistics were originally developed for drainage networks and have been subsequently shown to be valid in many other applications associated with complex phenomena. Specifically, these are characteristic of a universality class in statistical physics associated with diffusion-limited aggregation. We first present a deterministic version of the BASS model and show that it satisfies the Tokunaga side-branching statistics. We then show that a fully stochastic BASS simulation gives similar results. We also study foreshock statistics using our BASS simulations. We show that the frequency–magnitude statistics in BASS simulations scale as the exponential of the magnitude difference between the mainshock and the foreshock, inverse GR scaling. We also show that the rate of foreshock occurrence in BASS simulations decays inversely with the time difference between foreshock and mainshock, an inverse Omori scaling. Both inverse scaling laws have been previously introduced empirically to explain observed foreshock statistics. Observations have demonstrated both of these scaling relations to be valid, consistent with our simulations. ETAS simulations, in general, do not generate Båth’s law and do not generate inverse GR scaling.  相似文献   

15.
历史上发生过强震地区的余震活动可能持续较长时间,而余震序列在何时可被看作正常的"背景地震活动",即"序列归属"问题在地球动力学和地震物理中有重要意义.时-空"传染型余震序列"(ETAS)模型可分离"背景"地震和"丛集"地震,并用概率形式表示作为相应事件的可能性,为考察此问题提供了可能.本文以1976年唐山MS7.8地震序列为例,对唐山地区1970年以来的ML4.0以上地震进行了时-空ETAS模型拟合,并以2010年以来发生的3次MS4.0以上地震为例讨论了它们的"序列归属"问题.研究结果显示,3次MS4.0以上地震的背景地震概率分别为0.72、0.88和0.76,表明它们作为1976年唐山MS7.8的余震的可能性较低,更可能为背景地震.  相似文献   

16.
毕金孟  蒋长胜  马永 《地震》2020,40(2):140-154
2019年6月17日四川长宁发生MS6.0地震, 之后发生了一系列的强余震, 为更好地分析此次地震的序列特征以及强余震的可预测属性, 采用国际上对复杂序列拟合相对较好的“传染型余震序列”(ETAS)模型以及基于Reseanberg-Jones(R-J)模型发展的Omi-R-J模型, 通过连续滑动、 拟合和余震发生率预测, 对地震序列的模型参数稳定性、 预测结果进行了比较研究, 并利用N-test、 T-test检验方法对预测结果进行了效能评估。 结果表明, 相比于其他中强震序列参数, 此次长宁MS6.0地震序列参数中反映激发能力的αETAS较其他序列明显偏小, 而反映衰减能力的pORJ值和应力累积水平的bORJ值相对较小, 与此次余震序列丰富、 持续时间相对较长相吻合; ETAS和Omi-R-J模型对于复杂序列在[3.0, 3.5, 4.0]三个震级档的强余震仍具有一定的预测能力; 总体的“每个地震的信息增益”(IGPE)计算结果显示, ETAS模型略优于Omi-R-J模型, 前者或更适合复杂地震序列的余震预测。  相似文献   

17.
较大的余震可能造成额外损失并有二次触发建筑物受灾的风险。为研究余震序列衰减规律,文章尝试采用指数衰减模型拟合分析5个不同地区余震序列,并借助修正赤池信息准则、贝叶斯信息准则与调整后R2,分析其与传统余震衰减模型的性能。结果表明,指数模型描述余震序列衰减规律的能力与修正的大森余震模型、修正的拉伸指数模型接近。尤其对于四川长宁MS6.0余震序列和云南彝良MS5.7余震序列,指数模型表现优于其他两种模型。指数模型参数具有明确的物理意义:参数A与r之和能够准确代表强震后的实际初始余震数,5个余震序列初始余震数偏差均小于1.70%;参数k可作为反映余震序列衰减快慢的特征值,k值越大则余震序列衰减越慢,其值与主震震级呈反比例关系。  相似文献   

18.
The Aftershock sequence of Chamoli earthquake (M w 6.4) of 29 March 1999 is analyzed to study the fractal structure in space, time and magnitude distribution. The b value is found to be 0.63 less than which is usually observed worldwide and in the Himalayas. This indicates that the numbers of smaller earthquakes are relatively less than the larger ones. The spatial correlation is 1.64, indicating that events are approaching a two-dimensional region meaning that the aftershocks are uniformly distributed along the trend of the aftershock zone. Temporal correlation is 0.86 for aftershocks of M 1, indicating a nearly continuous aftershock activity. However, it is 0.5 for aftershocks of M 1.75, indicating a non continuous aftershock activity. From the assessment of slip on different faults it is inferred that 70% displacement is accommodated on the primary fault and the remainder on secondary faults.  相似文献   

19.
We have applied a variation of the Epidemic Type Aftershock Sequence (ETAS) model, which is a stochastic triggering epidemic model incorporating short-term clustering, to data collected by the New Zealand Seismological Observatory-Wellington (Geonet) for forecasting earthquakes of moderate and large magnitude in the New Zealand region. The model uses earthquake data only, with no explicit use of tectonic, geologic, or geodetic information. In this epidemic-type model every earthquake is regarded, at the same time, as being triggered by previous events and triggering following earthquakes. A maximum likelihood estimate of the model parameters has been performed on the learning period from 1960 to 2005 for earthquakes of magnitude 4.0 and larger. Forecast verification procedures have been carried out in a forward-retrospective way on the January 2006 to April 2008 data set, making use of statistical tools as the log-likelihood ratio, the Relative Operating Characteristics (ROC) diagrams, the Molchan error diagrams, the probability gain and the R-score. These procedures show that the clustering epidemic model achieves a log-likelihood ratio per event of the order of some units, and a probability gain up to several hundred times larger than a time-independent spatially uniform random forecasting hypothesis. The results show also that a significant component of the probability gain is linked to the time-independent spatial distribution of the seismicity used in the model.  相似文献   

20.
The study of seismic anomalies, related both to the temporal trend of aftershock sequences and to the temporal series of mainshocks, is important for an understanding of the physical processes relating to the existence and the characteristics of seismic precursors. The purpose of this work is to highlight some methodological aspects related to the observation of possible anomalies in the temporal decay of an aftershock sequence. It is realized by means of several parameters. We focused our work on an analysis of the Papua New Guinea seismic sequence that occurred on November 16, 2000. The magnitude of the mainshock is M = 8.2. The observed temporal series of shocks per day can be considered as a sum of a deterministic contribution and a stochastic contribution. If the decay can be modeled as a nonstationary Poisson process where the intensity function is equal to n(t) = K(t + c)p + K 1, the number of aftershocks in a small time interval Δt is the mean value n(tt, with a standard deviation σ = √n(tt. We observe that there are some variations in seismicity that can be considered as seismic anomalies before the occurrence of a large aftershock. The data, checked according to completeness criteria, come from the website of the USGS NEIC data bank (). The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号