首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents results of experimental and numerical investigations of a seesaw energy dissipation system (SEDS) using fluid viscous dampers (FVDs). To confirm the characteristics of the FVDs used in the tests, harmonic dynamic loading tests were conducted in advance of the free vibration tests and the shaking table tests. Shaking table tests were conducted to demonstrate the damping capacity of the SEDS under random excitations such as seismic waves, and the results showed SEDSs have sufficient damping capacity for reducing the seismic response of frames. Free vibration tests were conducted to confirm the reliability of simplified analysis. Time history response analyses were also conducted and the results are in close agreement with shaking table test results.  相似文献   

2.
A real-time hybrid experimental method, in which output from an actuator-excited vibration experiment and response calculation are combined on-line and conducted simultaneously in real time, is being developed as a new seismic experimental method for structural systems. In real-time hybrid experiments, however, there is an inevitable actuator-response delay, which has an effect equivalent to negative damping. To solve this problem, a real-time hybrid experimental system (including an actuator-delay compensation method) was developed. And seismic experiments were conducted in order to demonstrate the advantages of this system. Experimental results obtained using the developed hybrid experimental system were compared with exact results obtained using shaking-table experiments, and it was found that the two experimental methods gave almost identical results. It can therefore be concluded that the structural response can be obtained precisely by using the developed hybrid experimental system. Comparison of these experiments showed the advantages of the hybrid experiments; that is, they are simple and economical. This is because the hybrid experiment requires only a small structure as the excitation model, while a shaking-table experiment must consider the whole structural system. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
阻尼器是一种效果良好的减震装置,将阻尼器安装于结构中能够适时为结构体系提供阻尼力,从而减小地震作用对结构的破坏。黏滞阻尼器对振动的反应比较敏感,在结构受到较小振动时就可以发挥其减震效果,其阻尼力会随着振动周期和使用状态温度的不同而变化。当地震发生时,安装在结构中的阻尼器会消减地震作用,降低传导到主结构体系的地震能量,减小结构相对位移。本文介绍了黏滞阻尼器的工作原理和安装有黏滞阻尼器的结构体系的阻尼比的计算方法,对减震结构的减震效果的评析方法做出探讨,并以一安装有黏滞阻尼器的台湾某既有钢框架结构为例,分析了(1)该结构在遭受地震作用时的地震反应;(2)该结构体系在不同地震作用水平时的阻尼比,包括主体结构阻尼比和黏滞阻尼器阻尼比;(3)结构安装黏滞阻尼器后的减震效果。实例对本文的减震评析方法和减震效果进行了说明和分析,计算及分析结果表明利用黏滞阻尼器加固既有结构能够取得较好的减震效果,本文所提减震效果评析方法是一种实用有效的评析方法,对类似工程的减震评析具有一定的参考价值。  相似文献   

4.
The permeation parameters have been calculated by forefathers on the basis of permeation theory by means of the Slug test (Yin, Zheng, 1992) and the restoration curves of well level. We are interested in oscillation of the well level when we make Slug test. Both the permeation parameters and frequency parameters, i.e., natural period and damping coefficients of well aquifer, have been calculated on the basis of vibration theory by means of the oscillation curves. Not only this has given a new method, but also the different response of well level to seismic waves has been explained by it in theory.  相似文献   

5.
A small-scale model of an existing cable-stayed bridge has been designed and built. Hammer, sinusoidal and random signal tests have been performed to determine the dynamic characteristics of the model. An attempt has been made to evaluate the real effect of the vibration of stays upon system damping. Initial measurements have been performed for a model where there was no vibration of the stays because of the absence of appropriately scaled additional mass of these stays. In this way the effect of the cables was eliminated in damping measurement. During the second series of measurements appropriate mass has been added to the stays, causing them to take part in the vibration. The comparison of the measured damping of the model for each case makes possible the estimation of the effect of the stays upon the system damping. By using the shaking table, two types of seismic excitation were applied, with corresponding response quantities in the critical sections being measured. Good agreement between the analytical and the experimental results was achieved.  相似文献   

6.
Hybrid vibration experiments with a bridge foundation system model   总被引:3,自引:0,他引:3  
In order to improve seismic design technology of bridges, it is necessary to evaluate the vibration characteristics of a bridge–soil system that consists of soil, foundation structure, pier and superstructure. However, there have been few experimental studies on seismic behavior of bridge–soil system. In this paper, we conducted the hybrid vibration experiment on seismic behavior of bridge–soil system, and examined the applicability of hybrid vibration experiment to study seismic response of bridge–soil system. Based on the experiment results, seismic response of bridge was quantitatively studied.  相似文献   

7.
As high‐rise buildings are built taller and more slender, their dynamic behavior becomes an increasingly critical design consideration. Wind‐induced vibrations cause an increase in the lateral wind design loads, but more importantly, they can be perceived by building occupants, creating levels of discomfort ranging from minor annoyance to severe motion sickness. The current techniques to address wind vibration perception include stiffening the lateral load‐resisting system, adding mass to the building, reducing the number of stories, or incorporating a vibration absorber at the top of the building; each solution has significant economic consequences for builders. Significant distributed damage is also expected in tall buildings under severe seismic loading, as a result of the ductile seismic design philosophy that is widely used for such structures. In this paper, the viscoelastic coupling damper (VCD) that was developed at the University of Toronto to increase the level of inherent damping of tall coupled shear wall buildings to control wind‐induced and earthquake‐induced dynamic vibrations is introduced. Damping is provided by incorporating VCDs in lieu of coupling beams in common structural configurations and therefore does not occupy any valuable architectural space, while mitigating building tenant vibration perception problems and reducing both the wind and earthquake responses of the structure. This paper provides an overview of this newly proposed system, its development, and its performance benefits as well as the overall seismic and wind design philosophy that it encompasses. Two tall building case studies incorporating VCDs are presented to demonstrate how the system results in more efficient designs. In the examples that are presented, the focus is on the wind and moderate earthquake responses that often govern the design of such tall slender structures while reference is made to other studies where the response of the system under severe seismic loading conditions is examined in more detail and where results from tests conducted on the viscoelastic material and the VCDs in full‐scale are presented. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
This study proposes an innovative passive vibration mitigation device employing essentially nonlinear elastomeric springs as its most critical component. Essential nonlinearity denotes the absence (or near absence) of a linear component in the stiffness characteristics of these elastomeric springs. These devices were implemented and tested on a large‐scale nine‐story model building structure. The main focus of these devices is to mitigate structural response under impulse‐like and seismic loading when the structure remains elastic. During the design process of the device, numerical simulations, optimizations, and parametric studies of the structure‐device system were performed to obtain stiffness parameters for the devices so that they can maximize the apparent damping of the fundamental mode of the structure. Pyramidal elastomeric springs were employed to physically realize the optimized essentially nonlinear spring components. Component‐level finite element analyses and experiments were conducted to design the nonlinear springs. Finally, shake table tests using impulse‐like and seismic excitation with different loading levels were performed to experimentally evaluate the performance of the device. Experimental results demonstrate that the properly designed devices can mitigate structural vibration responses, including floor acceleration, displacement, and column strain in an effective, rapid, and robust fashion. Comparison between numerical and experimental results verified the computational model of the nonlinear system and provided a comprehensive verification for the proposed device. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
A particle tuned mass damper (PTMD), which is a creative integration of a traditional tuned mass damper and an efficient particle damper in the vibration control area, is proposed. This paper presents a comprehensive study that involves experimental, analytical, and computational approaches. The vibration control effects of a PTMD that is attached to a five‐story steel frame under seismic input are investigated by a series of shaking table tests. The influence of some parameters (auxiliary mass ratio, gap clearance, mass ratio of particles to the total auxiliary mass, frequency characteristics, and amplitude level of the input) is explored, and the performance of the PTMD with/without buffered material is compared. The experimental results show that the PTMD can achieve significant damping effects under seismic excitations, and the bandwidth of the suppression frequency is expanded, showing the device's robustness and control efficiency. In addition, an approximately analytical solution that is based on the concept of an equivalent single‐particle damper is presented, and the method to determine the corresponding system parameters is introduced. A comparative study between experimental and numerical results is conducted to verify the feasibility and accuracy of this analytical model. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
A simple analytical procedure is developed for calculating the seismic energy dissipated by a linear SDOF system under an earthquake ground excitation. The ground excitation is specified by its pseudo-velocity spectra and effective duration whereas the SDOF system is defined by its natural period of vibration and viscous damping ratio. However, the derived relationship for the energy dissipation demand under an earthquake excitation is sensitive neither to the viscous damping ratio nor the ductility ratio when the SDOF system undergoes inelastic response. Accordingly, the proposed relationship can be employed in an energy-based seismic design procedure for determining the required energy dissipation capacity of a structural system.  相似文献   

11.
阻尼连体结构地震响应影响参数研究   总被引:1,自引:1,他引:0       下载免费PDF全文
针对阻尼连体结构,采用串并联质点系层模型,沿连体设置方向施加El Centro1940地震波,讨论了毗邻结构自振周期比与连接体阻尼刚度变化对阻尼连体结构地震响应的影响。研究结果表明:毗邻结构自振周期比与连体阻尼刚度对结构的地震响应影响较大,存在一个使结构地震响应为最优的周期比与阻尼刚度值,为实际工程应用和研究提供一些参考。  相似文献   

12.
抗震结构的阻尼减振效果分析   总被引:4,自引:0,他引:4  
研究了抗震结构的阻尼减振效果。首先,考虑了单自由度体系在不同频率简谐干扰作用下阻尼比对结构反应的减小效果;然后,考虑了阻尼比对结构地震反应谱的影响,分析了我国现行建筑抗震设计规范反应谱,并讨论了不同阻尼比对水平地震影响系数的修正公式。  相似文献   

13.
考虑到多维地震输入对网架结构的不利影响,基于形状记忆合金超弹性,研制出一种兼具自复位、高耗能及放大功能于一体的形状记忆合金复合黏滞阻尼器(Hybrid Shape Memory Alloy Viscous Dampers,简称HSMAVD),并通过试验研究该阻尼器在循环荷载作用下的力学性能;然后以平面四角锥网架模型为基础,将该阻尼器替换部分网架结构杆件,并分析该阻尼器减震控制效果。结果表明形状记忆合金与黏滞阻尼器复合后具有良好的协同工作能力,可有效发挥形状记忆合金的超弹性和黏滞阻尼器的速度相关特性,使其具有稳定的滞回性能和良好的耗能能力;采用阻尼杆件替换原杆件的方法既能对结构进行有效的减震控制,又不改变原有的结构形式,是一种优越的减震控制方法,并为HSMAVD被动控制系统在结构抗震中的实际应用提供新思路。  相似文献   

14.
The primary purpose of this research is to improve the seismic response of a complex asymmetric tall structure using viscoelastic(VE) dampers. Asymmetric structures have detrimental effects on the seismic performance because such structures create abrupt changes in the stiffness or strength that may lead to undesirable stress concentrations at weak locations. Structural control devices are one of the effective ways to reduce seismic impacts, particularly in asymmetric structures. For passive vibration control of structures, VE dampers are considered among the most preferred devices for energy dissipation. Therefore, in this research, VE dampers are implemented at strategic locations in a realistic case study structure to increase the level of distributed damping without occupying significant architectural space and reducing earthquake vibrations in terms of story displacements(drifts) and other design forces. It has been concluded that the seismic response of the considered structure retrofitted with supplemental VE dampers corresponded well in controlling the displacement demands. Moreover, it has been demonstrated that seismic response in terms of interstory drifts was effectively mitigated with supplemental damping when added up to a certain level. Exceeding the supplemental damping from this level did not contribute to additional mitigation of the seismic response of the considered structure. In addition, it was found that the supplemental damping increased the total acceleration of the considered structure at all floor levels, which indicates that for irregular tall structures of this type, VE dampers were only a good retrofitting measure for earthquake induced interstory deformations and their use may not be suitable for acceleration sensitive structures. Overall, the research findings demonstrate how seismic hazards to these types of structures can be reduced by introducing additional damping into the structure.  相似文献   

15.
The development of an efficient energy-dissipating mechanism that works in conjunction with laminated elastomeric bearings in order to reduce the lateral deformation of the isolation system has always been a goal of base isolation research. Theoretically, this deformation will be reduced to the minimum if damping augmentation of the isolation system can reach a critical value. However, augmenting the isolation damping may cause some unwanted side effects. The purpose of this paper is to study the influence of isolation damping on the seismic response of heavily damped base-isolated buildings. The base isolation system is assumed to be linearly viscoelastic and is analysed using the complex mode method. Solutions derived by using perturbation techniques for a two-degree-of-freedom system and the computer simulation for a multiple-degree-of-freedom system reveal that augmenting the isolation damping can reduce efficiently the deformation of the isolation system, but at the price of increasing the high-frequency vibration in the superstructure. When the damping ratio of the isolation system is beyond some level, increasing the isolation damping will enlarge the extreme values of the base and superstructural accelerations. It is also found that approximate solutions derived from the use of classical damping and classical modes of vibration in the seismic analysis of heavily damped base isolation systems can be substantially in error.  相似文献   

16.
为改善近断层地震动作用下隔震桥梁结构的抗震性能,基于Benchmark结构振动控制问题,研究附加黏滞阻尼器、磁流变(MR)阻尼器的组合隔震策略.非线性动力分析过程中,优化了黏滞阻尼器的阻尼系数和速度指数,并设计了分散模糊控制器来确定施加给磁流变阻尼器的电压.研究结果表明:采用黏滞阻尼器和磁流变阻尼器可提高隔震桥梁结构在...  相似文献   

17.
Seismic structural control using semi-active tuned mass dampers   总被引:8,自引:1,他引:8  
This paper focuses on how to determine the instantaneous damping of the semi-active tuned mass damper (SATMD) with continuously variable damping. An off-and-towards-equilibrium (OTE) algorithm is employed to examine the control performance of the structure/SATMD system by considering the damping as an assumptive control action. The damping modification of the SATMD is carried out according to the proposed OTE algorithm, which is formulated based on analysis of the structural movement under external excitations, and the measured responses of the structure at every time instant. As examples two numerical simulations of a five-storey and a ten-storey shear structures with a SATMD on the roof are conducted. The effectiveness on vibration reduction of MDOF systems subjected to seismic excitations is discussed. Analysis results show that the behavior of the structure with a SATMD is significantly improved and the feasibility of applying the OTE algorithm to the structural control design of SATMD is also verified.  相似文献   

18.
As part of a national research programme an experimental campaign was carried out on a real scale mock‐up consisting of a steel–concrete composite frame equipped with dissipative bracings, based on high damping rubber (HDR) devices. Free vibration tests, followed by force‐controlled and displacement‐controlled cyclic tests were performed. The experimental tests were aimed at studying the dynamic response of the coupled system in order to demonstrate the effectiveness of HDR devices in increasing the stiffness and dissipation capacity of the frame and investigating the ability of the constitutive HDR model proposed by the authors to predict the dynamic response of the coupled system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A design procedure for seismic retrofitting of concentrically and eccentrically braced frame buildings is proposed and validated in this paper. Rocking walls are added to the existing system to ensure an almost uniform distribution of the interstorey displacement in elevation. To achieve direct and efficient control over the seismic performance, the design procedure is founded on the displacement‐based approach and makes use of overdamped elastic response spectra. The top displacement capacity of the building is evaluated based on a rigid lateral deformed configuration of the structure and on the ductility capacity of the dissipative members of the braced frames. The equivalent viscous damping ratio of the braced structure with rocking walls is calculated based on semi‐empirical relationships specifically calibrated in this paper for concentrically and eccentrically braced frames. If the equivalent viscous damping ratio of the structure is lower than the required equivalent viscous damping ratio, viscous dampers are added and arranged between the rocking walls and adjacent reaction columns. The design internal forces of the rocking walls are evaluated considering the contributions of more than one mode of vibration. The proposed design procedure is applied to a large set of archetype braced frame buildings and its effectiveness verified by nonlinear dynamic analysis.  相似文献   

20.
Adaptive base-isolation of civil structures using variable amplification   总被引:1,自引:0,他引:1  
Semi-active dampers are used in base-isolation to reduce the seismic response of civil engineering structures. In the present study, a new semi-active damping system using variable amplification will be investigated for adaptive baseisolation. It uses a novel variable amplification device (VAD) connected in series with a passive damper. The VAD is capable of producing multiple amplification factors, each corresponding to a different amplification state. Forces from the damper are amplified to the structure according to the current amplification state, which is selected via a semi-active control algorithm specifically tailored to the system's tmique damping characteristics. To demonstrate the effectiveness of the VAD-damper system for adaptive base-isolation, numerical simulations are conducted for three and seven-story base-isolated buildings subject to both far and near-field ground motions. The results indicate that the system can achieve significant reductions in response compared to the base-isolated buildings with no damper. The proposed system is also found to perform well compared to a typical semi-active damper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号