首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High and moderate severity wildfires should increase sediment production from unpaved roads due to the increased surface runoff from upslope, and increase road–stream connectivity due to the decrease in downslope surface roughness as well as the increase in surface runoff and erosion. Because no study has documented these effects, we surveyed road surface erosion features and quantified road–stream connectivity as a function of fire severity and road segment characteristics. The data were collected one year after the High Park wildfire from 141 hydrologically distinct road segments along 6.8 km of an unpaved road west of Fort Collins, Colorado. Road segments below areas burned at high and moderate severity had significantly more rills than road segments below areas that burned at low severity. Road segment slope was an important control on the proportion of segment length with rills, and the strength of the relationship between road segment slope and the amount of rilling increased with burn severity. Flatter road segments tended to capture the sediment eroded from upslope burned areas. In areas burned at high and moderate severity all of the road segments had drainage features extending to a stream, and 78% of the segments in areas burned at low severity also were connected. These exceptionally high rates of road–stream connectivity are attributed to the increased runoff from upslope, the segment‐scale collection and funneling of hillslope and road surface runoff to a single drainage point, and the reduced infiltration and trapping capacity of the burned area below the road. The results show the need to either outslope the roads or increase the frequency of constructed drainage features after wildfires, particularly for steeper road segments in areas burned at high or moderate severity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Previous studies have identified unpaved roads as the primary source of erosion on St John in the US Virgin Islands, but these studies estimated road erosion rates only as annual averages based primarily on road rill measurements. The goal of this project was to quantify the effect of unpaved roads on runoff and sediment production on St John, and to better understand the key controlling factors. To this end runoff and sediment yields were measured from July 1996 to March 1997 from three plots on naturally vegetated hillslopes, four plots on unpaved road surfaces and two cutslope plots. Sediment yields were also measured from seven road segments with contributing areas ranging from 90 to 700 m2. With respect to the vegetated plots, only the two largest storm events generated runoff and there was no measurable sediment yield. Runoff from the road surface plots generally occurred when storm precipitation exceeded 6 mm. Sediment yields from the four road surface plots ranged from 0·9 to 15 kg m−2 a−1, and sediment concentrations were typically 20–80 kg m−3. Differences in runoff between the two cutslope plots were consistent with the difference in upslope contributing area. A sprinkler experiment confirmed that cross‐slope roads intercept shallow subsurface stormflow and convert this into surface runoff. At the road segment scale the estimated sediment yields were 0·1 to 7·4 kg m−2 a−1. Road surface runoff was best predicted by storm precipitation, while sediment yields for at least three of the four road surface plots were significantly correlated with storm rainfall, storm intensity and storm runoff. Sediment yields at the road segment scale were best predicted by road surface area, and sediment yields per unit area were most strongly correlated with road segment slope. The one road segment subjected to heavy traffic and more frequent regrading produced more than twice as much sediment per unit area than comparable segments with no truck traffic. Particle‐size analyses indicate a preferential erosion of fine particles from the road surface and a rapid surface coarsening of new roads. Published in 2001 by John Wiley & Sons, Ltd.  相似文献   

3.
Erosion caused by concentrated flows in agricultural areas is responsible for important soil losses, and rapid sediment transfer through the channel network. The main factors controlling concentrated flow erosion rates include the erodibility of soil materials, soil use and management, climate and watershed topography. In this paper, two topographic indices, closely related to mathematical expressions suggested by different authors, are used to characterize the influence of watershed topography on gully erosion. The AS1 index is defined as the product of the watershed area and the partial area‐weighted average slope. The AS2 index is similar to the AS1 but uses the swale slope as the weighting factor. Formally, AS2 is the product of the watershed area and the length‐weighted average swale slope. From studies made using different ephemeral gully erosion databases, it is shown that a high correlation consistently exists between the topographic indices and the volume of eroded soil. The resulting relationships are therefore useful to assess soil losses from gully erosion, to identify the most susceptible watersheds within large areas, and to compare the susceptibility to gully erosion among different catchments. This information is also important in studying the response of natural drainage network systems to different rainfall inputs. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Although obvious in the field, the impact of road building on hydrology and gullying in Ethiopia has rarely been analysed. This study investigates how road building in the Ethiopian Highlands affects the gully erosion risk. The road between Makalle and Adwa in the highlands of Tigray (northern Ethiopia), built in 1993–1994, caused gullying at most of the culverts and other road drains. While damage by runoff to the road itself remains limited, off‐site effects are very important. Since the building of the road, nine new gullies were created immediately downslope of the studied road segment (6·5 km long) and seven other gullies at a distance between 100 and 500 m more downslope. The road induces a concentration of surface runoff, a diversion of concentrated runoff to other catchments, and an increase in catchment size, which are the main causes for gully development after road building. Topographic thresholds for gully formation are determined in terms of slope gradient of the soil surface at the gully head and catchment area. The influence of road building on both the variation of these thresholds and the modification of the drainage pattern is analysed. The slope gradient of the soil surface at the gully heads which were induced by the road varies between 0·06 and 0·42 m m?1 (average 0·15 m m?1), whereas gully heads without influence of the road have slope gradients between 0·09 and 0·52 m m?1 (average 0·25 m m?1). Road building disturbed the equilibrium in the study area but the lowering of topographic threshold values for gullying is not statistically significant. Increased gully erosion after road building has caused the loss of fertile soil and crop yield, a decrease of land holding size, and the creation of obstacles for tillage operations. Hence roads should be designed in a way that keeps runoff interception, concentration and deviation minimal. Techniques must be used to spread concentrated runoff in space and time and to increase its infiltration instead of directing it straight onto unprotected slopes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
Soil loss rates due to piping erosion   总被引:1,自引:0,他引:1  
Compared with surface soil erosion by water, subsurface erosion (piping) is generally less studied and harder to quantify. However, wherever piping occurs, it is often a significant or even the main sediment source. In this study, the significance of soil loss due to piping is demonstrated through an estimation of soil volume lost from pipes and pipe collapses (n = 560) in 137 parcels under pasture on loess‐derived soils in a temperate humid climate (Belgium). Assuming a period of 5 to 10 years for pipe collapse to occur, mean soil loss rates of 2.3 and 4.6 t ha?1 yr?1 are obtained, which are at least one order of magnitude higher than surface erosion rates (0.01–0.29 t ha?1 yr?1) by sheet and rill erosion under a similar land use. The results obtained for the study area in the Flemish Ardennes correspond well to other measurements in temperate environments; they are, however, considerably smaller than soil loss rates due to subsurface erosion in semi‐arid environments. Although local slope gradient and drainage area largely control the location of collapsed pipes in the study area, these topographic parameters do not explain differences in eroded volumes by piping. Hence, incorporation of subsurface erosion in erosion models is not straightforward. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Gullies form easily on unpaved road surfaces during heavy rainstorms on China's Loess Plateau. The integrated effect of rainfall, topography, vegetation, land use, and other factors determines where and when gully erosion occurs; however, the mechanisms driving gully erosion on unpaved road surfaces need to be further understood. Repeated gully erosion on some roads during the storm season provides a good opportunity to better understand the mechanisms behind gully erosion. This article aimed to quantify the integrated threshold conditions required for gully initiation in terms of topography, event rainfall, and upslope land use, and to propose an event-based model to predict the position and magnitude of road gully erosion. Rill and gully erosion on unpaved roads were investigated after an extreme rainstorm of 212.2 mm in 2017 and a regular rainstorm of 83.8 mm in 2018. A digital surface model (DSM) derived from unmanned aerial vehicle (UAV) images was used to analyze the road gradient (S) and upslope area (A). The runoff (QRS) of each road segment (RS) was estimated by the runoff curve number method. The results showed the following: (1) The mean and total gully volumes under the regular rainstorm were only 26.3% and 8.1% of those under the extreme rainstorm, respectively; (2) Gully formation on the surveyed roads under both the regular and the extreme rainstorm could be explained by the threshold relationship (S − 0.056)QRS3.363 ≥ 72.444; and (3) A non-linear relationship between gully erosion in road segments and event runoff (QRS) and road gradient (S) was found, and was subsequently used to predict road gully erosion on an event basis.  相似文献   

7.
Although unpaved roads are well‐recognized as important sources of Hortonian overland flow and sediment in forested areas, their role in agriculturally‐active rural settings still lacks adequate documentation. In this study, we assessed the effect of micro‐catchment size, slope, and ground cover on runoff and sediment generation from graveled roadbeds servicing a rural area in southern Brazil. Fifteen replications based on 30‐min‐long simulated rainfall experiments were performed at constant rainfall intensities of 22–58 mm h?1 on roadbeds with varying characteristics including ~3–7 m2 micro‐catchment areas, 2–11° slopes, 2–9.7‐m‐long shallow rill features, and 30–100% gravel cover. The contributions of micro‐catchment size and rill length were the most important physical characteristics affecting runoff response and sediment production; both the size of the micro‐catchment and the length of the rills were inversely related to sediment loss and this contradicts most of the rill erosion literature. The effect of micro‐catchment size on runoff and sediment response suggests a potentially problematic spatial‐scale subjectivity of experimental plot results. The inverse relationship between rill length and sediment generation is interpreted here as related to the predominance of coarse fragments within rills, the inability of the shallow flows generated during the simulations to erode this sediment, and their role as zones of net sediment storage. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Concentrated flow erosion is the dominant form of winter erosion in northern France. This study correlates the ephemeral rill and gully volumes measured in 20 cultivated catchments (4–95 ha) for three consecutive winters with the size of the potential runoff-contributing areas. These areas were identified by characterizing soil surface state through crust development stage, importance of surface wheel tracks and roughness grade. A single and significant relationship was found between the size of runoff-contributing areas, estimated by this criterion, and the rill and gully volumes. This identified the proportion of the catchment area occupied by fields with a degraded surface structure as the main factor controlling the variability of erosion in a context of concentrated flow erosion on cultivated land. The extension of degraded areas was shown to be controlled by dynamic interactions between weather, land occupation and soil physical properties. This criterion accounts for the uneven distribution of rainfall in space and time. Morphological factors, such as talweg length and slope, are believed to determine part of the residual variability.  相似文献   

9.
On the basis of detailed rill surveys carried out on bare plots of different lengths at slopes of 12 per cent, basic rill parameters were derived. Rill width and maximum depth increased with plot length, whereas rill amount and cross‐sectional area, expressed per unit length, remained similar. On smaller plots, all rills were connected in a continuous transport system reaching the plot outlet, whilst on larger plots (10 and 20 m long) part of the rills ended with a deposition areas inside the plots. Amounts of erosion, calculated from rill volume and soil bulk density, were compared with soil loss measured at the plot outlets. On plots 10 and 20 m long, erosion estimated from volume of all rills was larger than measured soil loss. The latter was larger than erosion estimated from volume of contributing rills. To identify contributing soil loss area on these plots, two methods were applied: (i) ratio of total soil loss to maximum soil loss per unit area, and (ii) partition of plot area according to the ratio of contributing to total rill volume. Both methods resulted in similar areas of 21·8–23·5 m2 for the plot 10 m long and 31·2 m2 for the plot 20 m long. Identification of contributing areas enabled rill (5·9 kg m?2) and interrill (2·6 kg m?2) erosion rate to be calculated, the latter being very close to the value predicted from the Universal Soil Loss Equation. Although rill and interrill rates seemed to be similar on all plots, their ratio increased slightly with plot length. Application of this ratio to compute slope length factor of the Revised Universal Soil Loss Equation resulted in similar values to those predicted with the model. The achieved balance of soil loss suggested that all the sediment measured at the plot outlet originated from contributing rills and associated contributing rill areas. The results confirmed the utility of different plot lengths as a research tool for analysing the dynamic response of soil to rainfall–runoff. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Few models can predict ephemeral gully erosion rates (e.g. CREAMS, EGEM). The Ephemeral Gully Erosion Model (EGEM) was specifically developed to predict soil loss by ephemeral gully erosion. Although EGEM claims to have a great potential in predicting soil losses by ephemeral gully erosion, it has never been thoroughly tested. The objective of this study was to evaluate the suitability of EGEM for predicting ephemeral gully erosion rates in Mediterranean environments. An EGEM‐input data set for 86 ephemeral gullies was collected: detailed measurements of 46 ephemeral gullies were made in intensively cultivated land in southeast Spain (Guadalentin study area) and another 40 ephemeral gullies were measured in both intensively cultivated land and abandoned land in southeast Portugal (Alentejo study area). Together with the assessment of all EGEM‐input parameters, the actual eroded volume for each ephemeral gully was also determined in the field. A very good relationship between predicted and measured ephemeral gully volumes was found (R2 = 0·88). But as ephemeral gully length is an EGEM input parameter, both predicted and measured ephemeral gully volumes have to be divided by this ephemeral gully length in order to test the predictive capability of EGEM. The resulting relationship between predicted and measured ephemeral gully cross‐sections is rather weak (R2 = 0·27). Therefore it can be concluded that EGEM is not capable of predicting ephemeral gully erosion for the given Mediterranean areas. A second conclusion is that ephemeral gully length is a key parameter in determining the ephemeral gully volume. Regression analysis shows that a very significant relation between ephemeral gully length and ephemeral gully volume exists (R2 = 0·91). Accurate prediction of ephemeral gully length is therefore crucial for assessing ephemeral gully erosion rates. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
The High Park Fire burned ~35 300 ha of the Colorado Front Range during June and July 2012. In the areas of most severe burn, all trees were killed and the litter and duff layers of soil were completely removed. Post‐fire erosion caused channel heads to develop well upslope from pre‐fire locations. The locations of 50 channel heads in two burned catchments were documented and the range of drainage areas contributing to these channel heads to drainage areas of unburned channel heads in the region measured previously were compared. Mean drainage area above channel heads in the burned zone decreased by more than two‐orders of magnitude relative to unburned sites. Drainage area above channel heads between the two burned catchments does not differ significantly with respect to slope, likely as a result of differences in surface roughness between the two sites following the fire. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper the results of a field investigation on rilling carried out in the experimental Sparacia area are reported. The measurements were made on a plot 6 m wide and 22 m long subjected to natural rainfalls. For ten rainfalls the total soil loss (interrill and rill erosion) was collected in a storage system consisting of two tanks arranged in series at the base of the plot. Rill morphology (rill length and cross‐sections) was measured for five rainfall events, while the rill profile was surveyed for three events. First the contribution of each component (rill and interrill erosion) to total soil loss was established. Then the analysis allowed establishment of a power relationship between the rill length and the rill volume. Finally, for three events detailed information on rill erosion and rill morphology allowed verification of the applicability of WEPP and estimation of the rill erodibility constant. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Exposed roots were used to estimate soil and bedrock erosion on the cut slopes of a 45-year-old road constructed in granitic soils of the Idaho Batholith. The original roadcut surface was defined by projecting a straight line from the toe of the cut past the end of the exposed root to the intersection of a straight line projected along the surface of the hillslope. A cross-sectioning technique was then used to determine erosion to the present roadcut surface. A total of 41 exposed root sites were used to estimate erosion on a 1350 m-long section of road. Average erosion was 1·0 and 1·1 cm/year for soil and bedrock respectively. Buttressing by tree roots caused lower erosion rates for soil as compared to bedrock. Both soil and bedrock erosion rates showed statistically significant correlations with the gradients of the original cut slope. The bedrock erosion data provide a reasonable estimate of the disintegration rate of exposed granitic bedrock exhibiting the weathering and fracturing properties common to this area. The road is located in a study watershed where long-term sediment yield data are available. Sediment data from adjacent study watersheds with no roads were compared to sediment data from the roaded watershed to estimate the long-term increase in sediment yield caused by the road. The increase amounts to about 2·4 m3/year. This figure, compared to the average annual on-site road erosion, provides an erosion to sediment delivery ratio of less than 10 per cent. Based on study results, road construction and maintenance practices are suggested for helping reduce roadcut erosion.  相似文献   

14.
Excess delivery of land‐based sediments is an important control on the overall condition of nearshore coral reef ecosystems. Unpaved roads have been identified as a dominant sediment source on St John in the US Virgin Islands. An improved understanding of road sediment production rates is needed to guide future development and erosion control efforts. The main objectives of this study were to: (1) measure sediment production rates at the road segment scale; (2) evaluate the importance of precipitation, slope, contributing area, traffic, and grading on road sediment production; (3) develop an empirical road erosion predictive model; and (4) compare our measured erosion rates to other published data. Sediment production from 21 road segments was monitored with sediment traps from July 1998 to November 2001. The selected road segments had varying slopes, contributing areas, and traffic loads. Precipitation was measured by four recording rain gauges. Sediment production was related to total precipitation and road segment slope. After normalizing by precipitation and slope, the mean sediment production rate for roads that had been graded within the last two years was 0·96 kg m?2 cm?1 m m?1 or approximately 11 kg m?2 a?1 for a typical road with a 10 per cent slope and an annual rainfall of 115 cm a?1. The mean erosion rate for ungraded roads was 42 per cent lower, or 0·56 kg m?2 cm?1 m m?1. The normalized mean sediment production rate for road segments that had been abandoned for over fifteen years was only about 10 per cent of the mean value for ungraded roads. Sediment production was not related to traffic loads. Multiple regression analysis led to the development of an empirical model based on precipitation, slope to the 1·5 power, and a categorical grading variable. The measured and predicted erosion rates indicate that roads are capable of increasing hillslope‐scale sediment production rates by up to four orders of magnitude relative to undisturbed conditions. The values from St John are at the high end of reported road erosion rates, a finding that is consistent with the high rainfall erosivities and steep slopes of many of the unpaved roads on St John. Other than paving, the most practical methods to reduce current erosion rates are to minimize the frequency of grading and improve road drainage. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Although there is much evidence of intense soil erosion in cultivated areas of Navarre (Spain), information on it is currently scarce. Rill and ephemeral gully volumes can be used as a guide to minimum erosion rates. With the main purpose of determining the annual soil loss rates in cultivated areas of central Navarre, a detailed assessment of rainfall and of rill and gully erosion was made in 19 small catchments from October 1999 to September 2001. Seventeen of them were randomly selected, and were cultivated with winter cereals, vineyards or sunflowers. The other two catchments were selected to represent partially uncultivated lands abandoned for ten years. Channel cross‐sections were measured by using a 1‐m‐wide micro‐topographic profile meter, describing 632 cross‐sections and processing information from 31 600 pins. Erosive events happened every year in the three study areas. For cereal catchments, soil losses occurred in only one or two rainfall events each year, usually at the end of autumn and in some summers, with high erosion rates (0·20–11·50 kg m?2 a?1). In vineyards, soil losses occurred several times per year, and in any season. This is attributed to the small percentage of surface covered by the crop throughout the year. Again, high erosion rates were found (0·33–16·19 kg m?2 a?1), with ephemeral gully erosion causing more loss than rill erosion. No‐till is proposed as an effective conservation measure. From this large data set, it can be stated that rill erosion and ephemeral gully erosion are widespread in Mediterranean regions, and that much more attention should be paid to the problem. Abandoned fields showed very high erosion rates (16·19 kg m?2 a?1 on average), suggesting that the abandonment of marginal lands without implementing any erosion control can lead to severe erosion rates. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
The use of drainage ditches on farmland has an impact on erosion processes both on‐site and off‐site, though their environmental impacts are not unequivocal. Here we study the runoff response and related rill erosion after installing drainage ditches and assess the effects of stone bunds in north Ethiopia. Three different land management systems were studied in 10 cropland catchments around Wanzaye during the rainy season of 2013: (1) the exclusive use of drainage ditches (locally called feses), (2) the exclusive use of stone bunds, and (3) a mixture of both systems. Stone bunds are an effective soil and water conservation technique, making the land more resistant against on‐site erosion, and allowing feses to be installed at a larger angle with the contour. The mean rill volumes for the 10 studied cropland catchments during the rainy season of 2013 was 3.73 ± 4.20 m3 ha?1 corresponding to a soil loss of 5.72 ± 6.30 ton ha?1. The establishment of feses causes larger rill volumes (R = 0.59, N = 10), although feses are perceived as the best way to avoid soil erosion when no stone bunds are present. The use of feses increases event‐based runoff coefficients (RCs) on cropland from c. 5% to values up to 39%. Also, a combination of low stone bund density and high feses density results in a higher RC, whereas catchments with a high stone bund density and low feses density have a lower RC. Peak runoff discharges decrease when stone bund density increases, whereas feses density is positively related to the peak runoff discharge. A multiple linear relation in which both feses and stone bund densities are used as explanatory variable, performs best in explaining runoff hydrograph peakedness (R2 = 83%). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
P. I. A. Kinnell 《水文研究》2008,22(16):3168-3175
The Universal Soil Loss Equation (USLE) or the revised USLE (RUSLE) are often used together with sediment delivery ratios in order to predict sediment delivery from hillslopes. In using sediment delivery ratios for this purpose, it is assumed that the sediment delivery ratio for a given hillslope does not vary with the amount of erosion occurring in the upslope area. This assumption is false. There is a perception that hillslope erosion is calculated on the basis that hillslopes are, in effect, simply divided into 22·1 m long segments. This perception fails to recognize the fact the inclusion of the 22·1 m length in the calculation has no physical significance but simply produces a value of 1·0 for the slope length factor when slopes have a length equal to that of the unit plot. There is a perception that the slope length factor is inappropriate because not all the dislodged sediment is discharged. This perception fails to recognize that the USLE and the RUSLE actually predict sediment yield from planar surfaces, not the total amount of soil material dislocated and removed some distance by erosion within an area. The application of the USLE/RUSLE to hillslopes also needs to take into account the fact that runoff may not be generated uniformly over that hillslope. This can be achieved by an equation for the slope length factor that takes account of spatial variations in upslope runoff on soil loss from a segment or grid cell. Several alternatives to the USLE event erosivity index have been proposed in order to predict event erosion better than can be achieved using the EI30 index. Most ignore the consequences of changing the event erosivity index on the values for the soil, crop and soil conservation protection factors because there is a misconception that these factors are independent of one another. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
In the rill erosion process, run-on water and sediment from upslope areas, and rill flow hydraulic parameters have significant effects on sediment detachment and transport. However, there is a lack of data to quantify the effects of run-on water and sediment and rill flow hydraulic parameters on rill erosion process at steep hillslopes, especially in the Loess Plateau of China. A dual-box system, consisting of a 2-m-long feeder box and a 5-m-long test box with 26.8% slope gradient was used to quantify the effects of upslope runoff and sediment, and of rill flow hydraulic parameters on the rill erosion process. The results showed that detachment-transport was dominated in rill erosion processes; upslope runoff always caused the net rill detachment at the downslope rill flow channel, and the net rill detachment caused by upslope runoff increased with a decrease of runoff sediment concentration from the feeder box or an increase of rainfall intensity. Upslope runoff discharging into the rill flow channel or an increase of rainfall intensity caused the rill flow to shift from a stratum flow into a turbulent flow. Upslope runoff had an important effect on rill flow hydraulic parameters, such as rill flow velocity, hydraulic radius, Reynolds number, Froude number and the Darcy-Weisbach resistance coefficient. The net rill detachment caused by upslope runoff increased as the relative increments of rill flow velocity, Reynolds number and Froude number caused by upslope runoff increased. In contrast, the net rill detachment decreased with an increase of the relative decrement of the Darcy-Weisbach resistance coefficient caused by upslope runoff. These findings will help to improve the understanding of the effects of run-on water and sediment on the erosion process and to find control strategies to minimize the impact of run-on water.  相似文献   

20.
G. V. Wilson 《水文研究》2013,27(14):2032-2040
The internal erosion of soil pipes can induce pipe collapses that affect soil erosion processes and landform evolution. The objective of this study was to determine the spatial distribution of pipe collapses in agricultural fields of Goodwin Creek watershed. Ground survey was carried out to detect pipe collapses, and the location, size and surface elevation was measured with differential GPS. A total of 143 of the 145 pipe collapses were found in cropland, and the density was approximately 0.58 collapses per hectare. The spatial distribution of pipe collapses was not uniform as pipe collapses were concentrated in the flat alluvial plains where the land use was dominated by cropland. One of the four parcels had 90% of the pipe collapses with a density of 7.7 collapses per hectare. The mean depth, area and volume of these pipe collapses were 0.12 m, 0.34 m2 and 0.02 m3, respectively, and all these properties exhibited a skewed distribution. The drainage area–slope gradient equation, which has been widely used for erosion phenomenon prediction, did not represent pipe collapses in this study as the coefficient of determination was <0.01. This is clear evidence that subsurface flow is not represented by surface topographic characteristics. The pipe collapses were found to intercept runoff, thereby reducing the slope length factor by 6% and the drainage area by 7%. Both of these factors can reduce the sheet and rill erosion; however, the increased subsurface flow could enhance ephemeral gully erosion. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号