首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The evolution of a carbonated nephelinitic magma can be followed by the study of a statistically significant number of melt inclusions, entrapped in co-precipitated perovskite, nepheline and magnetite in a clinopyroxene- and nepheline-rich rock (afrikandite) from Kerimasi volcano (Tanzania). Temperatures are estimated to be 1,100°C for the early stage of the melt evolution of the magma, which formed the rock. During evolution, the magma became enriched in CaO, depleted in SiO2 and Al2O3, resulting in immiscibility at ~1,050°C and crustal pressures (0.5–1 GPa) with the formation of three fluid-saturated melts: an alkali- and MgO-bearing, CaO- and FeO-rich silicate melt; an alkali- and F-bearing, CaO- and P2O5-rich carbonate melt; and a Cu–Fe sulfide melt. The sulfide and the carbonate melt could be physically separated from their silicate parent and form a Cu–Fe–S ore and a carbonatite rock. The separated carbonate melt could initially crystallize calciocarbonatite and ultimately become alkali rich in composition and similar to natrocarbonatite, demonstrating an evolution from nephelinite to natrocarbonatite through Ca-rich carbonatite magma. The distribution of major elements between perovskite-hosted coexisting immiscible silicate and carbonate melts shows strong partitioning of Ca, P and F relative to FeT, Si, Al, Mn, Ti and Mg in the carbonate melt, suggesting that immiscibility occurred at crustal pressures and plays a significant role in explaining the dominance of calciocarbonatites (sövites) relative to dolomitic or sideritic carbonatites. Our data suggest that Cu–Fe–S compositions are characteristic of immiscible sulfide melts originating from the parental silicate melts of alkaline silicate–carbonatite complexes.  相似文献   

2.
Crystalline and melt inclusions were studied in garnet,diopside,potassium feldspar,and sphene from the garnet syenite porphyry of the carbonatite-bearing complex Mushugai-Khuduk,southern Mongolia.Phlogopite,clinopyroxene,albite,potassium feldspar,spheric,wollastonite,magnetite,Ca and Sr sulfates,fluorite,and apatite were identified among the crystalline inclusions. The melt inclusions were homogenized at 1010~1080℃and analyzed on an electron microprobe.Silicate,salt,and combined silicate- salt melt inclusions were found.Silicate melts show considerable variations in SiO_2 concentration(56 to 66wt% ),high Na_2O K_2O (up to 17wt% ),and elevated Zr,F,and C1 contents.In terms of bulk rock chemistry,the silicate melts are alkali syenites.During thermometric experiments,salt melt inclusions quenched into homogeneous glasses of predominantly sulfate compositions containing no more than 1.3wt% SiO_2.These melts are enriched in alkalis,Ba,Sr,P,F,and C1.The investigation of the silicate and salt melt inclusions in minerals of the garnet syenite porphyries indicate that these rocks were formed under influence of the processes of crystallization differentiation and magma separation into immiscible silicate and salt(sulfate)liquids.  相似文献   

3.
Minerals of olivine–melilite and olivine–monticellite rocks from the Krestovskiy massif contain primary silicate-salt, carbonate-salt, and salt melt inclusions. Silicate-salt inclusions are present in perovskite I and melilite. Thermometric experiments conducted on these inclusions at 1,230–1,250°C showed silicate–carbonate liquid immiscibility. Globules of composite carbonate-salt melt rich in alkalies, P, S, and Cl separated in silicate melt. Carbonate salt globules in some inclusions from perovskite II at 1,190–1,200°C separated into immiscible liquid phases of simpler composition. Carbonate-salt and salt inclusions occur in monticellite, melilite, and garnet and homogenize at close temperatures (980–780°C). They contain alkalies, Ca, P, SO3, Cl, and CO2. According to the ratio of these components and predominance of one of them, melt inclusions are divided into 6 types: I—hyperalkaline (CaO/(Na2O+K2O)≤1) carbonate melts; II—moderately alkaline (CaO/(Na2O+K2O)>1) carbonate melts; III—sulfate-alkaline melts; IV—phosphate-alkaline melts; V—alkali-chloridic melts, and VI—calc-carbonate melts. Joint occurrence of all the above types and their syngenetic character were established. Some inclusions demonstrated carbonate-salt immiscibility phenomena at 840–800°C. A conclusion in made that the origin of carbonate melts during the formation of intrusion rocks is related to silicate–carbonate immiscibility in parental alkali-ultrabasic magma. The separated carbonate melt had a complex alkaline composition. Under unstable conditions the melt began to decompose into simpler immiscible fractions. Different types of carbonate-salt and salt inclusions seem to reflect the composition of these spatially isolated immiscible fractions. Liquid carbonate-salt immiscibility took place in a wide temperature range from 1,200–1,190°C to 800°C. The occurrence of this kind of processes under macroconditions might, most likely, cause the appearance of different types of immiscible carbonate-salt melts and lead to the formation of different types of carbonatites: alkali-phosphatic, alkali-sulfatic, alkali-chloridic, and, most widespread, calcitic ones.  相似文献   

4.
Perovskite and melilite crystals from melilitolites of the ultramafic alkaline Gardiner complex (East Greenland) contain crystallised melt inclusions derived from: (1) melilitite; (2) low-alkali carbonatite; (3) natrocarbonatite. The melilitite inclusion (1) homogenisation temperature of 1060 °C is similar to liquidus temperatures of experimentally investigated natural melilitites. The compositions are peralkaline, low in MgO (ca.␣5 wt%), Ni and Cr, and they are low-pressure fractionates of more magnesian larnite-normative ultramafic lamprophyre-type melts of primary mantle origin. Low-alkali carbonatite compositions (2) homogenise at 1060–1030 °C and are compositionally similar to immiscible calcite carbonatite dykes derived from the melilitolite magma. Natrocarbonatite inclusions (3) homogenise between 1030 and 900 °C and are compositionally similar to natrocarbonatite lava from Oldoinyo Lengai. Nephelinitic to phonolitic dykes which are related to the calcite carbonatite dykes, are very Zr-rich and agpaitic (molecular Na2O + K2O/Al2O3 > 1.2) and resemble nephelinites of Oldoinyo Lengai. The petrographic, geochemical and temporal relationships indicate unmixing of carbonatite compositions (ca. 10% alkalies) from evolving melilitite melt and continued fractionation of melilitite to nephelinite. It is suggested that the natrocarbonatite compositions represent degassed supercritical high temperature fluid formed in a cooling body of strongly larnite-normative nephelinite or evolved melilitite. The Gardiner complex and similar melilitolite and carbonatite-bearing ultramafic alkaline complexes are believed to represent subvolcanic complexes formed beneath volcanoes comparable to Oldoinyo Lengai and that the suggested origin of natrocarbonatite may be applied to natrocarbonatites of Oldoinyo Lengai. Received: 18 January 1996 / Accepted: 2 September 1996  相似文献   

5.
Alkaline-basic dike from the Yllymakh Massif (Central Aldan) has been studied. Its partially crystallized matrix contains corroded phenocrysts of olivine and hypidiomorphic phenocrysts of clinopyroxene and pseudo-, epileucite. It was found that phenocrysts of clinopyroxene contain abundant primary inclusions, Ti-magnetite and apatite bear only single inclusions, whereas olivine is enriched in secondary inclusions, which are confined to the cleavage of host mineral (along second and third pinacoids) and its cracks. The homogenization temperatures of the primary inclusions in clinopyroxene and secondary inclusions in olivine are approximately equal and lie within 1260–1240°C. The compositions of melt inclusions in olivine and clinopyroxene are also similar and corresponded to the malignite-pseudoleucite phonolite-monzonite pulaskites, which are developed at the Yllymakh Massif. Unheated inclusions in apatite and Ti-magnetite compositionally approach monzonites and nepheline syenites—tinguaites, respectively. It was concluded that the alkaline basaltoid magma was presumably parental magma for the entire rock complex of the Yllymakh Massif. Its crystallization and differentiation presumably provided all observed rock variety from ultrabasics (early derivatives located at depth) and malignites (later derivatives) to leucite phonolites, monzonites, and alkaline pulaskites, which were obtained during subsequent stages of the melt evolution. The parental magma, and especially its derivatives, were enriched in BaO (0.8–0.1 wt %), Cl (0.1–0.3 wt %) and trace elements (primarily, LREE and MREE), which are several times higher than mantle values. At the same time, ion microprobe (SIMS) study showed that derivative melts were dry: contained only 0.01–1.13 wt % H2O. The trend of melts conserved in the minerals and the massif rocks corresponds to the evolution of alkalinebasaltoid magma with increase in Si, Al, alkalis and decrease in Mg, Ca, and Fe, i.e. the Bowen trend. The considered alkaline-basic dike was presumably formed from the derivative of leucite-phonolite melt, which during emplacement captured olivine xenocrysts from previously fractionated ultrabasic rocks. The parental magma was presumably derived by high-degree melting of garnet-spinel-facies depleted mantle at some influence of crustal material.  相似文献   

6.
川西甲基卡二云母花岗岩和伟晶岩内发育大量原生熔体包裹体和富晶体流体包裹体。为了查明甲基卡成矿熔体、流体性质与演化特征,运用激光拉曼光谱和扫描电镜鉴定了甲基卡花岗伟晶岩型锂矿床中二云母花岗岩及伟晶岩脉不同结构带内的原生熔体、流体包裹体的固相物质。分析结果表明,甲基卡二云母花岗岩石英内熔体包裹体的矿物组合为磷灰石+白云母、白云母+钠长石、白云母+石墨;伟晶岩绿柱石内富晶体流体包裹体的矿物组合主要为刚玉、富铝铁硅酸盐+刚玉+锂辉石、锂辉石+石英+锂绿泥石;伟晶岩锂辉石内富晶体流体包裹体的矿物组合主要为磷灰石、锡石、磁铁矿、石英+钠长石+锂绿泥石、萤石、富钙镁硅酸盐+富铁铝硅酸盐+富铁硅酸盐+石英;花岗岩浆熔体与伟晶岩浆熔体(流体)具有一定的差异,成矿熔体、流体成分总体呈现出碱质元素(Na、Si、Al)、挥发分(F、P、CO_2)含量增高及基性元素(Fe、Mg、Ca)降低的特征;包裹体中子矿物与主矿物的化学成分具有一定的差别,揭示出伟晶岩熔体(流体)存在局部岩浆分异作用,具不混溶性及非均匀性。因此认为,伟晶岩熔浆(流体)为岩浆分异与岩浆不混溶共同作用的产物,挥发分含量的增高(F、P、CO_2)使伟晶岩能够与稀有金属组成各类络合物或化合物,这对于稀有金属成矿起到了至关重要的作用。  相似文献   

7.
This paper reviews the results of investigations of melt inclusions in minerals of carbonatites and spatially associated silicate rocks genetically related to various deep-seated undersaturated silicate magmas of alkaline ultrabasic, alkaline basic, lamproitic, and kimberlitic compositions. The analysis of this direct genetic information showed that all the deep magmas are inherently enriched in volatile components, the most abundant among which are carbon dioxide, alkalis, halides, sulfur, and phosphorus. The volatiles probably initially served as agents of mantle metasomatism and promoted melting in deep magma sources. The derived magmas became enriched in carbon dioxide, alkalis, and other volatile components owing to the crystallization and fractionation of early high-magnesium minerals and gradually acquired the characteristics of carbonated silicate liquids. When critical compositional parameters were reached, the accumulated volatiles catalyzed immiscibility, the magmas became heterogeneous, and two-phase carbonate-silicate liquid immiscibility occurred at temperatures of ≥1280–1250°C. The immiscibility was accompanied by the partitioning of elements: the major portion of fluid components partitioned together with Ca into the carbonate-salt fraction (parental carbonatite melt), and the silicate melt was correspondingly depleted in these components and became more silicic. After spatial separation, the silicate and carbonate-silicate melts evolved independently during slow cooling. Differentiation and fractionation were characteristic of silicate melts. The carbonatite melts became again heterogeneous within the temperature range from 1200 to 800–600°C and separated into immiscible carbonate-salt fractions of various compositions: alkali-sulfate, alkali-phosphate, alkali-fluoride, alkali-chloride, and Fe-Mg-Ca carbonate. In large scale systems, polyphase silicate-carbonate-salt liquid immiscibility is usually manifested during the slow cooling and prolonged evolution of deeply derived melts in the Earth’s crust. It may lead to the formation of various types of intrusive carbonatites: widespread calcite-dolomite and rare alkali-sulfate, alkali-phosphate, and alkali-halide rocks. The initial alkaline carbonatite melts can retain their compositions enriched in P, S, Cl, and F only at rapid eruption followed by instantaneous quenching.  相似文献   

8.
Melilite and wollastonite from the Colle Fabbri stock contain silicate melt and silicate-carbonate inclusions. The homogenization temperatures of silicate inclusions are within the magmatic temperature range of mantle ultrabasic melts: about 1,320?±?15 °С. Their composition is melilititic and evolves to the composition of leucite tephrite and phonolite. The composition of silicate-carbonate inclusions are high SiO2, Ca-rich, enriched in alkalies and are similar to that of inclusions of carbonatite melts in the minerals of melilitolites of other intrusive ultramafic complexes. They are also similar to the compositions of metasomatized travertine covering the melilitolite stock. The presence of primary silicate and silicate-carbonate inclusions evidences that the melilitite magma from which melilitolites of Colle Fabbri crystallized was associated with carbonatite liquid. This liquid was highly fluidized, mobile and aggressive. Actively interacting with overlying travertine, the liquid enriched them with alkalies, aluminosilicates and incompatible elements, which resulted in the equalization of their compositions. Heterogeneous compositional dominions were formed at the contact between melilitolite and wall pelites. In the minerals of these contact facies high-Si melt inclusions of varying composition have been observed. Their occurrence is related to the local assimilation by the high-temperature melilitite magma of pelitic country rocks. The content of incompatible elements in melilitite melts and melilitolites is higher than the mantle norm and they have peculiar indicator ratios, spectra, Eu/Eu* ratio, which suggest a peculiar mantle source.  相似文献   

9.
A primary carbonate phase with Ca/(Ca+Mg) in the range 0.85–0.95 has been identified in a metasomatized, depleted harzburgite nodule from Montana Clara Island, Canary Islands; textural relations show that this carbonate represents a quenched liquid. Although magnesian carbonate melts have been described from upper mantle peridotites, this is the first reported occurrence of a primary magma within peridotite nodules which has the composition of calciocarbonatite, by far the most common carbonatite type occurring in crustal complexes. The carbonate in the Montana Clara harzburgite host is restricted to wehrlitic alteration zones and is intimately associated with a second generation of minerals, mainly olivine, clinopyroxene and spinel, with glass of syenitic composition, and with Fe−Cu-rich sulphides. The metasomatic assemblage was formed by reaction of a sodiumbearing dolomitic melt, derived from a somewhat deeper level in the upper mantle, with the harzburgite mineral assemblage at a pressure of 15 kbars, or lower. As a result of the reaction the residual carbonatite melt became more enriched in calcium. The calciocarbonatite and sulphide phases almost invariably form globules in the silicate glass, indicating the existence of three immiscible liquids under upper mantle conditions. Several alkaline complexes contain carbonatites occurring with syenitic rock types and its seems feasible that the formation of such close associations might have been influenced by processes of liquid immiscibility which took place under upper mantle conditions. Editorial responsibility: I. Parsons  相似文献   

10.
Olivinites of the Krestovskaya Intrusion consist of predominant amount of olivine, and minor Ti-magnetite, perovskite, and clinopyroxene (from single grain to a few vol %). Primary crystallized melt inclusions were found and studied in olivine, perovskite, and diopside of the olivinites. Daughter phases in olivine-hosted melt inclusions are monticellite, perovskite, kalsilite, phlogopite, magnetite, apatite, and garnet andradite. Perovskite-hosted melt inclusions contain such daughter phases as kalsilite, pectolite, clinopyroxene, biotite, magnetite, and apatite, while daughter phases in clinopyroxene-hosted melt inclusions are represented by kalsilite, phlogopite, magnetite, and apatite. According to melt inclusion heating experiments, olivine crystallized from above 1230°C to 1180°C. It was followed by perovskite crystallizing at ≥1200°C and clinopyroxene, at 1170°C. According to analysis of quenched glass of the melt inclusions, the chemical composition of melts hosted in the minerals corresponds to the larnite-normative alkali ultramafic (kamafugite) magma significantly enriched in incompatible elements. The high incompatible element concentrations, its distribution, and geochemical indicator ratios evidenced that the magma was derived by the partial melting of garnet-bearing undepleted mantle.  相似文献   

11.
The paper presents data on primary carbonate–silicate melt inclusions hosted in diopside phenocrysts from kalsilite melilitite of Cupaello volcano in Central Italy. The melt inclusions are partly crystalline and contain kalsilite, phlogopite, pectolite, combeite, calcite, Ba–Sr carbonate, baryte, halite, apatite, residual glass, and a gas phase. Daughter pectolite and combeite identified in the inclusions are the first finds of these minerals in kamafugite rocks from central Italy. Our detailed data on the melt inclusions in minerals indicate that the diopside phenocrysts crystallized at 1170–1190°C from a homogeneous melilitite magma enriched in volatile components (CO2, 0.5–0.6 wt % H2O, and 0.1–0.2 wt % F). In the process of crystallization at the small variation in P-T parameters two-phase silicate-carbonate liquid immiscibility occurred at lower temperatures (below 1080–1150°C), when spatially separated melilitite silicate and Sr-Ba-rich alkalicarbonate melts already existed. The silicate–carbonate immiscibility was definitely responsible for the formation of the carbonatite tuff at the volcano. The melilitite melt was rich in incompatible elements, first of all, LILE and LREE. This specific enrichment of the melt in these elements and the previously established high isotopic ratios are common to all Italian kamafugites and seem to be related to the specific ITEM mantle source, which underwent metasomatism and enrichment in incompatible elements.  相似文献   

12.
The Alnö alkaline-carbonatite complex consists in its northernmost part at Laångarsholmen of a ring-type intrusion composed of pyroxenite, sövite and ijolite, emplaced in that order. The intrusion is surrounded by a breccia zone. The petrography, mineral chemistry and fluid/solid inclusion studies suggest that the ring complex and the main intrusion at Alnö have had a somewhat different magmatic evolution, implying different evolution of fluid phases also. At Laångarsholmen, a mafic silicate magma started to crystallize Al-diopside of 0.11 CaTs (Tschermak’s) content during a mid-crustal stage of evolution (ca. 5–6?kbar and 1175°?C). At that stage, the mafic magma was coexisting with a Mg-bearing calcitic melt, recorded in the abundant inclusions, trapped by the crystallizing Al-diopside. The two immiscible melts appear to have separated at ca. 5?kbar and 1150°?C, in good agreement with recent experimental studies. The silicate magma crystallized di+ap+magnetite during its ascent, and was in contact with a saline hydro-carbonic fluid trapped as inclusions in diopside (di) and apatite (ap) (type B2 inclusions reluctant to dissolution up to 550°?C). As PH2O started to increase, Fe-pargasite began to replace the pyroxene. It appears that the fluid present at that stage was aqueous and contained ca. 40%?NaCl. With decreasing PT, the fluid separated into two immiscible phases of high- and low-salinity (type B1 of 65%?NaCl and Cl of 7%?NaCl), respectively. At the shallow depths of the final emplacement, the composition of the fluid phase was most probably controlled by supply of meteoric water as indicated by the dilution trend of some B1 type inclusions. After separation, the carbonatite magma fractionated calcite+ap+dol (as shown by dolomite inclusions in early crystallizing apatite). Around 4?kbar, a CO2-bearing aqueous fluid of low salinity (d=0.85) was coexisting with the melt, and became trapped in the apatite formed during the mid-crustal stage (type A1 fluid inclusions). The residual melt was emplaced into the shallow crust and gave rise to phlogopite-bearing sövite. Fluid inclusions (type A2) trapped in calcite and in recrystallized apatite indicate that the fluid phase evolved towards a late (Na+K) hydro-carbonic fluid during cooling at the shallow depths of the final emplacement. The ijolite does not show signs of liquid immiscibility with the sövite at Laångarsholmen, and exhibits mostly post-magmatic activity of fluid phases.  相似文献   

13.
Based on the investigation of melt inclusions using electron and ion microprobe analysis, we estimated the composition, evolution, and formation conditions of magmas responsible for the calcite-bearing ijolites and carbonatites of the Belaya Zima alkaline carbonatite complex (eastern Sayan, Russia). Primary melt and coexisting crystalline inclusions were found in the nepheline and calcite of these rocks. Diopside, amphibole (?), perovskite, potassium feldspar, apatite, calcite, pyrrhotite, and titanomagnetite were identified among the crystalline inclusions. The melt inclusions in nepheline from the ijolites are completely crystallized. The crystalline daughter phases of these inclusions are diopside, phlogopite, apatite, calcite, magnetite, and cuspidine. During thermometric experiments with melt inclusions in nepheline, the complete homogenization of the inclusions was attained through the dissolution of a gas bubble at temperatures of 1120–1130°C. The chemical analysis of glasses from the homogenized melt inclusions in nepheline of the ijolites revealed significant variations in the content of components: from 36 to 48 wt % SiO2, from 9 to 21 wt % Al2O3, from 8 to 25 wt % CaO, and from 0.6 to 7 wt % MgO. All the melts show very high contents of alkalis, especially sodium. According to the results of ion microprobe analysis, the average content of water in the melts is no higher than a few tenths of a percent. The most salient feature of the melt inclusions is the extremely high content of Nb and Zr. The glasses of melt inclusions are also enriched in Ta, Th, and light rare earth elements but depleted in Ti and Hf. Primary melt inclusions in calcite from the carbonatites contain a colorless glass and daughter phlogopite, garnet, and diopside. The silicate glass from the melt inclusions in calcite of the carbonatite is chemically similar to the glasses of homogenized melt inclusions in nepheline from the ijolites. An important feature of melt inclusions in calcite of the carbonatites is the presence in the glass of carbonate globules corresponding to calcite in composition. The investigation of melt inclusions in minerals of the ijolites and carbonatites and the analysis of the alkaline and ore-bearing rocks of the Belaya Zima Massif provided evidence for the contribution of crystallization differentiation and silicate-carbonate liquid immiscibility to the formation of these rocks. Using the obtained trace-element compositions of glasses of homogenized melt inclusions and various alkaline rocks and carbonatites, we determined to a first approximation the compositions of mantle sources responsible for the formation of the rock association of the Belaya Zima alkaline-carbonatite complex. The alkaline rocks and carbonatites were derived from the depleted mantle affected by extensive metasomatism. It is supposed that carbonate melts enriched in sodium and calcium were the main agents of mantle metasomatism.  相似文献   

14.
The paper presents data on inclusions in minerals of the least modified potassic lamprophyres in a series of strongly carbonatized potassic alkaline ultramafic porphyritic rocks. The rocks consist of diopside, kaersutite, analcime, apatite, and rare phlogopite and titanite phenocrysts and a groundmass, which is made up, along with these minerals, of potassic feldspar and calcite. The diopside and kaersutite phenocrysts display unsystematic multiple zoning. Chemically and mineralogically, the rock is ultramafic foidite and most likely corresponds to monchiquite. Primary and secondary melt inclusions were found in diopside, kaersutite, apatite, and titanite phenocrysts and are classified into three types: sodic silicate inclusions with analcime, potassic silicate inclusions with potassic feldspar, and carbonate inclusions, which are dominated by calcite. Heating and homogenization of the inclusions show that the potassic lamprophyres crystallized from a heterogeneous magma, with consisted of mixing mafic sodic and potassic alkaline magmas enriched in a carbonatite component. The composition of the magmas was close to nepheline and leucite melanephelinite. The minerals crystallized at 1150–1090°C from the sodic melts and at 1200–1250°C from the potassic ones. The sodic mafic melts were richer in Fe than the potassic ones, were the richest in Al, Mn, SO3, Cl, and H2O and poorer in Ti and P. The potassic mafic melts were not lamproitic, as follows from the presence of albite in the crystallized primary potassic melt inclusions. The diopside, the first mineral to crystallize in the rock, started to crystallize in the magmatic chamber from sodic mafic melt and ended to crystallize from mixed sodic–potassic melts. The potassic mafic melts were multiply replenished in the chamber in relation to tectonic motions. The ascent of the melts to the surface and rapidly varying P–T parameters of the magma were favorable for multiple separations of carbonatite melts from the alkaline mafic ones and their mixing and mingling.  相似文献   

15.
The Lugiin Gol nepheline syenite intrusion, Mongolia, hosts a range of carbonatite dikes mineralized in rare-earth elements(REE). Both carbonatites and nepheline syenite-fluorite-calcite veinlets are host to a previously unreported macroscale texture involving pseudo-graphic intergrowths of fluorite and calcite. The inclusions within calcite occur as either pure fluorite, with associated REE minerals within the surrounding calcite, or as mixed calcite-fluorite inclusions, with associated zirconosilicate minerals. Consideration of the nature of the texture, and the proportions of fluorite and calcite present(~29 and 71 mol%,respectively), indicates that these textures most likely formed either through the immiscible separation of carbonate and fluoride melts, or from cotectic crystallization of a carbonatefluoride melt. Laser ablation ICP-MS analyses show the pure fluorite inclusions to be depleted in REE relative to the calcite. A model is proposed, in which a carbonate-fluoride melt phase enriched in Zr and the REE, separated from a phonolitic melt, and then either unmixed or underwent cotectic crystallization to generate an REE-rich carbonate melt and an REE-poor fluoride phase. The separation of the fluoride phase(either solid or melt) may have contributed to the enrichment of the carbonate melt in REE, and ultimately its saturation with REE minerals. Previous data have suggested that carbonate melts separated from silicate melts are relatively depleted in the REE, and thus melt immiscibility cannot result in the formation of REE-enriched carbonatites. The observations presented here provide a mechanism by which this could occur, as under either model the textures imply initial separation of a mixed carbonate-fluoride melt from a silicate magma. The separation of an REEenriched carbonate-fluoride melt from phonolitic magma is a hitherto unrecognized mechanism for REE-enrichment in carbonatites, and may play an important role in the formation of shallow magmatic REE deposits.  相似文献   

16.
Strong tin enrichment in a pegmatite-forming melt   总被引:4,自引:0,他引:4  
To investigate processes of magmatic tin enrichment and cassiterite deposition, we studied the abundances of major, trace, and volatile elements in a large number of rehomogenized silicate melt inclusions in quartz and topaz from a pegmatite body at the Ehrenfriedersdorf Sn–W deposit. This deposit is associated with evolved Variscan granites of the central Erzgebirge, southeast Germany. The melt inclusions are peraluminous; the molar aluminum saturation index (ASI) ranges from 1.15 to 2.0, and many inclusions are characterized by a very high content of fluxing components and volatiles. Some inclusions contain more than 20 wt% of H2O, F, Cl, and P2O5, plus Li as well as very high levels of Sn. Some rare, highly evolved fractions of late-stage pegmatite-forming liquid at Ehrenfriedersdorf contained up to 7000 ppm Sn. The presence of hydrogen and methane in addition to water and carbon dioxide in the vapor phase of the melt inclusions suggests a very low oxygen fugacity for some fractions of magma. The extreme levels of tin, volatiles, and fluxing components in this magma had an important influence on processes of melt movement and cassiterite precipitation. Melts, like these, that are high in volatiles and alkalis (sum of Li2O, Na2O, K2O, Rb2O, and Cs2O is >8 wt%) have low densities (≤1.8 g/cm3), low viscosities (<10 Pa.s at 700 °C), facilitate relatively rapid diffusion of ions through melts, and hence are excellent solvents for extracting and transporting ore-forming elements. Received: 1 February 1999 / Accepted: 19 January 2000  相似文献   

17.
Oldoinyo Lengai, located in the Gregory Rift in Tanzania, is a world-famous volcano owing to its uniqueness in producing natrocarbonatite melts and because of its extremely high CO2 flux. The volcano is constructed of highly peralkaline [PI = molar (Na2O + K2O)/Al2O3 > 2–3] nephelinite and phonolites, both of which likely coexisted with carbonate melt and a CO2-rich fluid before eruption. Results of a detailed melt inclusion study of the Oldoinyo Lengai nephelinite provide insights into the important role of degassing of CO2-rich vapor in the formation of natrocarbonatite and highly peralkaline nephelinites. Nepheline phenocrysts trapped primary melt inclusions at 750–800 °C, representing an evolved state of the magmas beneath Oldoinyo Lengai. Raman spectroscopy, heating-quenching experiments, low current EDS and EPMA analyses of quenched melt inclusions suggest that at this temperature, a dominantly natritess-normative, F-rich (7–14 wt%) carbonate melt and an extremely peralkaline (PI = 3.2–7.9), iron-rich nephelinite melt coexisted following degassing of a CO2 + H2O-vapor. We furthermore hypothesize that the degassing led to re-equilibration between the melt and liquid phases that remained and involved 1/ mixing between the residual (after degassing) alkali carbonate liquid and an F-rich carbonate melt and 2/ enrichment of the coexisting nephelinite melt in alkalis. We suggest that in the geological past similar processes were responsible for generating highly peralkaline silicate melts in continental rift tectonic settings worldwide.  相似文献   

18.
Using various methods of melt inclusion investigation, including electron and ion microprobe techniques, we estimated the composition, evolution, and formation conditions of melts producing the trachydacites and pantellerites of the Late Paleozoic bimodal volcanic association of Dzarta-Khuduk, Central Mongolia. Primary crystalline and melt inclusions were detected in anorthoclase from trachydacites and quartz from pantellerites and pantelleritic tuffs. Among the crystalline inclusions, we identified hedenbergite, fluorapatite, and pyrrhotite in the trachydacites and F-arfvedsonite, fluorite, ilmenite, and the rare REE diorthosilicate chevkinite in the pantellerites. Melt inclusions in anorthoclase from the trachydacites are composed of glass, a gas phase, and daughter minerals (F-arfvedsonite, fluorite, villiaumite, and anorthoclase rim on the inclusion wall). Melt inclusions in quartz from the pantellerites are composed of glass, a gas phase, and a fine-grained salt aggregate consisting of Li, Na, and Ca fluorides (griceite, villiaumite, and fluorite). Melt inclusions in quartz crystalloclasts from the pantelleritic tuffs are composed of homogeneous silicate glasses. The phenocrysts of the trachydacites and pantellerites crystallized at temperatures of 1060–1000°C. During thermometric experiments with quartz-hosted melt inclusions from the pantellerites, the formation of immiscible silicate and salt (fluoride) melts was observed at a temperature of 800°C. Homogeneous melt inclusions in anorthoclase from the trachydacites have both trachydacite and rhyolite compositions (wt %): 68–70 SiO2, 12–13 Al2O3, 0.34–0.74 TiO2, 5–7 FeO, 0.4–0.9 CaO, and 9–12 Na2O + K2O. The agpaitic index ranges from 0.92 to 1.24. The glasses of homogenized melt inclusions in quartz from the pantellerites and pantelleritic tuffs have rhyolitic compositions. Compared with the homogeneous glasses trapped in anorthoclase of the trachydacites, quartz-hosted inclusions from the pantellerites show higher SiO2 (72–78 wt %) and lower Al2O3 contents (7.8–10.0 wt %). They also contain 0.14–0.26 wt % TiO2, 2.5–4.9 wt % FeO, 9–11 wt % Na2O + K2O, and 0.9–0.15 wt % CaO and show an agpaitic index of 1.2–2.05. Homogeneous melt inclusions in quartz from the pantelleritic tuffs contain 69–72 wt % SiO2. The contents of other major components, including TiO2, Al2O3, FeO, and CaO, are close to those in the homogeneous glasses of quartzhosted melt inclusions in the pantellerites. The contents of Na2O + K2O are 4–10 wt %, and the agpaitic index is 1.0–1.6. The glasses of melt inclusions from each rock group show distinctive volatile compositions. The H2O content is up to 0.08 wt % in anorthoclase of the trachydacites, 0.4–1.4 wt % in quartz of the pantellerites, and up to 5 wt % in quartz of the pantelleritic tuffs. The content of F in the glasses of melt inclusions in the phenocrysts of the trachydacites is no higher than 0.67 wt %, and up to 1.4–2.8 wt % in quartz from the pantellerites. The Cl content is up to 0.2 wt % in the glasses of melt inclusions in the minerals of the trachydacites and up to 0.5 wt % in the glasses of quartz-hosted melt inclusions from the pantellerites. The investigation of trace elements in the homogenized glasses of melt inclusions in minerals showed that the trachydacites and pantellerites were formed from strongly evolved rare-metal alkaline silicate melts with high contents of Li, Zr, Rb, Y, Hf, Th, U, and REE. The analysis of the composition of homogeneous melt inclusions in the minerals of the above rocks allowed us to distinguish magmatic processes resulting in the enrichment of these rocks in trace and rare earth elements. The most important processes are the crystallization differentiation and immiscible separation of silicate and fluoride salt melts. It was also shown that all the melts studied evolved in spatially separated magma chambers. This caused the differences in the character of melt evolution between the trachydacites and pantellerites. During the final stages of differentiation, when the magmatic system was saturated with respect to ore elements, Na-Ca fluoride melts were separated and extracted considerable amounts of Li.  相似文献   

19.
The Samchampi-Samteran alkaline igneous complex (SAC) is a near circular, plug-like body approximately 12 km2 area and is emplaced into the Precambrian gneissic terrain of the Karbi Anglong district of Assam. The host rocks, which are exposed in immediate vicinity of the intrusion, comprise granite gneiss, migmatite, granodiorite, amphibolite, pegmatite and quartz veins. The SAC is composed of a wide variety of lithologies identified as syenitic fenite, magnetite ± perovskite ± apatite rock, alkali pyroxenite, ijolite-melteigite, carbonatite, nepheline syenite with leucocratic and mesocratic variants, phonolite, volcanic tuff, phosphatic rock and chert breccia. The magnetite ± perovskite ± apatite rock was generated as a cumulus phase owing to the partitioning of Ti, Fe at a shallow level magma chamber (not evolved DI = O1). The highly alkaline hydrous fluid activity indicated by the presence of strongly alkalic minerals in carbonatites and associated alkaline rocks suggests that the composition of original melt was more alkalic than those now found and represent a silica undersaturated ultramafic rock of carbonated olivine-poor nephelinite which splits with falling temperature into two immiscible fractions—one ultimately crystallises as alkali pyroxenite/ijolite and the other as carbonatite. The spatial distribution of varied lithotypes of SAC and their genetic relationships suggests that the silicate and carbonate melts, produced through liquid immiscibility, during ascent generated into an array of lithotypes and also reaction with the country rocks by alkali emanations produced fenitic aureoles (nephelinisation process). Isotopic studies (δ18O and δ13C) on carbonatites of Samchampi have indicated that the δ13C of the source magma is related to contamination from recycled carbon.  相似文献   

20.
The carbonatite at Magnet Cove, Arkansas, USA contains a great variety and abundance of magmatic and hydrothermal inclusions that provide an informative, though fragmentary, record of the original carbonatite melt and of late hydrothermal solutions which permeated the complex in postmagmatic time. These inclusions were studied by optical and scanning electron microscopy. Primary magmatic inclusions in monticellite indicate that the original carbonatite melt contained approximately 49.7 wt% CaO, 16.7% CO2, 15.7% SiO2, 11.4% H2O, 4.4% FeO+Fe2O3, 1.1% P2O5 and 1.0% MgO. The melt was richer in SiO2 and iron oxides than the carbonatite as now exposed; this is attributed to crystal settling and relative enrichment of calcite at shallower levels. The density of the carbonatite melt as revealed by the magmatic inclusions was approximately 2.2–2.3 g/cc. Such a light melt should separate rapidly from any denser parent material and could be driven forcibly into overlying crustal rocks by buoyant forces alone. Fluid inclusions in apatite suggest that a separate (immiscible) phase composed of supercritical CO2 fluid of low density coexisted with the carbonatite magma, but the inclusion record in this mineral is inconclusive with respect to the nature of any other coexisting fluids. Maximum total pressure during CO2 entrapment was about 450 bars, suggesting depths of 1.5 km or less for apatite crystallization and supporting earlier proposals of a shallow, subvolcanic setting for the complex. Numerous secondary inclusions in the Magnet Cove calcite contain an intriguing variety of daughter minerals including some 19 alkali, alkaline earth and rare earth carbonates, sulfates and chlorides few of which are known as macroscopic phases in the complex. The exotic fluids from which the daughter minerals formed are inferred to have cooled and diluted through time by progressive mixing with local groundwaters. These fluids may be responsible for certain late veins and elemental enrichments associated with the complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号