首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The variant rock types of an Alkaline-Carbonatite Complex (ACC) comprising alkali pyroxenite, nepheline syenite, phoscorite, carbonatite, syenitic fenite and glimmerite along with REE and Nb-mineralization are found at different centres along WNW-ESE trending South Purulia Shear Zone (SPSZ) in parts of Singhbhum Crustal Province. The ACC occurs as intrusions within the Mesoproterozoic Singhbhum Group of rocks. Alkali pyroxenite comprises of aegirine augite, magnesiotaramite, magnesiokatophorite as major constituents. Pyrochlore and eucolite are ubiquitous in nepheline syenite. Phoscorite contains fluorapatite, dahllite, collophane, magnetite, hematite, goethite, phlogopite, calcite, sphene, monazite, pyrochlore, chlorite and quartz. Coarse fluorapatite shows overgrowth of secondary apatite (dahllite). Secondary apatite is derived from primary fluorapatite by solution and reprecipitation. The primary fluorapatite released REE to crystallize monazite grains girdling around primary apatite. Carbonatite is composed dominantly of Srcalcite along with dolomite, tetraferriphlogopite, phlogopitic biotite, aegirine augite, richterite, fluorapatite, altered magnetite, sphene and monazite. The minerals comprising of the carbonatite indicate middle stage of carbonatite development. Fenite is mineralogically syenite. Glimmerite contains 50–60% tetraferriphlogopite. An alkali trend in the evolution of amphiboles (magnesiotaramite-magnesiokatophorite-richterite) and chinopyroxenes (aegirine augite, aegirine) during the crystallization of the suite of rocks is noted. Monazite is the source of REE in phoscorite and carbonatite. Fluorapatite has low contents of REE, PbO, ThO2 and UO2. Pyrochlore reflects Nb-mineralization in nepheline syenite and it is enriched in Na2O, CaO, TiO2, PbO and UO2. Pyrochlore containing UO2 (6.605%) and PbO (0.914%) in nepheline syenite has been chemically dated at 948 ± 24 Ma by EPMA.  相似文献   

2.
40Ar-39Ar analyses of one alkali pyroxenite whole rock and two phlogopite separates of calcite carbonatites from the Sung Valley carbonatite-alkaline complex, which is believed to be a part of the Rajmahal-Bengal-Sylhet (RBS) flood basalt province, yielded indistinguishable plateau ages of 108.8 ± 2.0Ma, 106.4 ± 1.3Ma and 107.5 ± 1.4Ma, respectively. The weighted mean of these ages, 107.2 ± 0.8 Ma, is the time of emplacement of this complex. This implies that Sung Valley complex and probably other such complexes in the Assam-Meghalaya Plateau postdate the main flood basalt event (i.e., the eruption of tholeiites) in the RBS province by ∼10Ma.  相似文献   

3.
Summary The Shillong Plateau of northeastern India hosts four Early Cretaceous (105–107Ma) ultramafic-alkaline-carbonatite complexes (UACC), which have been associated with the Kerguelen plume igneous activity. Petrological and geochemical characteristics of one of these UACC, the Sung Valley, are presented. The Sung Valley UACC was emplaced in to the Proterozoic Shillong Group of rocks and consists of ultramafics (serpentinized peridotite, pyroxenite, and melilitolite), alkaline rocks (ijolite and nepheline syenite), and carbonatites. Serpentinized peridotite, pyroxenite, and ijolitic rocks form the major part of the complex, the others constitute less than 5% of the total volume. Ijolite and melilitolite intrude peridotite and pyroxenite, while nepheline syenite and carbonatite intrude the ultramafic rocks as well as ijolite. Mineralogically, the carbonatites are classified as calcite carbonatite with minor apatite, phlogopite, pyrochlore and ilmenite. The serpentinized peridotites are wehrlitic. Chemical compositions of the silicate rocks do not show a distinct co-genetic relationship amongst them, nor do they show any geochemical relationships with the carbonatites. No noticeable fractionation trend is observed on the chemical variation diagrams of these rocks. It is difficult to establish the genetic evolution of the Sung Valley UACC through fractional crystallization of nephelinitic magma or through immiscible liquids. On the basis of petrological and geochemical data and previously published isotopic results from these rocks, it is suggested that they have been derived from a primary carbonate magma generated by the low-degree melting of a metasomatized mantle peridotite.  相似文献   

4.
The Siriwasan carbonatite-sill along with associated alkaline rocks and fenites is located about 10 km north of the well-known Amba Dongar carbonatite-alkaline rocks diatreme, in the Chhota Udaipur carbonatite-alkaline province. Carbonatite has intruded as a sill into the Bagh sandstone and overlying Deccan basalt. This resulted in the formation of carbonatite breccia with enclosed fragments of basement metamorphics, sandstone and fenites in the matrix of ankeritic carbonatite. The most significant are the plugs of sövite with varied mineralogy that include pyroxene, amphibole, apatite, pyrochlore, perovskite and sphene. REE in sövites is related to the content of pyrochlore, perovskite and apatite. The carbon and oxygen isotopic compositions of some sövite samples and an ankeritic carbonatite plot in the “mantle box” pointing to their mantle origin. However, there is also evidence for mixing of the erupting carbonatite magma with the overlying Bagh limestone. The carbonatites of Siriwasan and Amba Dongar have the same Sr and Nd isotopic ratios and radiometric age, suggesting the same magma source. On the basis of available chemical analyses this paper is aimed to give some details of the Siriwasan carbonatites. The carbonatite complex has good potential for an economic mineral deposit but this is the most neglected carbonatite of the Chhota Udaipur province.  相似文献   

5.
The distribution of radioactive elements in alkaline rocks from Polar Siberia and Ukraine shows that U and Th are markedly concentrated in carbonatite complex and nepheline syenite as final products of magma fractionation. Peralkaline nepheline syenites from Polar Siberia are characterized by very high contents of radioactive elements, which are close to the economic level. Radioactive elements are also concentrated in rocks of the carbonatite complex. For example, some soevites contain up to 294 × 10?4%U and 916 × 10?4% Th. In late dolomite carbonatites, the contents of radioactive elements are appreciably lower. The Th/U ratio in alkaline rocks of Polar Siberia is close to the chondrite value in primary high-Mg rocks and increases in late derivatives: phoscorite, calcite and dolomite carbonatites. The main amount of radioactive elements is contained in rare-metal accessory minerals: perovskite, pyrochlore, calzirtite, and apatite. Rock-forming minerals are distinguished by very low concentrations of radioactive elements. In alkaline series of the Chernigovka massif (Ukraine), U and Th also accumulate in the course of crystal fractionation, especially in phoscorites from the carbonatite complex. Mantle xenoliths and alkaline rocks from Ukraine reveal uranium specialization. Most likely, the discrepancy in fractionation of radioactive elements between Polar Siberia and Ukraine is caused by different geodynamic regimes of these provinces. The Mesozoic alkaline magmatism of Polar Siberia is a part of the Siberian superplume, whereas the Proterozoic alkaline complex in Ukraine is related to subduction of the oceanic crust.  相似文献   

6.
河北矾山钾质碱性岩体,由3期侵入岩和脉岩正长岩组成。第1期岩石为层状超镁铁质岩系,具韵律层结构。层状岩系中赋存巨大磁铁磷灰石矿床。碱性岩体全岩225个样品平均含金为7.8×10-9。矾山岩体金的丰度为6.1×10-9,是地壳金丰度(3.5×10-9)的1.74倍。第1期岩石平均金含量为8.8×10-9,第2期岩石为5.1×10-9,第3期岩石为7.4×10-9,正长岩为4.2×10-9。第1期侵入岩中辉石岩平均金含量为9.31×10-9,黑云辉石岩平均为7.78×10-9,伟晶正长黑云辉石岩为7.40×10-9,间隙状正长辉石岩为8.00×10-9,磁铁磷灰石岩为13.78×10-9,磷灰石岩和黑云磷灰石岩为11.80×10-9,黑云母岩为18.63×10-9。在垂直层状岩系的剖面上,岩石金含量呈韵律性变化。在东矿区,岩石金含量由西向东趋于降低。在岩浆液相分离过程中,金倾向富集在含铁、镁、钙和磷的熔体相中,而在岩浆结晶分异过程中,金可能富集在流体相中。  相似文献   

7.
Carbonatites are often of economic importance, which raises the problem of distinguishing carbonatites from limestones when either are metamorphosed to high-grade marbles. They can be of similar appearance, particularly those from the Proterozoic and Archaean of the Indian Subcontinent. This study also contributes to solving the problem of determining the frequency of alkaline and carbonatitic magmatism during the early history of the Earth.The mineral assemblage of apatite–magnetite–phlogopite–calcite is common to marbles of both carbonatite and limestone origin. If pyrochlore is present that identifies the rock as carbonatite; if anorthite, fassaite, scapolite or spinel then it was formerly a limestone. If these minerals are absent, then trace element analysis can supply the critical Sr and REE data, which are both normally high in carbonatitic rocks and low in former limestones. These distinguishing factors are applied to the metamorphic carbonate, pyroxenite, calcite–apatite rock complex at Borra, Eastern Ghats, India, which has been variously interpreted as formerly a carbonatite and as a limestone. The evidence shows that the Borra rocks are meta-sedimentary.  相似文献   

8.
The Early Cretaceous Sung Valley Ultramafic-Alkaline-Carbonatite (SUAC) complex intruded the Proterozoic Shillong Group of rocks and located in the East Khasi Hills and West Jaintia Hills districts of Meghalaya. The SUAC complex is a bowl-shaped depression covering an area of about 26 km2 and is comprised serpentinised peridotite forming the core of the complex with pyroxenite rim. Alkaline rocks are dominantly ijolite and nepheline syenite, occur as ring-shaped bodies as well as dykes. Carbonatites are, the youngest intrusive phase in the complex, where they form oval-shaped bodies, small dykes and veins. During the course of large scale mapping in parts of the Sung Valley complex, eleven carbonatite bodies were delineated. These isolated carbonatite bodies have a general NW-SE and E-W trend and vary from 20–125 m long and 10–40 m wide. Calcite carbonatite is the dominant variety and comprises minor dolomite and apatite and accessory olivine, magnetite, pyrochlore and phlogopite. The REE-bearing minerals identified in the Sung Valley carbonatites are bastnäsite-(Ce), ancylite-(Ce), belovite-(Ce), britholite-(Ce) and pyrochlore that are associated with calcite and apatite. The presence of REE carbonates and phosphates associated with REE-Nb bearing pyrochlore enhances the economic potential of the Sung Valley carbonatites. Trace-element geochemistry also reveals an enrichment of LREEs in the carbonatites and average ΣREE value of 0.102% in 26 bed rock samples. Channel samples shows average ΣREE values of 0.103 wt%. Moreover, few samples from carbonatite bodies has indicated relatively higher values for Sn, Hf, Ta and U. Since the present study focuses surface evaluation of REE, therefore, detailed subsurface exploration will be of immense help to determine the REE and other associated mineralization of the Sung Valley carbonatite prospect.  相似文献   

9.
Kerimasi calciocarbonatite consists principally of calcite together with lesser apatite, magnetite, and monticellite. Calcite hosts fluid and S-bearing Na–K–Ca-carbonate inclusions. Carbonatite melt and fluid inclusions occur in apatite and magnetite, and silicate melt inclusions in magnetite. This study presents statistically significant compositional data for quenched S- and P-bearing, Ca-alkali-rich carbonatite melt inclusions in magnetite and apatite. Magnetite-hosted silicate melts are peralkaline with normative sodium-metasilicate. On the basis of our microthermometric results on apatite-hosted melt inclusions and forsterite–monticellite phase relationships, temperatures of the early stage of magma evolution are estimated to be 900–1,000°C. At this time three immiscible liquid phases coexisted: (1) a Ca-rich, P-, S- and alkali-bearing carbonatite melt, (2) a Mg- and Fe-rich, peralkaline silicate melt, and (3) a C–O–H–S-alkali fluid. During the development of coexisting carbonatite and silicate melts, the Si/Al and Mg/Fe ratio of the silicate melt decreased with contemporaneous increase in alkalis due to olivine fractionation, whereas the alkali content of the carbonatite melt increased with concomitant decrease in CaO resulting from calcite fractionation. Overall the peralkalinity of the bulk composition of the immiscible melts increased, resulting in a decrease in the size of the miscibility gap in the pseudoquaternary system studied. Inclusion data indicate the formation of a carbonatite magma that is extremely enriched in alkalis with a composition similar to that of Oldoinyo Lengai natrocarbonatite. In contrast to the bulk compositions of calciocarbonatite rocks, the melt inclusions investigated contain significant amount of alkalis (Na2O + K2O) that is at least 5–10 wt%. The compositions of carbonatite melt inclusions are considered as being better representatives of parental magma composition than those of any bulk rock.  相似文献   

10.
Carbonatites that are hosted in metamorphosed ultramafic massifs in the roof of miaskite intrusions of the Il’mensky-Vishnevogorsky alkaline complex are considered. Carbonatites have been revealed in the Buldym, Khaldikha, Spirikha, and Kagan massifs. The geological setting, structure of carbonatite bodies, distribution of accessory rare-metal mineralization, typomorphism of rock-forming minerals, geochemistry, and Sr and Nd isotopic compositions are discussed. Dolomite-calcite carbonatites hosted in ultramafic rocks contain tetraferriphlogopite, richterite, accessory zircon, apatite, magnetite, ilmenite, pyrrhotite, pyrite, and pyrochlore. According to geothermometric data and the composition of rock-forming minerals, the dolomite-calcite carbonatites were formed under K-feldspar-calcite, albite-calcite, and amphibole-dolomite-calcite facies conditions at 575–300°C. The Buldym pyrochlore deposit is related to carbonatites of these facies. In addition, dolomite carbonatites with accessory Nb and REE mineralization (monazite, aeschynite, allanite, REE-pyrochlore, and columbite) are hosted in ultramafic massifs. The dolomite carbonatites were formed under chlorite-sericite-ankerite facies conditions at 300–200°C. The Spirikha REE deposit is related to dolomite carbonatite and alkaline metasomatic rocks. It has been established that carbonatites hosted in ultramafic rocks are characterized by high Sr, Ba, and LREE contents and variable Nb, Zr, Ti, V, and Th contents similar to the geochemical attributes of calcio-and magnesiocarbonatites. The low initial 87Sr/86Sr = 0.7044?0.7045 and εNd ranging from 0.65 to ?3.3 testify to their derivation from a deep mantle source of EM1 type.  相似文献   

11.
The alkalic pyroxenite nodule consists of megacrysts of diopside, apatite, perovskite and titanomagnetite in a groundmass consisting of diopside, apatite, titanomagnetite, nepheline, melilite, garnet and vishnevite crystals of various shapes, including previously undescribed skeletal and dendritic shapes, together with vesicles and residual glass. The residual glass is poor in SiO2 (38–40 wt%), and extraordinarily rich in Na2O (12.8–15 wt%), SO3 (1–1.5 wt%), and Cl (0.25–0.7 wt%), as a result of rapid, non-equilibrium crystallization of groundmass phases from a CO2-rich nephelinite melt.The Oldoinyo Lengai alkalic carbonatite lavas do not represent extreme products of the fractional crystallization of pyroxene, wollastonite, nepheline and alkali feldspar from the carbonated nephelinite melt. The most likely connection between the carbonatite and silicate magma types is one of liquid immiscibility, probably involving phonolite melt.  相似文献   

12.
Summary ?A carbonatite dyke, extremely enriched in rare earth elements (REE), is reported from Bayan Obo, Inner Mongolia, North China. The REE content in the dyke varies from 1 wt% to up to 20 wt%. The light REEs are enriched and highly fractionated relative to the heavy REEs, and there is no Eu anomaly. Although carbon isotope δ13C (PDB) values of the carbonatites (−7.3 to −4.7‰) are within the range of normal mantle (−5±2‰), oxygen isotope δ18O (SMOW) (11.9 to 17.7‰) ratios apparently are higher than those of the mantle (5.7±1.0‰), indicating varying degrees of exchange with hydrothermal fluids during or after magmatic crystallization. The carbonatite is the result of partial melting followed by fractional crystallization. Primary carbonatite melt was formed by less than 1% partial melting of enriched mantle, leaving a garnet-bearing residue. The melt then rose to a crustal magma chamber and underwent fractional crystallization, producing further REE enrichment. The REE and trace element distribution patterns of the carbonatites are similar to those of fine-grained dolomite marble, the ore-host rock of the Bayan Obo REE–Nb–Fe giant mineral deposit. This fact may indicate a petrogenetic link between the dykes described here and the Bayan Obo mineral deposit. Received November 1, 2001; revised version accepted June 16, 2002  相似文献   

13.
The Newania carbonatite complex of Rajasthan, India is one of the few dolomite carbonatites of the world, and oddly, does not contain alkaline silicate rocks thus providing a unique opportunity to study the origin and evolution of a primary carbonatite magma. In an attempt to characterize the mantle source, the source of carbon, and the magmatic and post-magmatic evolution of Newania carbonatites, we have carried out a detailed stable carbon and oxygen isotopic study of the complex. Our results reveal that, in spite of being located in a metamorphic terrain, these rocks remarkably have preserved their magmatic signatures in stable C and O isotopic compositions. The δ13C and δ18O variations in the complex are found to be results of fractional crystallization and low temperature post-magmatic alteration suggesting that like other carbonatites, dolomite carbonatites too fractionate isotopes of both elements in a similar fashion. The major difference is that the fractional crystallization of dolomite carbonatites fractionates oxygen isotopes to a larger extent. The modes of δ13C and δ18O variations in the complex, ?4.5?±?1‰ and 7?±?1‰, respectively, clearly indicate its mantle origin. Application of a multi-component Rayleigh isotopic fractionation model to the correlated δ13C versus δ18O variations in unaltered carbonatites suggests that these rocks have crystallized from a CO2 + H2O fluid rich magma, and that the primary magma comes from a mantle source that had isotopic compositions of δ13C ~ ?4.6‰ and δ18O ~ 6.3‰. Such a mantle source appears to be a common peridotite mantle (δ13C = ?5.0?±?1‰) whose carbon reservoir has insignificant contribution from recycled crustal carbon. Other Indian carbonatites, except for Amba Dongar and Sung Valley that are genetically linked to Reunion and Kerguelen plumes respectively, also appear to have been derived from similar mantle sources. Through this study we establish that dolomite carbonatites are generated from similar mantle source like other carbonatites, have comparable evolutionary history irrespective of their association with alkaline silicate rocks, and may remain resistant to metamorphism.  相似文献   

14.
The results of a Sr isotopic study of coexisting alkaline silicate rocks and carbonatites of two Cretaceous alkaline complexes of India, Amba Dongar (Deccan Flood Basalt Province) and Sung Valley (Rajmahal–Bengal–Sylhet Flood Basalt Province) are reported. The overlapping nature of initial Sr isotopic ratios of alkaline rocks and carbonatites of both the complexes is consistent with a magmatic differentiation model. Modelling of initial 87Sr/86Sr variation in alkaline rocks of Amba Dongar is consistent with a process of crustal assimilation by the parent magma undergoing simultaneous fractional crystallization of silicate rocks and silicate–carbonate melt immiscibility. A maximum of ∼5% crustal contamination has been estimated for the parent magma of Amba Dongar, the effect of which is not seen in the Sr isotope ratio of carbonatites generated by liquid immiscibility. A two point Rb–Sr isochron of the Sung Valley carbonatites, pyoxenite and a phlogopite from a carbonatite yielded an age of 106±11 Ma, which is identical to the 40Ar–39Ar age of this complex. The same age for the carbonatites and the alkaline silicate rocks, similar initial Sr ratios and the higher Sr concentration in the former than the latter favour the hypothesis of liquid immiscibility for the generation of the Sung Valley. The higher initial 87Sr/86Sr ratio for these complexes than that of the Bulk Earth indicates their derivation from long-lived Rb/Sr-enriched sources.  相似文献   

15.
The nature of the petrogenetic links between carbonatites and associated silicate rocks is still under discussion (i.e., [Gittins J., Harmer R.E., 2003. Myth and reality of the carbonatite–silicate rock “association”. Period di Mineral. 72, 19–26.]). In the Paleozoic Kola alkaline province (NW Russia), the carbonatites are spatially and temporally associated to ultramafic cumulates (clinopyroxenite, wehrlite and dunite) and alkaline silicate rocks of the ijolite–melteigite series [(Kogarko, 1987), (Kogarko et al., 1995), (Verhulst et al., 2000), (Dunworth and Bell, 2001) and (Woolley, 2003)]. In the small (≈ 20 km2) Vuoriyarvi massif, apatite is typically a liquidus phase during the magmatic evolution and so it can be used to test genetic relationships. Trace elements contents have been obtained for both whole rocks and apatite (by LA-ICP-MS). The apatites define a single continuous chemical evolution marked by an increase in REE and Na (belovite-type of substitution, i.e., 2Ca2+ = Na+ + REE3+). This evolution possibly reflects a fractional crystallisation process of a single batch of isotopically homogeneous, mantle-derived magma.The distribution of REE between apatite and their host carbonatite have been estimated from the apatite composition of a carbonatite vein, belonging to the Neskevara conical-ring-like vein system. This carbonatite vein is tentatively interpreted as a melt. So, the calculated distribution coefficients are close to partition coefficients. Rare earth elements are compatible in apatite (D > 1) with a higher compatibility for the middle REE (DSm : 6.1) than for the light (DLa : 4.1) and the heavy (DYb : 1) REE.  相似文献   

16.
The evolution of a carbonated nephelinitic magma can be followed by the study of a statistically significant number of melt inclusions, entrapped in co-precipitated perovskite, nepheline and magnetite in a clinopyroxene- and nepheline-rich rock (afrikandite) from Kerimasi volcano (Tanzania). Temperatures are estimated to be 1,100°C for the early stage of the melt evolution of the magma, which formed the rock. During evolution, the magma became enriched in CaO, depleted in SiO2 and Al2O3, resulting in immiscibility at ~1,050°C and crustal pressures (0.5–1 GPa) with the formation of three fluid-saturated melts: an alkali- and MgO-bearing, CaO- and FeO-rich silicate melt; an alkali- and F-bearing, CaO- and P2O5-rich carbonate melt; and a Cu–Fe sulfide melt. The sulfide and the carbonate melt could be physically separated from their silicate parent and form a Cu–Fe–S ore and a carbonatite rock. The separated carbonate melt could initially crystallize calciocarbonatite and ultimately become alkali rich in composition and similar to natrocarbonatite, demonstrating an evolution from nephelinite to natrocarbonatite through Ca-rich carbonatite magma. The distribution of major elements between perovskite-hosted coexisting immiscible silicate and carbonate melts shows strong partitioning of Ca, P and F relative to FeT, Si, Al, Mn, Ti and Mg in the carbonate melt, suggesting that immiscibility occurred at crustal pressures and plays a significant role in explaining the dominance of calciocarbonatites (sövites) relative to dolomitic or sideritic carbonatites. Our data suggest that Cu–Fe–S compositions are characteristic of immiscible sulfide melts originating from the parental silicate melts of alkaline silicate–carbonatite complexes.  相似文献   

17.
Based on the investigation of melt inclusions using electron and ion microprobe analysis, we estimated the composition, evolution, and formation conditions of magmas responsible for the calcite-bearing ijolites and carbonatites of the Belaya Zima alkaline carbonatite complex (eastern Sayan, Russia). Primary melt and coexisting crystalline inclusions were found in the nepheline and calcite of these rocks. Diopside, amphibole (?), perovskite, potassium feldspar, apatite, calcite, pyrrhotite, and titanomagnetite were identified among the crystalline inclusions. The melt inclusions in nepheline from the ijolites are completely crystallized. The crystalline daughter phases of these inclusions are diopside, phlogopite, apatite, calcite, magnetite, and cuspidine. During thermometric experiments with melt inclusions in nepheline, the complete homogenization of the inclusions was attained through the dissolution of a gas bubble at temperatures of 1120–1130°C. The chemical analysis of glasses from the homogenized melt inclusions in nepheline of the ijolites revealed significant variations in the content of components: from 36 to 48 wt % SiO2, from 9 to 21 wt % Al2O3, from 8 to 25 wt % CaO, and from 0.6 to 7 wt % MgO. All the melts show very high contents of alkalis, especially sodium. According to the results of ion microprobe analysis, the average content of water in the melts is no higher than a few tenths of a percent. The most salient feature of the melt inclusions is the extremely high content of Nb and Zr. The glasses of melt inclusions are also enriched in Ta, Th, and light rare earth elements but depleted in Ti and Hf. Primary melt inclusions in calcite from the carbonatites contain a colorless glass and daughter phlogopite, garnet, and diopside. The silicate glass from the melt inclusions in calcite of the carbonatite is chemically similar to the glasses of homogenized melt inclusions in nepheline from the ijolites. An important feature of melt inclusions in calcite of the carbonatites is the presence in the glass of carbonate globules corresponding to calcite in composition. The investigation of melt inclusions in minerals of the ijolites and carbonatites and the analysis of the alkaline and ore-bearing rocks of the Belaya Zima Massif provided evidence for the contribution of crystallization differentiation and silicate-carbonate liquid immiscibility to the formation of these rocks. Using the obtained trace-element compositions of glasses of homogenized melt inclusions and various alkaline rocks and carbonatites, we determined to a first approximation the compositions of mantle sources responsible for the formation of the rock association of the Belaya Zima alkaline-carbonatite complex. The alkaline rocks and carbonatites were derived from the depleted mantle affected by extensive metasomatism. It is supposed that carbonate melts enriched in sodium and calcium were the main agents of mantle metasomatism.  相似文献   

18.
The ankaramitic scoria and carbonatite tuffs of the Lashainevolcano, northern Tanzania, contain a suite of alkalic pyroxenitexenoliths, in addition to the previously investigated magnesianlherzolite types. The rocks of the pyroxenite suite, which includemica-dunite and iron-rich lherzolite, consist of varying combinationsof olivine (Fo86–72), sodic diopside, Ti-pargasite, Ti-phlogopite,ilmenite, chromite, and magnetite. The over-all assemblagesare poorer in alumina than those from other alkalic pyroxenitelocalities. Comparison with the products of experimentally investigatedsystems is difficult because of low alumina, and emphasizesthe need for experimental syntheses on rocks of this type.  相似文献   

19.
Petrogenetic studies of carbonatites are challenging, because carbonatite mineral assemblages and mineral chemistry typically reflect both variable pressure–temperature conditions during crystallization and fluid–rock interaction caused by magmatic–hydrothermal fluids. However, this complexity results in recognizable alteration textures and trace-element signatures in the mineral archive that can be used to reconstruct the magmatic evolution and fluid–rock interaction history of carbonatites. We present new LA–ICP–MS trace-element data for magnetite, calcite, siderite, and ankerite–dolomite–kutnohorite from the iron-rich carbonatites of the 1.3 Ga Grønnedal–Íka alkaline complex, Southwest Greenland. We use these data, in combination with detailed cathodoluminescence imaging, to identify magmatic and secondary geochemical fingerprints preserved in these minerals. The chemical and textural gradients show that a 55 m-thick basaltic dike that crosscuts the carbonatite intrusion has acted as the pathway for hydrothermal fluids enriched in F and CO2, which have caused mobilization of the LREEs, Nb, Ta, Ba, Sr, Mn, and P. These fluids reacted with and altered the composition of the surrounding carbonatites up to a distance of 40 m from the dike contact and caused formation of magnetite through oxidation of siderite. Our results can be used for discrimination between primary magmatic minerals and later alteration-related assemblages in carbonatites in general, which can lead to a better understanding of how these rare rocks are formed. Our data provide evidence that siderite-bearing ferrocarbonatites can form during late stages of calciocarbonatitic magma evolution.  相似文献   

20.
The Samchampi-Samteran alkaline complex occurs as a plug-like pluton within the Precambrian granite gneisses of Mikir Hills, Assam, northeastern India and it is genetically related to Sylhet Traps. The intrusive complex is marked by dominant development of syenite within which ijolitemelteigite suite of rocks is emplaced with an arcuate outcrop pattern. Inliers of alkali pyroxenite and alkali gabbro occur within this ijolite-melteigite suite of rocks. The pluton is also traversed by younger intrusives of nepheline syenite and carbonatite. Development of sporadic, lumpy magnetite ore bodies is also recorded within the pluton. Petrographic details of the constituent lithomembers of the pluton have been presented following standard nomenclatorial rules. Overall pyroxene compositions range from diopside to aegirine augite while alkali feldspars are typically orthoclase and plagioclase in syenite corresponds to oligoclase species. Phase chemistry of nepheline is suggestive of Na-rich alkaline character of the complex. Biotite compositions are typically restricted to a uniform compositional range and they belong to ‘biotite’ field in the relevant classification scheme. Garnets (developed in syenite and melteigite) typically tend to be Ti-rich andradite, which on a closer scan can be further designated as melanites. Opaque minerals mostly correspond to magnetite. Use of Lindsley’s pyroxene thermometric method suggests an equilibration temperature from ∼450°–600°C for melteigite/alkali gabbro and ∼400°C for syenite. Critical assessment of other thermometric methods reveals a temperature of equilibration of ∼700°–1350°C for ijolite-melteigite suite of rocks in contrast to a relatively lower equilibration temperature of ∼600°C for syenite. Geobarometric data based on pyroxene chemistry yield an equilibration pressure of 5.32–7.72 kb for ijolite, melteigite, alkali pyroxenite, alkali gabbro and nepheline syenite. The dominant syenite member of the intrusive plug records a much higher (∼11 kb) equilibration pressure indicating a deeper level of intrusion. Major oxide variations of constituent lithomembers with respect to differentiation index (D.I.) corroborate a normal magmatic differentiation. A prominent role of liquid immiscibility is envisaged from field geological, petrographic and petrochemical evidences. Tectonic discrimination diagrams involving clinopyroxene chemistry strongly suggest within plate alkaline affinity for the parental magma which is in conformity with the regional plume tectonics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号