首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Using large-eddy simulation (LES), the effects of mesoscale local surface heterogeneity on the temporal evolution of low-level flows in the convective boundary layer driven by two-dimensional surface heat-flux variations are investigated at a height of about 100 m over flat terrain. The surface variations are prescribed with sinusoids of wavelength 32 km and varying amplitudes of 0, 50, 100, and 200 W m $^{-2}$ . The Weather Research and Forecasting numerical model is used as a mesoscale-domain LES model that has a grid spacing fine enough to explicitly resolve energy-containing turbulent eddies and a model domain large enough to include mesoscale circulations. Mesoscale circulations induced by the two-dimensional surface heterogeneity may undergo a flow transition and an associated spectral energy cascade, which has been found previously but only with one-dimensional surface heat-flux variations. Over a strongly heterogeneous surface prescribed with a two-dimensional sinusoid of amplitude 200 W m $^{-2}$ , the domain-averaged variance of the horizontal wind component initially grows rapidly, then undergoes a flow transition and subsequently rapidly decays. With a background wind, the induced mesoscale circulations are inhibited in the streamwise direction. However in the spanwise direction, somewhat stronger mesoscale circulations are induced, compared with those with no background wind. The background wind attenuates the significant reduction of the low-level temperature gradient by the fully-developed mesoscale horizontal flow. Spectral decomposition reveals that this rapid transition also exists in the mesoscale horizontal flows induced by the intermediate surface heterogeneity prescribed with a sinusoid of amplitude 100 W m $^{-2}$ . However the transition is masked by continuously growing turbulence.  相似文献   

2.
Observations of fluxes over heterogeneous surfaces   总被引:1,自引:0,他引:1  
This study analyzes data collected from repeated aircraft runs 30 m over alternating regions of irrigated and dry nonirrigated surfaces, each region on the order of 10 km across, during the California Ozone Deposition Experiment (CODE). After studying the scale dependence of the flow, the variables and their fluxes are decomposed into means for sublegs defined in terms of irrigated and nonirrigated regions and deviations from such subleg means. Since the repeated runs were flown over the same track, compositing the eight flight legs for each of the two days allows partial isolation of the influences of surface heterogeneity and transient mesoscale motions.A variance analysis is carried out to quantify the relative importance of surface heterogeneity and transient mesoscale motions on the variability of the turbulence fluxes. The momentum and ozone fluxes are more influenced by transient mesoscale motions while fluxes of heat, moisture and carbon dioxide are more influenced by surface heterogeneity. The momentum field is also influenced by a quasi-stationary mesoscale front and larger scale velocity gradients.For the present case, the mesoscale modulation of the turbulent flux is numerically more important than the direct mesoscale flux. This spatial modulation of the turbulent fluxes leads to extra Reynolds terms which act to reduce the area-averaged turbulent momentum flux and enhance the area-averaged turbulent heat flux.  相似文献   

3.
Spectral analysis was performed on aircraft observations of a convective boundary layer (CBL) that developed over a thermally inhomogeneous, well-marked mesoscale land surface. The observations, part of the GAME-Siberia experiment, were recorded between April and June 2000 over the Lena River near Yakutsk City. A special integral parameter termed the ‘reduced depth of the CBL’ was used to scale the height of the mixed layer with variable depth. Analysis of wavelet cospectra and spectra facilitated the separation of fluxes and other variables into small-scale turbulent fluctuations (with scales less than the reduced depth of the CBL, approximately 2 km) and mesoscale fluctuations (up to 20 km). This separation approach allows for independent exploration of the scales. Analyses showed that vertical distributions obeyed different laws for small-scale fluxes and mesoscale fluxes (of sensible heat, water vapour, momentum and carbon dioxide) and for other variables (wind speed and air temperature fluctuations, coherence and degree of anisotropy). Vertical profiles of small-scale turbulent fluxes showed a strong decay that differed from generally accepted similarity models for the CBL. Vertical profiles of mesoscale fluxes and other variables clearly showed sharp inflections at the same relative (with respect to the reduced depth of the CBL) height of approximately 0.55 in the CBL. Conventional similarity models for sensible heat fluxes describe both small-scale turbulent and mesoscale flows. The present results suggest that mesoscale motions that reach up to the relative level of 0.55 could be initiated by thermal surface heterogeneity. Entrainment between the upper part of the CBL and the free atmosphere may cause mesoscale motions in that region of the CBL.  相似文献   

4.
Using large-eddy simulation, we investigate characteristics of horizontal wind speed at 100 m above the ground, with surface heat-flux variations that are sinusoidal with amplitudes of 0, 50, and 200 W m−2 and wavelengths of 16, 32, and 128 km, and no background flow. When the amplitude is 200 W m−2, wind speeds induced by the surface-flux variations on scales of 16 and/or 32 km have multiple temporal oscillations from 0600 to 1800 local standard time. The positive peaks first appear before noon. In contrast, for wind speeds induced by the 128-km surface heterogeneity, a single oscillation occurs in the late afternoon, which is much larger than those generated by the 16- and 32-km surface heterogeneity. In addition, at the oscillation onset the kurtosis of the velocity increment over a distance of 1 km significantly increases, which implies intermittency in the generation of 1-km scale eddies. The spatially intermittent energy cascade generated by surface heterogeneity scaled down to 1-km eddies is analogous to the well-known intermittent energy cascade in the inertial subrange. The kurtosis of the 1-km eddies is much larger with the 128-km surface heterogeneity than with the 16- and 32-km heterogeneities. Thus we conclude that localized rapid changes of low-level horizontal wind speed may be caused by significant local surface heterogeneity on scales between a few tens and a few hundreds of kilometres.  相似文献   

5.
6.
A variable vertical mesh spacing for large-eddy simulation (LES) models in a convective boundary layer (CBL) is proposed. The argument is based on the fact that in the vertical direction the turbulence near the surface in a CBL is inhomogeneous and therefore the subfilter-scale effects depend on the relative location between the spectral peak of the vertical velocity and the filter cut-off wavelength. From the physical point of view, this lack of homogeneity makes the vertical mesh spacing the principal length scale and, as a consequence, the LES filter cut-off wavenumber is expressed in terms of this characteristic length scale. Assuming that the inertial subrange initial frequency is equal to the LES filter cut-off frequency and employing fitting expressions that describe the observed convective turbulent energy one-dimensional spectra, it is feasible to derive a relation to calculate the variable vertical mesh spacing. The incorporation of this variable vertical grid within a LES model shows that both the mean quantities (and their gradients) and the turbulent statistics quantities are well described near to the ground level, where the LES predictions are known to be a challenging task.  相似文献   

7.
The influence of mesoscale circulations induced by urban-rural differential surface sensible heat flux and roughness on convective boundary-layer (CBL) flow statistics over an isolated urban area has been examined using large-eddy simulation (LES). Results are analyzed when the circulations influence the entire urban area under a zero background wind. For comparison, the CBL flow over an infinite urban area with identical urban surface characteristics under the same background meteorological conditions is generated as a control case (without circulations). The turbulent flow over the isolated urban area exhibits a mix of streaky structure and cellular pattern, while the cellular pattern dominates in the control case. The mixed-layer height varies significantly over the isolated urban area, and can be lower near the edge of the urban area than over the rural area. The vertical profiles of turbulence statistics over the isolated urban area vary horizontally and are dramatically different from the control case. The turbulent kinetic energy (TKE) sources include wind shear, convergence, and buoyancy productions, compared to only buoyancy production in the control case. The normalized vertical velocity variance is reduced compared to the control case except in the central urban area where it is little affected. The low-level flow convergence is mainly responsible for the enhanced horizontal velocity variance in the central urban area, while wind shear is responsible for the additional local maximum of the horizontal velocity variance near the middle of the CBL outside the central area. Parameterizations in the prognostic equation for TKE used in mesoscale models are evaluated against the LES results over the isolated urban area. We also discuss conditions under which the urban-induced circulations occur and when they may affect the entire urban area. Given that urban-induced circulations can influence the entire urban area within hours for an urban area of a realistic size, it is inappropriate to directly apply empirical relations of turbulence statistics derived under horizontally-homogenous flow conditions to an urban area.  相似文献   

8.
An understanding of how the convective boundary layer (CBL) is mixed under heterogeneous surface forcing is crucial for the interpretation of area-averaged turbulence measurements. To determine the height and degree to which a complex heterogeneous surface affects the CBL, large-eddy simulations (LES) for two days of the LITFASS-2003 experiment representing two different wind regimes were undertaken. Spatially-lagged correlation analysis revealed the turbulent heat fluxes to be dependent on the prescribed surface flux pattern throughout the entire CBL including the entrainment layer. These findings prompted the question of whether signals induced by surface heterogeneity can be measured by airborne systems. To examine this question, an ensemble of virtual flights was conducted using LES, according to Helipod flight measurements made during LITFASS-2003. The resulting ensemble-averaged heat fluxes indicated a clear dependence on the underlying surface up to the top of the CBL. However, a large scatter between the flux measurements in different ensemble runs was observed, which was the result of insufficient sampling of the largest turbulent eddies. The random and systematic errors based on the integral length scale did not indicate such a large scatter. For the given flight leg lengths, at least 10–15 statistically independent flight measurements were necessary to give a significant estimate of heterogeneity-induced signals in the CBL. The need for ensemble averaging suggests that the observed blending of heterogeneity-induced signals in the CBL can be partly attributed to insufficient averaging.  相似文献   

9.
Large-eddy simulations (LESs) are employed to investigate the turbulence characteristics in the shear-free convective boundary layer (CBL) driven by heterogeneous surface heating. The patterns of surface heating are arranged as a chessboard with two different surface heat fluxes in the neighbouring patches, and the heterogeneity scale Λ in four different cases is taken as 1.2, 2.5, 5.0 and 10.0 km, respectively. The results are compared with those for the homogeneous case. The impact of the heterogeneity scale on the domain-averaged CBL characteristics, such as the profiles of the potential temperature and the heat flux, is not significant. However, different turbulence characteristics are induced by different heterogeneous surface heating. The greatest turbulent kinetic energy (TKE) is produced in the case with the largest heterogeneity scale, whilst the TKE in the other heterogeneous cases is close to that for the homogeneous case. This result indicates that the TKE is not enhanced unless the scale of the heterogeneous surface heating is large enough. The potential temperature variance is enhanced more significantly by a larger surface heterogeneity scale. But this effect diminishes with increasing CBL height, which implies that the turbulent eddy structures are changed during the CBL development. Analyses show that there are two types of organized turbulent eddies: one relates to the thermal circulations induced by the heterogeneous surface heating, whilst the other identifies with the inherent turbulent eddies (large eddies) induced by the free convection. At the early stage of the CBL development, the dominant scale of the organized turbulent eddies is controlled by the scale of the surface heterogeneity. With time increasing, the original pattern breaks up, and the vertical velocity eventually displays horizontal structures similar to those for the homogeneous heating case. It is found that after this transition, the values of λ/z i (λ is the dominant horizontal scale of the turbulent eddies, z i is the boundary-layer height) ≈1.6, which is just the aspect ratio of large eddies in the CBL.  相似文献   

10.
We investigate the impact of observed surface heterogeneities during the LITFASS-2003 experiment on the convective boundary layer (CBL). Large-eddy simulations (LES), driven by observed near-surface sensible and latent heat fluxes, were performed for the diurnal cycle and compare well with observations. As in former studies of idealized one- and two-dimensional heterogeneities, secondary circulations developed that are superimposed on the turbulent field and that partly take over the vertical transport of heat and moisture. The secondary circulation patterns vary between local and roll-like structures, depending on the background wind conditions. For higher background wind speeds, the flow feels an effective surface heat-flux pattern that derives from the original pattern by streamwise averaging. This effective pattern generates a roll-like secondary circulation with roll axes along the mean boundary-layer wind direction. Mainly the upstream surface conditions control the secondary circulation pattern, where the fetch increases with increasing background wind speed. Unlike the entrainment flux that appears to be slightly decreased compared to the homogeneously-heated CBL, the vertical flux of sensible heat appears not to be modified in the mixed layer, while the vertical flux of latent heat shows different responses to secondary circulations. The study illustrates that sufficient time averaging and ensemble averaging is required to separate the heterogeneity-induced signals from the raw LES turbulence data. This might be an important reason why experiments over heterogeneous terrain in the past did not give any clear evidence of heterogeneity-induced effects.  相似文献   

11.
With a focus towards developing multiscale capabilities in numerical weather prediction models, the specific problem of the transition from the mesoscale to the microscale is investigated. For that purpose, idealized one-way nested mesoscale to large-eddy simulation (LES) experiments were carried out using the Weather Research and Forecasting model framework. It is demonstrated that switching from one-dimensional turbulent diffusion in the mesoscale model to three-dimensional LES mixing does not necessarily result in an instantaneous development of turbulence in the LES domain. On the contrary, very large fetches are needed for the natural transition to turbulence to occur. The computational burden imposed by these long fetches necessitates the development of methods to accelerate the generation of turbulence on a nested LES domain forced by a smooth mesoscale inflow. To that end, four new methods based upon finite amplitude perturbations of the potential temperature field along the LES inflow boundaries are developed, and investigated under convective conditions. Each method accelerated the development of turbulence within the LES domain, with two of the methods resulting in a rapid generation of production and inertial range energy content associated to microscales that is consistent with non-nested simulations using periodic boundary conditions. The cell perturbation approach, the simplest and most efficient of the best performing methods, was investigated further under neutral and stable conditions. Successful results were obtained in all the regimes, where satisfactory agreement of mean velocity, variances and turbulent fluxes, as well as velocity and temperature spectra, was achieved with reference non-nested simulations. In contrast, the non-perturbed LES solution exhibited important energy deficits associated to a delayed establishment of fully-developed turbulence. The cell perturbation method has negligible computational cost, significantly accelerates the generation of realistic turbulence, and requires minimal parameter tuning, with the necessary information relatable to mean inflow conditions provided by the mesoscale solution.  相似文献   

12.
利用兰州大学半干旱气候与环境观测站(Semi-Arid Climate and Environment Observatory of Lanzhou University,简称SACOL)2008年12月观测资料,研究了稳定边界层湍流特征.使用涡动相关资料研究湍流通量时,定义湍流的平均时间τ内的中尺度运动是造成湍流统计量变化范围大的主要原因,稳定情形? τ取几十秒至几分钟.对梯度理查森数大于0.3的强稳定情形的湍流尺度分解(MRD)谱分析表明,感热通量在112.4~449.9 s存在谱隙,尺度大于谱隙的中尺度运动造成了通量观测资料离散性大,甚至有支配性影响.动量通量的谱隙在112.4~224.9 s之间.弱风时,中尺度运动的影响更大,垂直风速标准差以0.1的比率随中尺度风速变化;垂直风速标准差同广义风速表现出很好的相关性,并随着广义风速消失而消失.三维风速标准差与摩擦速度呈很好的线性关系,垂直、水平、横风风速的无量纲标准差分别为1.35、2.54、2.21.对湍流动能的研究发现,在梯度理查森数大于0.3的条件下,仍然存在连续的湍流.以湍动能为依据,分析了湍流的平稳时间长度,其长度随稳定度变化而变化,2008年12月7~11日从133.5 s变化到856.2 s,湍流平稳时间长度反映了中尺度运动的发生频率.  相似文献   

13.
Six state-of-the-art large-eddy simulation codes were compared in Fedorovich et al. (Preprints, 16th American Meteorological Society Symposium on Boundary Layers and Turbulence, 2004b) for three airflow configurations in order to better understand the effect of wind shear on entrainment dynamics in the convective boundary layer CBL). One such code was the University of Oklahoma large-eddy simulation (LES) code, which at the time employed a second-order leapfrog time-advancement scheme with the Asselin filter. In subsequent years, the code has been updated to use a third-order Runge–Kutta (RK3) time-advancement scheme. This study investigates what effect the upgrade from the leapfrog scheme to RK3 scheme has on turbulence statistics in the CBL differently affected by mean wind shear, also in relation to predictions by other LES codes that participated in the considered comparison exercise. In addition, the effect of changing the Courant number within the RK3 scheme is investigated by invoking the turbulence spectral analysis. Results indicate that low-order flow statistics obtained with the RK3 scheme generally match their counterparts from simulations with the leapfrog scheme rather closely. CBL growth rates due to entrainment in the shear-free case were also similar using both timestepping schemes. It was found, however, that care should be given to the choice of the Courant number value when running LES with the RK3 scheme in the sheared CBL setting. The advantages of the largest possible (based on the stability criterion) Courant number were negated by degrading the energy distribution across the turbulence spectrum. While mean profiles and low-order turbulence statistics were largely unaffected, the entrainment rate was over-predicted compared to that reported in the original code-comparison study.  相似文献   

14.
Summary Paper reviews recent laboratory and numerical model studies of passive gaseous tracer dispersion in the atmospheric convective boundary layer (CBL) with surface and elevated wind shears. Atmospheric measurement data used for validation of these two model techniques are briefly discussed as well. A historical overview is given of laboratory studies of dispersion in the atmospheric CBL. Model studies of tracer dispersion in two CBL types, the (i) non-steady, horizontally homogeneous CBL and (ii) quasi-stationary, horizontally heterogeneous CBL, are reviewed. The discussion is focused on the dispersion of non-buoyant plume emitted from a point source located at different elevations within the CBL. Approaches towards CBL modeling employed in different laboratory facilities (water tanks and wind tunnels) are described. The reviewed numerical techniques include Large Eddy Simulation (LES) and Lagrangian modeling. Numerical data on dispersion in the sheared CBL is analyzed in conjunction with experimental results from wind-tunnel CBLs.  相似文献   

15.
In weak wind stable conditions, eddy-correlation fluxes calculated using conventional averaging times of 5 min or longer to define the perturbations are severely contaminated by poorly sampled mesoscale motions. A method is developed to identify the averaging time for each individual data record that captures the turbulence while excluding most of the mesoscale motions. The method is based on multiresolution decomposition of the heat flux, and provides an objective procedure for selecting the averaging time for calculating eddy-correlation fluxes. Eddy-correlation data collected in weak turbulence conditions over grass, snow, a pine forest and the ocean are used to demonstrate the approach.When the small-scale turbulence and mesoscale motions are clearly separated by a gap region in the heat flux cospectra, the variable window width reduces the influence of nonstationarity by more effectively filtering out mesoscale motions compared to traditional methods using constant averaging time. For records where turbulence and mesoscale motions overlap in scale, the method is not well posed, although such records occur infrequently for our datasets. These ambiguous cases correspond to significant nonstationarity at scales that overlap with turbulence scales. The improved turbulence fluxes calculated with the proposed method are the appropriate fluxes for evaluating flux-gradient relationships and Monin–Obukov similarity theory for developing improved model parameterizations of turbulence for weakly turbulent flows  相似文献   

16.
The Mellor–Yamada–Nakanishi–Niino (MYNN) planetary boundary-layer (PBL) scheme is a second-order turbulence closure model that is an improved version of the Mellor–Yamada scheme based on large-eddy simulation data. It simulates PBL structure and evolution well, particularly over the ocean surface. However, when used with various underlying surfaces in China, the scheme overestimates the turbulent momentum flux and the sensible heat flux. Based on observations of surface fluxes in China, we attempt to improve the MYNN model by modifying the parameters and representation of the turbulence scale. Closure constants and empirical expressions in the diagnostic equation are chosen first, and an additional component of the turbulent heat flux is considered in the potential temperature prognostic equation to improve the surface heat-flux modelling. The modified MYNN scheme is incorporated into a three-dimensional mesoscale model and is evaluated using various underlying surface observations. Amelioration of the surface turbulent fluxes is confirmed at five observational sites in China over different land-use types.  相似文献   

17.
Although large-scale topography and land use have been properly considered in weather and climate models, the effect of mesoscale and microscale heterogeneous land use on convective boundary layer(CBL) has not been fully understood yet. In this study, the influence of semi-idealized strip-like patches of oases and deserts, which resemble irrigated land use in Northwest China, on the CBL characteristics, is investigated based on the Weather Research and Forecasting(WRF)-large eddy simulation(LES) driven by observed land surface data. The influences of soil water content in oases on aloft CBL flow structure, stability, turbulent kinetic energy(TKE), and vertical fluxes are carefully examined through a group of sensitivity experiments. The results show that secondary circulation(SC)/turbulent organized structures(TOS) is the strongest/weakest when soil water content in oases is close to saturation(e.g.,when the oases are irrigated). With the decrease of soil water content in oases(i.e., after irrigation), SC(TOS) becomes weak(strong) in the lower and middle CBL, the flux induced by SC and TOS becomes small(large), which has a dramatic impact on point measurement of eddy covariance(EC) fluxes. The flux induced by SC and TOS has little influence on EC sensible heat flux, but great influence on EC latent heat flux. Under this circumstance, the area averaged heat flux cannot be represented by point measurement of flux by the EC method, especially just after irrigation in oases. Comparison of imbalance ratio(i.e., contribution of SC and TOS to the total flux) reveals that increased soil moisture in oases leads to a larger imbalance ratio as well as enhanced surface heterogeneity. Moreover,we found that the soil layer configuration at different depths has a negligible impact on the CBL flux properties.  相似文献   

18.
Although large-scale topography and land use have been properly considered in weather and climate models, the effect of mesoscale and microscale heterogeneous land use on convective boundary layer (CBL) has not been fully understood yet. In this study, the influence of semi-idealized strip-like patches of oases and deserts, which resemble irrigated land use in Northwest China, on the CBL characteristics, is investigated based on the Weather Research and Forecasting (WRF)-large eddy simulation (LES) driven by observed land surface data. The influences of soil water content in oases on aloft CBL flow structure, stability, turbulent kinetic energy (TKE), and vertical fluxes are carefully examined through a group of sensitivity experiments. The results show that secondary circulation (SC)/turbulent organized structures (TOS) is the strongest/weakest when soil water content in oases is close to saturation (e.g., when the oases are irrigated). With the decrease of soil water content in oases (i.e., after irrigation), SC (TOS) becomes weak (strong) in the lower and middle CBL, the flux induced by SC and TOS becomes small (large), which has a dramatic impact on point measurement of eddy covariance (EC) fluxes. The flux induced by SC and TOS has little influence on EC sensible heat flux, but great influence on EC latent heat flux. Under this circumstance, the area averaged heat flux cannot be represented by point measurement of flux by the EC method, especially just after irrigation in oases. Comparison of imbalance ratio (i.e., contribution of SC and TOS to the total flux) reveals that increased soil moisture in oases leads to a larger imbalance ratio as well as enhanced surface heterogeneity. Moreover, we found that the soil layer configuration at different depths has a negligible impact on the CBL flux properties.  相似文献   

19.
In this note, two different approaches are used to estimate the entrainment-flux to surface-flux ratio for a sheared convective boundary layer (CBL); both are derived under the framework of the first-order jump model (FOM). That suggested by Sun and Wang (SW approach) has the advantage that there is no empirical constant included, though the dynamics are described in an implicit manner. The second, which was proposed by Kim et al. and Pino et al. (KP approach), explicitly characterizes the dynamics of the sheared entrainment, but uncertainties are induced through the empirical constants. Their performances in parameterizing the CBL growth rate are compared and discussed, and a new value of the parameter A 3 in the KP approach is suggested. Large-eddy simulation (LES) data are employed to test both approaches: simulations are conducted for the CBL growing under varying conditions of surface roughness, free-atmospheric stratification, and wind shear, and data used when the turbulence is in steady state. The predicted entrainment rates in each case are tested against the LES data. The results show that the SW approach describes the evolution of the sheared CBL quite well, and the KP approach also reproduces the growth of the CBL reasonably, so long as the value of A 3 is modified to 0.6.  相似文献   

20.
The mesoscale weather system which affected the Guangxi flash-flood-producing rainstorm of China in June 2008 is a quasi-stationary mesoscale vortex. Its genesis and development is closely related to the coupling effects of weather systems in different scales and different latitudes. On the one hand, the coupling of synoptic scale high- and low-level jets provides the environmental conditions for development of vortices and vertical circulations in the mesoscale vortex; On the other hand, the coupling of waves in mid-latitude westerlies and perturbations in low-latitude warm-moist flow under the influence of complex terrain makes the mesoscale vortex circulations strengthened. With the piecewise potential vorticity (PV) inversion method, PV anomalies in different regions are analyzed; also the vortex-vortex interactions and vortex-background flow interactions are diagnosed. Thus, the reasons why the mesoscale is quasi-stationary at first, while developing and deepening later are indicated. Under the condition of coupling effects, the vertical motions accompanied with the mesoscale vortex can be diagnosed with the PV-ω inversion system based on the analysis of quasi-balanced flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号