首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SST variability on seasonal to sub-annual scales in the coastal region of South America between 30° and 39°S, largely influenced by the Rio de la Plata estuary’s plume, and its relation to wind variability are explored. Data are six years of daily ensembles of gridded satellite SST and sea surface winds with spatial resolutions of about 11 and 25 km, respectively. Observations from oceanographic cruises are used to validate the results. It is found that the seasonal cycle can be explained in terms of two modes. The first one, characterizing fall-early winter/spring-early summer, is related to the radiative cycle. The second one, corresponding to late summer and winter, displays warm/cold anomalies along the Uruguayan coast forced by the prevailing winds during those seasons. In the upper estuary and the northern part of the area of influence of the freshwater plume, variability in sub-annual scales is significant. A large portion of this variance is related to zonal wind anomalies that force warm/cold SSTs along that coast. Cold anomalies of up to −5 °C occur under anomalously intense easterly winds, indicating upwelling. These events are very frequent and show large persistence, occurring up to one and a half months. They also display a marked seasonal cycle – being more frequent in late spring and summer – large inter-annual variability and seem to be modulated by the continental runoff. When discharge is low, the freshwater plume retracts to the west, reducing the inner-shelf stratification and increasing the likelihood of a full upwelling to the surface. In winter, short time-scale SST variability is mostly due to variability in the atmospheric cold fronts crossing the region. Weaker or less frequent (stronger or more frequent) fronts produce a generalized warming (cooling) over the region. As the estuary heats (colds) faster than the shelf, a warm (cold) anomaly develops in the upper Río de la Plata. On inter-annual time scales, probably because ENSO activity was weak during the studied period, SST variability was not important.  相似文献   

2.
Historical and recent oceanographic cruise data, MODIS chlorophyll-a satellite data, and an analytical model are used to examine SST fronts in the entrance to Spencer Gulf, South Australia. The fronts (2–3 °C) due to the contrast between warm Spencer Gulf waters and cooler waters of the continental shelf are readily observable on satellite imagery. Three water masses: cool, fresh upwelled shelf water; warm, salty Great Australian Bight water; and very warm and salty Spencer Gulf bottom water occupy the area. In consequence a summer density minimum is formed at the entrance to Spencer Gulf. The analytical model predicts that this thermohaline structure sets up an ageostrophic circulation, which favours upwelling in the central portion of the entrance. This is confirmed by the satellite data which show an increased chlorophyll-a concentration in the vicinity of the upwelling.  相似文献   

3.
Mesoscale circulation along the Sakhalin Island eastern coast   总被引:1,自引:1,他引:0  
The seasonal and interannual variability of mesoscale circulation along the eastern coast of the Sakhalin Island in the Okhotsk Sea is investigated using the AVISO velocity field and oceanographic data for the period from 1993 to 2016. It is found that mesoscale cyclones with the horizontal dimension of about 100 km occur there predominantly during summer, whereas anticyclones occur predominantly during fall and winter. The cyclones are generated due to a coastal upwelling forced by northward winds and the positive wind stress curl along the Sakhalin coast. The anticyclones are formed due to an inflow of low-salinity Amur River waters from the Sakhalin Gulf intensified by southward winds and the negative wind stress curl in the cold season. The mesoscale cyclones support the high biological productivity at the eastern Sakhalin shelf in July– August.  相似文献   

4.
A 4-year simulation of the surface circulation driven by the local wind on a section of the central Chilean coast is presented. The model is shown to reproduce the major observed features of the circulation. Comparison to observations of sea-surface temperature (SST) taken within the study area suggests that the model captures well coastal upwelling processes in the region. The circulation is shown to have two distinct modes corresponding to spring/summer and autumn/winter. During spring/summer sustained strong south-westerly wind forcing drives an equatorward coastal jet consistent with the Chile Coastal Current (CCC) and coastal upwelling at previously identified locations of intense upwelling at Topocalma Point and Curaumilla Point. Weaker winds during autumn/winter produce a slower CCC and a more homogenous SST field. Upwelling/relaxation and topographic eddies provide the main sources of variability on sub-seasonal time-scales in the model. The mechanisms responsible for each of these are discussed. Upwelling at Topocalma and Curaumilla Points is shown to be produced through generation of an upwelling Ekman bottom boundary layer following acceleration of the CCC close to the coast, reinforced by secondary circulation due to flow curvature around the headlands. Additional upwelling occurs north of Curaumilla Point due to development of shallow wind-driven overturning flow. Wind-sheltering is shown to be an important factor for explaining the fact that Valparaíso Bay is typically an upwelling shadow. Flow separation and eddy formation within Valparaíso Bay is seen to occur on the order of 10 times per year during relaxation after strong wind events and may persist for a number of weeks. Shorter lived topographic eddies are also seen to occur commonly at Topocalma and Toro Points. These eddies are shown to form in response to the surface elevation minima produced at each of these locations during upwelling.  相似文献   

5.
A three-dimensional baroclinic nonlinear numerical model is employed to investigate the summer upwelling in the northern continental shelf of the South China Sea (NCSCS) and the mechanisms of the local winds inducing the coastal upwelling, associated with the QuikSCAT wind data. First, the persistent signals of the summer upwelling are illustrated by the climatological the Advanced Very High-Resolution Radiometer (AVHRR) Sea Surface Temperature (SST) image over 1985–2006 and field observations in 2006 summer. Then, after the successful simulation of the summer upwelling in the NCSCS, four numerical experiments are conducted to explore the different effects of local winds, including the wind stress and wind stress curl, on the coastal upwelling in two typical strong summer upwelling regions of the NCSCS. The modeled results indicate that the summer upwelling is a seasonal common phenomenon during June–September in the NCSCS with the spatial extent of a basin-scale. Typical continental shelf upwelling characteristics are clearly shown in the coastal surface and subsurface water, such as low temperature, high salinity and high potential density in the east of the Hainan Island, the east of the Leizhou Peninsula and the southeast of the Zhanjiang Bay (noted as the Qiongdong-QD), and the inshore areas from the Shantou Coast to the Nanri Islands of the Fujian Coast (noted as the Yuedong-YD). The analysis of the QuikSCAT wind data and modeled upwelling index suggests that the local winds play significant roles in causing the coastal upwelling, but the alongshore wind stress and wind stress curl have different contributions to the upwelling in the Qiongdong (QDU) and the coastal upwelling in the Yuedong (YDU), respectively. Furthermore, model results from the numerical experiments show that in the YD the stable alongshore wind stress is a very important dynamic factor to induce the coastal upwelling but the wind stress curl has little contribution and even unfavorable to the YDU. However, in the QD the coastal upwelling is strongly linked to the local wind stress curl. It is also found that not only the offshore Ekman transport driven by the alongshore wind stress, the wind stress curl-induced Ekman pumping also plays a crucial effect on the QDU. Generally, the wind stress curl even has more contributions to the QDU than the alongshore wind stress.  相似文献   

6.
The role of wind-driven upwelling in stratifying a semiarid bay in the Gulf of California is demonstrated with observations in Bahía Concepción, Baja California Sur, Mexico. The stratification in Bahía Concepción is related to the seasonal heat transfer from the atmosphere as well as to cold water intrusions forced by wind-driven upwelling. During winter, the water column is relatively well-mixed by atmospheric cooling and by northwesterly, downwelling-favorable, winds that typically exceed 10 m/s. During summer, the water column is gradually heated and becomes stratified because of the heat flux from the atmosphere. The wind field shifts from downwelling-favorable to upwelling-favorable at the beginning of summer, i.e., the winds become predominantly southeasterly. The reversal of wind direction triggers a major cold water intrusion at the beginning of the summer season that drops the temperature of the entire water column by 3–5 °C. The persistent upwelling-favorable winds during the summer provide a continuous cold water supply that helps maintain the stratification of the bay.  相似文献   

7.
Eight years of AVHRR-derived sea surface temperature (SST) and SeaWiFS-derived surface chlorophyll (Chl) data (1998–2005) are used to investigate key processes affecting the spatial and temporal variability of the two parameters in the Aegean Sea. Seasonal mean SST and Chl maps are constructed using daily data to study seasonal dynamics whereas empirical orthogonal function (EOF) and correlational analysis is applied to the 8-day composite SST and Chl anomaly time-series in order to study the variability and co-variability of the two parameters from subseasonal to interannual time-scales. The seasonal mean fields show that Black Sea cold and chlorophyll-rich waters enter through the Dardanelles Strait and they are accumulated in the north-eastern part of the Aegean Sea, steered by the Samothraki anticyclone. Large chlorophyll concentrations are encountered in the hydrological front off the Dardanelles Strait as well as in coastal areas affected by large riverine/anthropogenic nutrient loads. The SST seasonal mean patterns reveal strong cooling that is associated with upwelling along the eastern boundary of the basin during summer due to strong northerly winds, a process which is not present in the surface chlorophyll climatology. The Chl dataset presents much stronger sub-seasonal variability than SST, with large variations in the phase and strength of the phytoplankton seasonal cycles. EOF analysis of the anomaly time-series shows that SST non-seasonal variability is controlled by synoptic weather variations and anomalies in the north–south wind-stress component regulating the summer coastal upwelling regime. Mean SST and Chl patterns, and their associated variations, are not closely linked implying that Black Sea and riverine inputs mainly control the intra-annual and interannual variability of the surface chlorophyll in the Aegean Sea rather than mixing and/or upwelling processes.  相似文献   

8.
Monthly composites of multi-year sea surface temperature (SST) and chlorophyll-a (Chl-a) have been used in combination with ocean model simulations to study bio-physical distribution patterns at Porcupine and Rockall Bank, two large submarine banks in the Northeast Atlantic in close proximity to the European shelf edge. Seven years (January 1998–December 2004) of remotely sensed data have been collated to create monthly climatological fields and to analyse principal spatio-temporal characteristics. At both banks, a region of cooler SST is found over the summit region compared to warmer waters of the surrounding ocean, less apparent in summer when capped by the seasonal thermocline. Enhanced Chl-a levels are found over both banks with a lifetime partly exceeding the bloom period. At Rockall Bank, both SST and Chl-a signals are more pronounced and persistent showing a 30% increase in annual Chl-a levels over the summit area with an even higher ratio in spring and autumn. A combination of physical processes appears to promote the enhanced productivity over both banks through the generation of a quasi-steady dome of cold, dense water during winter convection and upwelling events. This cold dome is associated with the presence of a retentive circulation based on Taylor cap dynamics and tidal rectification processes. The larger and more persistent enhancement of Chl-a levels over Rockall Bank would appear due to its isolated nature as well as its size. In contrast, Porcupine Bank is partly attached to the Irish shelf edge and exposed to the poleward flowing shelf edge current which may strip passive particles from the central bank region. Satellite derived Chl-a spring/summer distributions over the banks have been used to initialise model simulations of passive tracer dispersion. Timescales for the observed lifetime of the remotely sensed Chl-a patches are consistent with model derived retention timescales and simple scaling for the dispersion of passive biological material over the banks. Surface particle residence times over Rockall Bank are estimated to exceed Porcupine Bank values by a factor of two. Finally, the tidal contribution to individual particle motion is found to be large in some Rockall Bank areas, but less important at Porcupine Bank.  相似文献   

9.
The Río de la Plata waters form a low salinity tongue that affects the circulation, stratification and the distributions of nutrients and biological species over a wide extent of the adjacent continental shelf. The plume of coastal waters presents a seasonal meridional displacement reaching lower latitudes (28°S) during austral winter and 32°S during summer. Historical data suggests that the wind causes the alongshore shift, with southwesterly (SW) winds forcing the plume to lower latitudes in winter while summer dominant northeasterly (NE) winds force its southward retreat. To establish the connection between wind and outflow variations on the distribution of the coastal waters, we conducted two quasi-synoptic surveys in the region of Plata influence on the continental shelf and slope of southeastern South America, between Mar del Plata, Argentina and the northern coast of Santa Catarina, Brazil. We observed that: (A) SW winds dominating in winter force the northward spreading of the plume to low latitudes even during low river discharge periods; (B) NE winds displace the plume southward and spread the low salinity waters offshore over the entire width of the continental shelf east of the Plata estuary. The southward retreat of the plume in summer leads to a volume decrease of low salinity waters over the shelf. This volume is compensated by an increase of Tropical waters, which dominate the northern shelf. The subsurface transition between Subantarctic and Subtropical Shelf Waters, the Subtropical Shelf Front, and the subsurface water mass distribution, however, present minor seasonal variations. Along shore winds also influence the dynamics and water mass variations along the continental shelf area. In areas under the influence of river discharge, Subtropical Shelf Waters are kept away from the coastal region. When low salinity waters retreat southward, NE winds induce a coastal upwelling system near Santa Marta Cape. In summer, solar radiation promotes the establishment of a strong thermocline that increases buoyancy and further enhances the offshore displacement of low salinity waters under the action of NE winds.  相似文献   

10.
We examined the occurrence of seasonal hypoxia (O2<2 mg l−1) in the bottom waters of four river-dominated ocean margins (off the Changjiang, Mississippi, Pearl and Rhône Rivers) and compared the processes leading to the depletion of oxygen. Consumption of oxygen in bottom waters is linked to biological oxygen demand fueled by organic matter from primary production in the nutrient-rich river plume and perhaps terrigenous inputs. Hypoxia occurs when this consumption exceeds replenishment by diffusion, turbulent mixing or lateral advection of oxygenated water. The margins off the Mississippi and Changjiang are affected the most by summer hypoxia, while the margins off the Rhône and the Pearl rivers systems are less affected, although nutrient concentrations in the river water are very similar in the four systems. Spring and summer primary production is high overall for the shelves adjacent to the Mississippi, Changjiang and Pearl (1–10 g C m−2 d−1), and lower off the Rhône River (<1 g C m−2 d−1), which could be one of the reasons of the absence of hypoxia on the Rhône shelf. The residence time of the bottom water is also related to the occurrence of hypoxia, with the Mississippi margin showing a long residence time and frequent occurrences of hypoxia during summer over very large spatial scales, whereas the East China Sea (ECS)/Changjiang displays hypoxia less regularly due to a shorter residence time of the bottom water. Physical stratification plays an important role with both the Changjiang and Mississippi shelf showing strong thermohaline stratification during summer over extended periods of time, whereas summer stratification is less prominent for the Pearl and Rhône partly due to the wind effect on mixing. The shape of the shelf is the last important factor since hypoxia occurs at intermediate depths (between 5 and 50 m) on broad shelves (Gulf of Mexico and ECS). Shallow estuaries with low residence time such as the Pearl River estuary during the summer wet season when mixing and flushing are dominant features, or deeper shelves, such as the Gulf of Lion off the Rhône show little or no hypoxia.  相似文献   

11.
The distribution and abundance of thaliaceans were studied in relation to physical and biological variables during summer and winter in the northwest continental shelf of South China Sea. Based on the topography and water mass of the surveyed region, it was divided into three subregions: region I (onshore waters of the east Leizhou Peninsula), region II (onshore waters of the east and southeast Hainan Island) and region III (offshore waters from Leizhou Peninsula to Hainan Island). During summer due to a strong southwest monsoon, a cold eddy and coastal upwelling dominated in regions I and II, respectively, whereas the onshore and offshore waters were vertically mixed during winter due to a strong northeast monsoon. A total of 18 thaliacean species (including 3 subspecies) were collected. The mean species richness was higher in summer compared to winter, with the occurrence of higher values during summer and winter at region II and region III, respectively. The average thaliacean abundance is also higher in summer than in winter, with higher values at region I in summer and no significant difference among three subregions in winter. Doliolum denticulatum and Thalia democratica were the dominant species during summer and winter. The results suggested that the seasonal and spatial distribution of thaliacean richness was considered to be the result of physical factors such as temperature and ocean current in summer and winter. Spatial distribution of thaliacean abundance was affected by chlorophyll a concentration increased by the occurrence of coastal upwelling and cold eddy in summer. Southwest and northeast monsoons are shown to play an important role in shaping the distribution of species richness and abundance of thaliaceans in the northwest continental shelf of South China Sea.  相似文献   

12.
Fourteen acoustic Doppler current profilers (ADCPs) were deployed on the shelf and slope for 1 year just west of the DeSoto Canyon in the Northeastern Gulf of Mexico by the Naval Research Laboratory (NRL) as part of its Slope to Shelf Energetics and Exchange Dynamics (SEED) project. The winter and spring observations are discussed here in regards to the low-frequency current variability and its relation to wind and eddy forcing. Empirical orthogonal function (EOF) analyses showed that two modes described most of the current variability. Wind-forced variability of the along-shelf flow was the main contributor in Mode 1 while eddies contributed much of the variability in Mode 2. Wind-stress controlled currents on the shelf and slope at time scales of about a week. On longer time scales, variations in the currents on both the outer shelf and slope appear to be related to seasonal variations in the time-cumulated wind stress curl. Winds were dominant in driving the along-shelf transports, particularly along the slope. However, the effective wind stress component was found to be aligned with the west Florida shelf direction rather than the local shelf direction. Eddy intrusions, which were more numerous in winter and spring than in summer and fall, and winds were found to contribute significantly to cross-shelf exchange processes.  相似文献   

13.
Nearshore currents of the southern Namaqua shelf were investigated using data from a mooring situated three and a half kilometres offshore of Lambert's Bay, downstream of the Cape Columbine upwelling cell, on the west coast of South Africa. This area is susceptible to harmful algal blooms (HABs) and wind-forced variations in currents and water column structure are critical in determining the development, transport and dissipation of blooms. Time series of local wind data, and current and temperature profile data are described for three periods, considered to be representative of the latter part of the upwelling season (27 January–22 February), winter conditions (5–29 May) and the early part of the upwelling season (10 November–12 December) in 2005. Differences observed in mean wind strength and direction between data sets are indicative of seasonal changes in synoptic meteorological conditions. These quasi-seasonal variations in wind forcing affect nearshore current flow, leading to mean northward flow in surface waters early in the upwelling season when equatorward, upwelling-favourable winds are persistent. Mean near-surface currents are southward during the latter part of the upwelling season, consistent with more prolonged periods of relaxation from equatorward winds, and under winter conditions when winds were predominantly poleward. Within these seasonal variations in mean near-surface current direction, two scales of current variability were evident within all data sets: strong inertial oscillations were driven by diurnal winds and introduced vertical shear into the water column enhancing mixing across the thermocline, while sub-inertial current variability was driven by north–south wind reversals at periods of 2–5 days. Sub-inertial currents were found to lag wind reversals by approximately 12 h, with a tendency for near-surface currents to flow poleward in the absence of wind forcing. Consistent with similar sites along the Californian and Iberian coasts, the headland at Cape Columbine is considered to influence currents and circulation patterns during periods of relaxation from upwelling-favourable winds, favouring the development of a nearshore poleward current, leading to poleward advection of warm water, the development of stratification, and the creation of potentially favourable conditions for HAB development.  相似文献   

14.
Chen  Huan-Huan  Qi  Yiquan  Wang  Yuntao  Chai  Fei 《Ocean Dynamics》2019,69(11):1387-1399

Fourteen years (September 2002 to August 2016) of high-resolution satellite observations of sea surface temperature (SST) data are used to describe the frontal pattern and frontogenesis on the southeastern continental shelf of Brazil. The daily SST fronts are obtained using an edge-detection algorithm, and the monthly frontal probability (FP) is subsequently calculated. High SST FPs are mainly distributed along the coast and decrease with distance from the coastline. The results from empirical orthogonal function (EOF) decompositions reveal strong seasonal variability of the coastal SST FP with maximum (minimum) in the astral summer (winter). Wind plays an important role in driving the frontal activities, and high FPs are accompanied by strong alongshore wind stress and wind stress curl. This is particularly true during the summer, when the total transport induced by the alongshore component of upwelling-favorable winds and the wind stress curl reaches the annual maximum. The fronts are influenced by multiple factors other than wind forcing, such as the orientation of the coastline, the seafloor topography, and the meandering of the Brazil Current. As a result, there is a slight difference between the seasonality of the SST fronts and the wind, and their relationship was varying with spatial locations. The impact of the air-sea interaction is further investigated in the frontal zone, and large coupling coefficients are found between the crosswind (downwind) SST gradients and the wind stress curl (divergence). The analysis of the SST fronts and wind leads to a better understanding of the dynamics and frontogenesis off the southeastern continental shelf of Brazil, and the results can be used to further understand the air-sea coupling process at regional level.

  相似文献   

15.
The physical processes affecting the development of seasonal hypoxia over the Louisiana-Texas shelf were examined using a high-resolution, three-dimensional, unstructured-grid, Finite Volume Coastal Ocean Model (FVCOM). The model was forced with the observed freshwater fluxes from the Mississippi and Atchafalaya Rivers, surface winds, heat fluxes, tides and offshore conditions. The simulations were carried out over a six-month period, from April to September 2002, and the model performance was evaluated against several independent series of observations that included tidal gauge data, Acoustic Doppler Current Profiler (ADCP) data, shipboard measurements of temperature and salinity, vertical salinity and sigma-t profiles, and satellite imagery. The model accurately described the offshore circulation mode generated over the Louisiana-Texas shelf by the westerly winds during summer months, as well as the prevalent westward flow along the coast caused by the easterly winds during the rest of the study period. The seasonal cycle of stratification also was well represented by the model. During 2002, the stratification was initiated in early spring and subsequently enhanced by the intensity and phasing of riverine freshwater discharges. Strong stratification persisted throughout the summer and was finally broken down in September by tropical storms. The model simulations also revealed a quasi-permanent anticyclonic gyre in the Louisiana Bight region formed by the rotational transformation of the Mississippi River plume, whose existence during 2002 was supported by the satellite imagery and ADCP current measurements. Model simulations support the conclusion that local wind forcing and buoyancy flux resulting from riverine freshwater discharges were the dominant mechanisms affecting the circulation and stratification over the inner Louisiana-Texas shelf.  相似文献   

16.
In this paper, the features and possible causes of sea surface temperature(SST) biases over the Northwest Pacific are investigated based on a mixed-layer heat budget analysis in 21 coupled general circulation models(CGCMs) from phase 5 of the Coupled Model Inter-comparison Project(CMIP5). Most CMIP5 models show cold SST biases throughout the year over the Northwest Pacific. The largest biases appear during summer, and the smallest biases occur during winter. These cold SST biases are seen at the basin scale and are mainly located in the inner region of the low and mid-latitudes. According to the mixed-layer heat budget analysis, overestimation of upward net sea surface heat fluxes associated with atmospheric processes are primarily responsible for the cold SST biases. Among the different components of surface heat fluxes, overestimated upward latent heat fluxes induced by the excessively strong surface winds contribute the most to the cold SST biases during the spring, autumn, and winter seasons. Conversely, during the summer, overestimated upward latent heat fluxes and underestimated downward solar radiations at the sea surface are equally important. Further analysis suggests that the overly strong surface winds over the Northwest Pacific during winter and spring are associated with excessive precipitation over the Maritime Continent region,whereas those occurring during summer and autumn are associated with the excessive northward extension of the intertropical convergence zone(ITCZ). The excessive precipitation over the Maritime Continent region and the biases in the simulated ITCZ induce anomalous northeasterlies, which are in favor of enhancing low-level winds over the North Pacific. The enhanced surface wind increases the sea surface evaporation, which contributes to the excessive upward latent heat fluxes. Thus, the SST over the Northwest Pacific cools.  相似文献   

17.
Blooms of the toxic dinoflagellates, Karenia spp. occur nearly annually in the eastern Gulf of Mexico with cell abundances typically >105 cells L−1. Thermal and ocean color satellite imagery shows sea surface temperature patterns indicative of upwelling events and the concentration of chlorophyll at fronts along the west Florida continental shelf. Daily cell counts of Karenia show greater increases in cell concentrations at fronts than can be explained by Karenia's maximum specific growth rate. This is observed in satellite images as up to a 10-fold greater increase in chlorophyll biomass over 1–2 d periods than can be explained by in situ growth. In this study, we propose a model that explains why surface blooms of Karenia may develop even when nutrients on the west Florida shelf are low. In the summer, northward winds produce a net flow east and southeast bringing water and nutrients from the Mississippi River plume onto the west Florida shelf at depths of 20–50 m. This water mass supplies utilizable inorganic and organic forms of nitrogen that promote the growth of Karenia to pre-bloom concentrations in sub-surface waters in the mid-shelf region. In the fall, a change to upwelling favorable winds produces onshore transport. This transport, coupled with the swimming behavior of Karenia, leads to physical accumulation at frontal regions near the coast, resulting in fall blooms. Strong thermal fronts during the winter provide a mechanism for re-intensification of the blooms, if Karenia cells are located north of the fronts. This conceptual model leads to testable hypotheses on bloom development throughout the Gulf of Mexico.  相似文献   

18.
Observational and modeling studies were conducted to investigate the Pearl River plume and its interaction with the southwesterly driven upwelling circulation in the northern South China Sea during the summer. After exiting the Pearl River Estuary, the discharged freshwater generates a nearly stationary bulge of freshwater near the entrance of the estuary. Forced by the wind-driven coastal upwelling current, the freshwater in the outer part of the bulge flows downstream at the speed of the current and forms a widening and deepening buoyant plume over the shelf. The plume axis gradually shifts offshore of the current maximum as a result of currents induced by the contrasting density at the nose of plume and by the intensified Ekman drift in the plume. In this plume–current system, the fraction of the discharged freshwater volume accumulated in the bulge reaches a steady state and the volume of newly discharged freshwater is transported downstream by the upwelling current. Enhancement of stratification by the plume thins the surface frictional layer and enhances the cross-shelf circulation in the upper water column such that the surface Ekman current and compensating flow beneath the plume are amplified while the shoaling of the deeper dense water in the upwelling region changes minimally. The pressure gradient generated between the buoyant plume and ambient seawater accelerates the wind-driven current along the inshore edge of the plume but retards it along the offshore edge. Along the plume, downward momentum advection is strong near the highly nonlinear source region and a weaker upward momentum advection occurs in the far field over the shelf. Typically, the plume is shaped by the current over the shelf while the current itself is adjusting to a new dynamic balance invoked by the plume-induced changes of vertical viscosity and the horizontal pressure gradient. The spatial variation of this new balance leads to a coherent change in the cross-isobath transport in the upper water column during upwelling.  相似文献   

19.
The majority of water and sediment discharge from the small, mountainous watersheds of the US West Coast occurs during and immediately following winter storms. The physical conditions (waves, currents, and winds) within and acting upon the proximal coastal ocean during these winter storms strongly influence dispersal patterns. We examined this river–ocean temporal coherence for four coastal river–shelf systems of the US West Coast (Umpqua, Eel, Salinas, and Santa Clara) to evaluate whether specific ocean conditions occur during floods that may influence coastal dispersal of sediment. Eleven years of corresponding river discharge, wind, and wave data were obtained for each river–shelf system from USGS and NOAA historical records, and each record was evaluated for seasonal and event-based patterns. Because near-bed shear stresses due to waves influence sediment resuspension and transport, we used spectral wave data to compute and evaluate wave-generated bottom-orbital velocities. The highest values of wave energy and discharge for all four systems were consistently observed between October 15 and March 15, and there were strong latitudinal patterns observed in these data with lower discharge and wave energies in the southernmost systems. During floods we observed patterns of river–ocean coherence that differed from the overall seasonal patterns. For example, downwelling winds generally prevailed during floods in the northern two systems (Umpqua and Eel), whereas winds in the southern systems (Salinas and Santa Clara) were generally downwelling before peak discharge and upwelling after peak discharge. Winds not associated with floods were generally upwelling on all four river–shelf systems. Although there are seasonal variations in river–ocean coherence, waves generally led floods in the three northern systems, while they lagged floods in the Santa Clara. Combined, these observations suggest that there are consistent river–ocean coherence patterns along the US West Coast during winter storms and that these patterns vary substantially with latitude. These results should assist with future evaluations of flood plume formation and sediment fate along this coast.  相似文献   

20.
This study examines seasonal circulation, hydrography, and associated spatial variability over the inner shelf of the northern South China Sea (NSCS) using a nested-grid coastal ocean circulation model. The model external forcing consists of tides, atmospheric forcing, and open boundary conditions based on the global ocean circulation and hydrography reanalysis produced by the Hybrid Coordinate Ocean model. Five numerical experiments are conducted with different combinations of external forcing functions to examine main physical processes affecting the seasonal circulation in the study region. Model results demonstrate that the monthly mean circulation in the study region features the Guangdong Coastal Current (GCC) over coastal waters and the South China Sea Warm Current (SCSWC) in the offshore deep waters. The GCC produced by the model flows nearly southwestward in winter months and northwestward in summer months, which agrees with previous studies. The SCSWC flows roughly northeastward and is well defined in summer months. In winter months, by comparison, the SCSWC is superseded by the southwestward strong wind-driven currents. Analysis of model results in five different experiments demonstrates that the monthly mean circulation over coastal and inner shelf waters of the NSCS can be approximated by barotropic currents forced by the southwestward monsoon winds in winter months. In summer months, by comparison, the monthly mean circulation in the study region is affected significantly by baroclinic dynamics associated with freshwater runoff from the Pearl River and advection of warm and saline waters carried by the SCSWC over the NSCS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号