首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The effect of monsoon, coastal current and temperature on the distribution and seasonal variations of Calanus sinicus abundance were studied. The samples from the northwest continental shelf of South China Sea were collected with 505 μm planktonic nets from July 2006 to October 2007. The abundance of C. sinicus made up 34.28% and 12.34% of all copepods in spring and summer, respectively. The distribution of C. sinicus varied seasonally and regionally. The distribution of C. sinicus ranged between east inshore and offshore waters from the Leizhou Peninsula to Hainan Island, with a mean of 23.00 (±77.78) ind. m−3 in spring. In summer it had a mean of 13.74 (±45.10) ind. m−3 occurring only in the east inshore waters from Leizhou Peninsula to Hainan Island. C. sinicus was not abundant during autumn and winter seasons. The surveyed area was divided into three sub-regions based on topographical analysis and water mass, region I (included the east inshore waters of Leizhou Peninsula), region II (included the east inshore waters of Hainan Island) and region III (included the offshore waters from Leizhou Peninsula to Hainan Island). The average abundance of C. sinicus within region I was determined to be 115.63 (±145.93) and 68.12 (±84.00) ind. m−3 in spring and summer, respectively, values higher than those of regions II and III. Our findings suggested that C. sinicus was transported from the East China Sea to the northwest continental shelf of South China Sea by the Guangdong Coastal Current, which was driven by the northeast monsoon in spring. The presence of a cold eddy, in addition to coastal upwelling driven by the southwest monsoon, provided suitable survival conditions for C. sinicus in summer. This species disappeared in autumn due to high temperatures (>27 °C) and did not begin to enter into the northwest continental shelf of South China Sea from the East China Sea during the period of investigation in winter. The frequency of C. sinicus was low in region III during the year as a result of the South China Sea Warm Current and pelagic waters with high temperature during the spring and summer months.  相似文献   

2.
The abundance, size, and fluorescence of picophytoplankton cells were investigated during the summer (July-August of 2009) and winter (January of 2010) extending from near-shore coastal waters to oligotrophic open waters in northern South China Sea, under the influence of contrasting seasonal monsoons. We found that the median abundance of Prochlorococcus averaged over top 150 m decreased nearly 10 times in the winter compared to the summer in the whole survey area, while median abundance of Synechococcus and picoeukaryotes increased 2.6 and 2.4 folds, respectively. Vertical abundance profiles of picoeukaryotes usually formed a subsurface maximum during the summer with the depth of maximal abundances tracking the depth of nutricline, whereas their vertical distributions were more uniform during the winter. Size and cellular fluorescence of Prochlorococcus and Synechococcus usually increased with depth in the summer, while the size of picoeukaryotes was smallest at the depth of maximal abundances. Size, cellular fluorescence, and chlorophyll-to-carbon ratio of Prochlorococcus and Synechococcus in surface waters were generally higher in the winter than in the summer and onshore than offshore, probably resulting from different temperature, nutrient, and light environments as well as different ecotype compositions. Prochlorococcus cells were most abundant in warm and oligotrophic environments, while the abundance of Synechococcus and picoeukaryotes was the highest in waters with intermediate chlorophyll and nutrient concentrations. The distributional patterns of picophytoplankton groups are consistent with their specific physiology documented in previous studies and can be possibly predicted by environmental physical and chemical variables.  相似文献   

3.
A three-dimensional model based on the Princeton Ocean Model (POM) has been implemented to study the circulation of the west coast of India. The model uses a curvilinear orthogonal horizontal grid with higher resolution near the coast (3–9 km) and a terrain following sigma coordinate in the vertical. The model is able to simulate Lakshadweep High and Lakshadweep Low (LL) during the winter and summer monsoons, respectively. During winter, the downwelling processes noticed along the coast help in the formation of temperature inversions. The inversions can be seen even up to the depths of ~50 m, which agrees with the available ARGO data in the region. Model simulations show that coastal upwelling off Kerala is at its peak in July. The intensity of upwelling reduces along the coast towards north. During the existence of LL, there is a cyclonic eddy in the sub-surface waters over the South-Eastern Arabian Sea, with vertical extent up to the depths of 100–150 m and it is strengthened due to the presence of northward counter current in the shelf region. The southerly coastal jet formed along the southern coast as a result of upwelling is noticed a westward shift along with LL. The location of the eddy off Kerala is tilted towards the open ocean with depth and our experiments suggest that this flow can be understood as a first baroclinic mode.  相似文献   

4.
A three-dimensional baroclinic nonlinear numerical model is employed to investigate the summer upwelling in the northern continental shelf of the South China Sea (NCSCS) and the mechanisms of the local winds inducing the coastal upwelling, associated with the QuikSCAT wind data. First, the persistent signals of the summer upwelling are illustrated by the climatological the Advanced Very High-Resolution Radiometer (AVHRR) Sea Surface Temperature (SST) image over 1985–2006 and field observations in 2006 summer. Then, after the successful simulation of the summer upwelling in the NCSCS, four numerical experiments are conducted to explore the different effects of local winds, including the wind stress and wind stress curl, on the coastal upwelling in two typical strong summer upwelling regions of the NCSCS. The modeled results indicate that the summer upwelling is a seasonal common phenomenon during June–September in the NCSCS with the spatial extent of a basin-scale. Typical continental shelf upwelling characteristics are clearly shown in the coastal surface and subsurface water, such as low temperature, high salinity and high potential density in the east of the Hainan Island, the east of the Leizhou Peninsula and the southeast of the Zhanjiang Bay (noted as the Qiongdong-QD), and the inshore areas from the Shantou Coast to the Nanri Islands of the Fujian Coast (noted as the Yuedong-YD). The analysis of the QuikSCAT wind data and modeled upwelling index suggests that the local winds play significant roles in causing the coastal upwelling, but the alongshore wind stress and wind stress curl have different contributions to the upwelling in the Qiongdong (QDU) and the coastal upwelling in the Yuedong (YDU), respectively. Furthermore, model results from the numerical experiments show that in the YD the stable alongshore wind stress is a very important dynamic factor to induce the coastal upwelling but the wind stress curl has little contribution and even unfavorable to the YDU. However, in the QD the coastal upwelling is strongly linked to the local wind stress curl. It is also found that not only the offshore Ekman transport driven by the alongshore wind stress, the wind stress curl-induced Ekman pumping also plays a crucial effect on the QDU. Generally, the wind stress curl even has more contributions to the QDU than the alongshore wind stress.  相似文献   

5.
《Continental Shelf Research》2008,28(18):2601-2613
From July 2001 to May 2005, seawater samples were collected once a week at a fixed station in Lisbon bay (38°41′N, 09°24′W) in order to describe the ecological dynamics of the coccolithophore community. The seasonal and interannual distribution patterns of the different species and their relationships with environmental parameters are addressed. The present work aimed to identify potential proxies for different local water bodies and environmental conditions. Throughout the period of study, the upwelling events were weak and progressively more persistent. High sea surface temperatures (SST) were observed earlier in the year; summers and winters were gradually warmer and colder, respectively. Salinity variations reflected the different weather conditions as they are strongly influenced by rainfall and thus by the Tagus river flow. The extended periods of weak upwelling and the overall increase in SST resulted in the development of phytoplankton populations as measured by chlorophyll a. However, the persistence of the upwelling, and thus shorter convergence periods, favoured other phytoplankton groups than coccolithophore populations as these decreased towards the end of the sampling period. The annual structure of the coccolithophore assemblage showed a pronounced and recurrent seasonal variability, mainly related with the intensity and persistence of upwelling. The highest cell densities were recorded from spring to autumn. An overall preference by most species for mature upwelled waters and low turbulent conditions was observed associated with high temperatures and salinities, although the species develop in different windows with mismatching maxima. The coccolithophores observed were capable of withstanding coastal processes such as turbulence and were well adapted to an environment rich in nutrients provided by both continental runoff and upwelling.The consistency of the results enabled local oceanographic tracers to be defined. Emiliania huxleyi and Gephyrocapsa species can be used as proxies of surface productivity waters during spring and summer while Coccolithus pelagicus indicates the presence of upwelling fronts. Calcidiscus leptoporus is a tracer of the convergence of subtropical oceanic waters onto the shelf, during winter while Coronosphaera mediterranea, Syracosphaera pulchra, Helicosphaera carteri and Rhabdosphaera clavigera revealed the presence of those waters during the short period that characterized the transition from upwelling to downwelling seasons.  相似文献   

6.
The seasonal ecological response of microzooplankton in the southeastern Arabian Sea is presented. During the spring intermonsoon period, stratification and depletion of nitrate in the surface waters (nitracline was at 60 m depth) cause low integrated chlorophyll a (av. 19±11.3 mg m−2) and primary production (av. 164±91 mgC m−2 d−1). On the other hand, nutrient enrichment associated with coastal upwelling and river influx during the onset and peak summer monsoon resulted in high integrated chlorophyll a (av. 21±6 mg m−2 and av. 29±21 mg m−2, respectively) and primary production (av. 255±94 mgC m−2 d−1 and av. 335±278 mgC m−2 d−1, respectively). During all three periods, diazotropic cyanobacterium Trichodesmium erythraeum dominated in the nutrient depleted surface waters. A general increase in abundance of larger diatoms was evident in the surface waters of the inshore region during monsoon periods. The microzooplankton abundance was found to be significantly higher during the spring intermonsoon (av.241±113×103 ind m−2) as compared to onset of summer monsoon (av. 105±89×103 ind m−2) and peak summer monsoon (av.185±175×103 ind m−2). Microzooplankton community during the spring intermonsoon was numerically dominated by ciliates while heterotrophic dinoflagellate was the dominant ones during the monsoon periods. The high abundance of ciliates during the spring intermonsoon could be attributed to the stratified environmental condition prevailed in the study area which favors high abundance of smaller phytoplankton and cyanobacteria, the most preferred food of ciliates. On the other hand, the dominance of heterotrophic dinoflagellates during the monsoon periods could be linked to their ability to graze larger diatoms which were abundant during the monsoon periods. The overall results show low abundance of microzooplankton in the eastern Arabian Sea during the monsoon periods mainly due to a decline in ciliates abundance. This decline during the monsoon periods could be the result of (a) low abundance of smaller phytoplankton and (b) high stock of mesozooplankton predators (av. 245 ml 100 m−3).  相似文献   

7.
The influence of meteorological variation, i.e., typhoon and precipitation events, on the coastal upwelling off the eastern Hainan Island was studied based on observations taken during two upwelling seasons. The observations were made in August 2007 and July 2008, respectively. We found that, in principle, similar structure of sea surface temperature and bottom temperature prevailed in both observational periods, providing evidence that upwelling events occur frequently during the summer monsoon along the eastern Hainan shelf. Based on a simple momentum balance theory, we studied the balances between momentum fluxes, wind stress, and bottom stress. The results showed that the Burger number is S ≈ 1, indicating that the cross-shelf momentum flux divergence was balanced by the wind stress and the onshore return flow occurred in the interior of the water column. Hence, a conceptual model of the upwelling structure was built for further understanding of upwelling events. In addition, it was also observed that variations in the strength of upwelling are controlled by storm events, i.e., strong northerly winds change the structure of the thermocline on the shelf significantly. The strong mixing caused by wind reduces the strength of the thermocline, in particular in coastal seas. Based on our conceptual model, a frontal zone between mixed coastal water and offshore water develops which destabilizing the water column and hence decreases the upwelling strength. Freshwaters from the two main rivers in the Wenchang Bay are confined to the coastal area less than 20–30 m deep, as confirmed by our water mass analysis. Freshwater discharge stabilized the water column, inhibiting the upwelling as shown by the potential energy calculation. Consequently, estuarine water only inhibits the upwelling in the near coastal area. Therefore, it can be concluded that estuarine water does not have a significant impact on upwelling strength on the shelf.  相似文献   

8.
The Río de la Plata waters form a low salinity tongue that affects the circulation, stratification and the distributions of nutrients and biological species over a wide extent of the adjacent continental shelf. The plume of coastal waters presents a seasonal meridional displacement reaching lower latitudes (28°S) during austral winter and 32°S during summer. Historical data suggests that the wind causes the alongshore shift, with southwesterly (SW) winds forcing the plume to lower latitudes in winter while summer dominant northeasterly (NE) winds force its southward retreat. To establish the connection between wind and outflow variations on the distribution of the coastal waters, we conducted two quasi-synoptic surveys in the region of Plata influence on the continental shelf and slope of southeastern South America, between Mar del Plata, Argentina and the northern coast of Santa Catarina, Brazil. We observed that: (A) SW winds dominating in winter force the northward spreading of the plume to low latitudes even during low river discharge periods; (B) NE winds displace the plume southward and spread the low salinity waters offshore over the entire width of the continental shelf east of the Plata estuary. The southward retreat of the plume in summer leads to a volume decrease of low salinity waters over the shelf. This volume is compensated by an increase of Tropical waters, which dominate the northern shelf. The subsurface transition between Subantarctic and Subtropical Shelf Waters, the Subtropical Shelf Front, and the subsurface water mass distribution, however, present minor seasonal variations. Along shore winds also influence the dynamics and water mass variations along the continental shelf area. In areas under the influence of river discharge, Subtropical Shelf Waters are kept away from the coastal region. When low salinity waters retreat southward, NE winds induce a coastal upwelling system near Santa Marta Cape. In summer, solar radiation promotes the establishment of a strong thermocline that increases buoyancy and further enhances the offshore displacement of low salinity waters under the action of NE winds.  相似文献   

9.
The Asian-Australian “land bridge” is an area with the most vigorous convection in Asian monsoon region in boreal spring, where the onset and march of convection are well associated with the onset of East Asian summer monsoon. The convection occurs over Indo-China Peninsula as early as mid-April, which exerts critical impact on the evolution of monsoon circulation. Before mid-April there are primarily sensible heatings to the atmosphere over Indo-China Peninsula and Indian Peninsula, so the apparent heating ratios over them decrease with height. However, after mid-April it changes into latent heating over Indo-China Peninsula due to the onset of convection, and the apparent heating ratio increases with height in mid-and lower troposphere. The vertical distribution of heating ratio and its differences between Indo-China Peninsula and Indian Peninsula are the key factors leading to the splitting of boreal subtropical high belt over the Bay of Bengal. Such mechanism is strongly supported by the fact that the evolution of the vertical heating ratio gradient above Indo-China Peninsula leads that of 850 hPa vorticity over the Bay of Bengal. Convections over Indo-China Peninsula and its surrounding areas further increase after the splitting. Since then, there is a positive feedback lying among the convective heating, the eastward retreat of the subtropical high and the march of monsoon, which is a possible mechanism of the advance of summer monsoon and convection from Indo-China Peninsula to South China Sea.  相似文献   

10.
The horizontal and vertical distribution of jellyfish was assessed in the Chiloé Inland sea, in the northern area of the Chilean Patagonia. A total of 41 species of cnidarians (8 siphonophores, 31 hydromedusae, 2 scyphomedusae) were collected. Eleven jellyfish species were recorded for the first time in the area. Species richness was higher in spring than in winter (37 vs. 25 species, respectively). Species such as Muggiaea atlantica, Solmundella bitentaculata, and Clytia simplex were extremely abundant in spring. The total abundance (408,157 ind 1000 m?3) was 18 times higher in spring than in winter (22,406 ind 1000 m?3).The horizontal distribution of the most abundant species (four in winter, five in spring) showed decreasing abundances in the north–south direction in winter and spring. Peak abundances occurred in the northern microbasins (Reloncaví Fjord, Reloncaví and Ancud gulfs), where the water column stability, phytoplankton and zooplankton abundance were higher, compared with the southern microbasins (Corcovado Gulf, Boca del Guafo). During the spring higher jellyfish abundance season, the vertical distribution of the dominant species (except M. atlantica) showed peak values at mid-depth (30–50 m) and in the deepest sampled layer (50–200 m). This vertical distribution pattern reduced seaward transport in the shallowest layer through estuarine circulation and also limited mortality by predation in the more illuminated shallow layers. Thus, jellyfish were able to remain in the interior waters during the season of maximum biological production.  相似文献   

11.
Using distributions of benthic Foraminifera and bottom-water variables (depth, salinity, temperature, oxygen, suspended matter, organic matter, phosphate, silicate, nitrite, and nitrate), we investigated movements of water masses on the South Brazilian Shelf (27–30°S) and assessed the seasonality of continental runoff on the distribution of shelf water masses. The data were obtained from water and sediment samples collected in the austral winter of 2003 and austral summer of 2004 in three transects. The terrestrial nutrient input was significantly reduced at stations away from the coast, but high values of nutrients were maintained in subsurface waters due the presence of South Atlantic Central Water (SACW) at greater depths. At shallow sampling stations the influence of freshwater runoff was related to (1) the dominance of calcareous benthic Foraminifera, such as lagoon-related Pseudononion atlanticum, Hanzawaia boueana, Bulimina marginata, Bolivina striatula, Elphidium poeyanum, together with several agglutinated species, including Arenoparrella mexicana, Gaudryina exilis, and Trochammina spp., common in coastal environments subject to wide salinity fluctuations. In contrast, smaller forms and higher species diversity characterized the assemblage at offshore stations. In winter, the presence of Buccella peruviana and Uvigerina peregrina at Santa Marta Cape suggest the possible transport of those species of Subantarctic Shelf Waters (SASW) origin. Foraminifera associated to Subtropical Shelf Water (STSW) were dominated by Globocassidulina subglobosa in both seasons. In summer, the occurrence of U. peregrina in the shallower stations suggested the influence of SACW nutrients brought up by upwelling of deeper waters.  相似文献   

12.
The orbital and interior climatic cycles can be found both in the Bengal Deep Sea Fan and Ninetyeast Ridge, North Indian Ocean. The periodicity of the Quaternary glacio-eustacy by 100 ka gave a strong impact on the sedimentation in the fan area and the monsoon signals controlled by the obliquity and precession were easily picked up. This paper discusses the possible correlation between the environmental elements on the basis of the ETP phase wheels. A rapid change with short-periods develops during the past 60 ka in the region under study as well. The variability of paleoproductivity has a nonlinear response to the Indian summer monsoon. As contrasted to the Northwest Indian Ocean, here an abundance ofGlobigerina bulloides, a proxy to indicate upwelling current, does not imply so much a promotion of the summer monsoon as its decrease. The record from the ridge area shows in a longer-scale a climatic evolutionary feature corresponding to that of the fan area. A special and great event arising at around 165 kaBP and meaning a catastrophe for ecological environment is reported in this paper. It is also regarded as a result induced by the monsoon.  相似文献   

13.
The Asian-Australian "land bridge" is an area with the most vigorous convection in Asian monsoon region in boreal spring, where the onset and march of convection are well associated with the onset of East Asian summer monsoon. The convection occurs over Indo-China Peninsula as early as mid-April, which exerts critical impact on the evolution of monsoon circulation. Before mid-April there are primarily sensible heatings to the atmosphere over Indo-China Peninsula and Indian Peninsula, so the apparent heating ratios over them decrease with height. However, after mid-April it changes into latent heating over Indo-China Peninsula due to the onset of convection, and the apparent heating ratio increases with height in mid- and lower troposphere. The vertical distribution of heating ratio and its differences between Indo-China Peninsula and Indian Peninsula are the key factors leading to the splitting of boreal subtropical high belt over the Bay of Bengal. Such mechanism is strongly supported by the fact that the evolution of the vertical heating ratio gradient above Indo-China Peninsula leads that of 850 hPa vorticity over the Bay of Bengal. Convections over Indo-China Peninsula and its surrounding areas further increase after the splitting. Since then, there is a positive feedback lying among the convective heating, the eastward retreat of the subtropical high and the march of monsoon, which is a possible mechanism of the advance of summer monsoon and convection from Indo-China Peninsula to South China Sea.  相似文献   

14.
During summer, wind driven coastal upwelling dominates in the Central Cantabrian Sea (southern Bay of Biscay). Nevertheless, atmospheric forcing is highly variable and wind pulses may cause noticeable and fast hydrographic responses in the shelf region. In this paper, the composition and vertical distribution of the summer ichthyoplankton assemblage during the daytime at a fixed station, located on the Central Cantabrian Sea shelf, are documented. Also, the impact of a short-time scale hydrographic event on the abundance and structure of the larval fish assemblage is examined. Significant small-scale temporal hydrographic variability was observed. Currents showed changes in speed and direction and significant changes in thermocline depth were also observed. A total of 34 taxa of fish larvae were identified. Engraulis encrasicolus eggs and larvae of the shelf-dwelling species Trachurus trachurus, Capros aper and E. encrasicolus dominated the ichthyoplankton assemblage. The distribution of E. encrasicolus eggs and fish larvae was vertically structured. E. encrasicolus egg concentration increased exponentially towards the surface. Fish larvae showed a subsurface peak of concentration and their vertical distribution was not conditioned by thermocline depths. The short term hydrographic event did not affect the vertical distribution of fish larvae but it accounted for significant temporal changes in larval fish assemblage structure and abundance. Results suggest that temperature and light intensity are important factors in the vertical distribution of fish larvae. They also indicate that the temporal monitoring of the larval fish assemblage in this region requires multiple sampling sites.  相似文献   

15.
The physical aspects of the Subtropical Shelf Front (STSF) for the Southwest Atlantic Continental Shelf were previously described. However, only scarce data on the biology of the front is available in the literature. The main goal of this paper is to describe the physical, chemical and biological properties of the STSF found in winter 2003 and summer 2004. A cross-section was established at the historically determined location of the STSF. Nine stations were sampled in winter and seven in summer. Each section included a series of conductivity-temperature-depth (CTD) stations where water samples from selected depths were filtered for nutrient determination. Surface samples were taken for chlorophyll a (Chl-a) determination and plankton net tows carried out above and below the pycnocline. Results revealed that winter was marked by an inner-shelf salinity front and that the STSF was located on the mid-shelf. The low salinity waters in the inner-shelf indicated a strong influence of freshwater, with high silicate (72 μM), suspended matter (45 mg l−1), phosphate (2.70 μM) and low nitrate (1.0 μM) levels. Total dissolved nitrogen was relatively high (22.98 μM), probably due to the elevated levels of organic compound contribution close to the continental margin. Surface Chl-a concentration decreased from coastal well-mixed waters, where values up to 8.0 mg m−3 were registered, to offshore waters. Towards the open ocean, high subsurface nutrients values were observed, probably associated to South Atlantic Central Waters (SACW). Zooplankton and ichthyoplankton abundance followed the same trend; three different groups associated to the inner-, mid- and outer-shelf region were identified. During summer, diluted waters extended over the shelf to join the STSF in the upper layer; the concentration of inorganic nutrients decreased in shallow waters; however, high values were observed between 40 and 60 m and in deep offshore waters. Surface Chl-a ranged 0.07–1.5 mg m−3; winter levels were higher. Three groups of zoo and ichthyoplankton, separated by the STSF, were also identified. Results of the study performed suggest that the influence of freshwater was stronger during winter and that abundance distribution of Chl-a, copepods and ichthyoplankton was related to the Plata Plume Waters (PPW), rather than to the presence of the STSF. During summer, when the presence of freshwater decreases, plankton interactions seem to take place in the STSF.  相似文献   

16.
The northern Gulf of California (NGC) is characterized by seasonal hydrography and circulation (cyclonic in summer and anticyclonic in winter), by intense tidal mixing in the midriff archipelago region (MAR), and by coastal upwelling on the eastern side from autumn to spring. We examined changes in larval fish assemblages (LFAs) in relation with hydrography and circulation during both phases of the seasonal circulation, as indicators of changes in the pelagic ecosystem. A canonical correspondence analysis defined LFAs (r>0.70), which were related with: (i) the coastal current on the mainland shelf, (ii) the central eddy and (iii) the MAR. In the early cyclonic phase, when the temperature and stratification were increasing and the coastal current was starting, demersal (Gobulus crescentalis, Lythrypnus dalli) and mesopelagic species (Benthosema panamense) dominated the NGC. The highest larval abundance was in the Current LFA area and the lowest in the MAR LFA area. In the mature cyclonic phase, the larval abundance increased in the NGC and species characteristic of eastern boundary current systems such as Opisthonema libertate and Engraulis mordax displaced the demersal species and became dominant, together with B. panamense in the Current LFA area; the latter species dominated in the Eddy LFA area. In the early anticyclonic phase, the direction of the coastal current reversed and the temperature and larval abundance decreased. E. mordax and B. panamense larvae continued dominating the NGC with higher abundance in the MAR than in the Current and Eddy LFA areas. In the mature anticyclonic phase, E. mordax larvae dominated in the Current and the Eddy LFA areas with the highest abundance in the former, while M. productus larvae (an eastern boundary current species) dominated in the Eddy LFA area. Results showed that in the NGC, the dramatically seasonal and predictable hydrographic and circulation features trigger the seasonal spawning of the dominant species. The biological richness of the coastal current area, in both circulation phases, suggested that this area has an important role in the pelagic ecosystem functionality of the NGC.  相似文献   

17.
An upwelling system exists in the coastal waters of the northern South China Sea (NSCS), a region that is frequently affected by tropical cyclones in summer. This study investigates the evolution of the NSCS monsoon-driven upwelling system and the effects of the Talim and Doksuri tropical cyclones on the system using in situ observational data obtained at three mooring stations, one land-based meteorological station, and concurrent satellite remote sensing data for the NSCS coastal waters from May to July 2012. The results show that the occurrence and evolution of the upwelling system were mainly controlled by the Asian southwest monsoon, while the eastward current also made important contributions to the upwelling intensity. A decrease in the bottom water temperature and shifts in the along-shore and cross-shore currents were direct evidence of the establishment, existence, and recovery of this upwelling. Tropical cyclones have significant impacts on hydrodynamics and can thus influence the evolution of the NSCS upwelling system by changing the local wind and current fields. Variations in water level and local current systems impeded the development of upwelling during tropical cyclones Talim and Doksuri in the study area, which have low-frequency fluctuations of approximately 2–10 days. These variations were the results of the coupled interactions between local wind fields, coastal trapped waves, and other factors. The hydrodynamic environment of the marine water (including coastal upwelling system) rapidly recovered to normal sea conditions after each cyclone passed due to the relatively short duration of the impact of a tropical cyclone on the dynamic environment of the waters.  相似文献   

18.
Blooms of the toxic dinoflagellates, Karenia spp. occur nearly annually in the eastern Gulf of Mexico with cell abundances typically >105 cells L−1. Thermal and ocean color satellite imagery shows sea surface temperature patterns indicative of upwelling events and the concentration of chlorophyll at fronts along the west Florida continental shelf. Daily cell counts of Karenia show greater increases in cell concentrations at fronts than can be explained by Karenia's maximum specific growth rate. This is observed in satellite images as up to a 10-fold greater increase in chlorophyll biomass over 1–2 d periods than can be explained by in situ growth. In this study, we propose a model that explains why surface blooms of Karenia may develop even when nutrients on the west Florida shelf are low. In the summer, northward winds produce a net flow east and southeast bringing water and nutrients from the Mississippi River plume onto the west Florida shelf at depths of 20–50 m. This water mass supplies utilizable inorganic and organic forms of nitrogen that promote the growth of Karenia to pre-bloom concentrations in sub-surface waters in the mid-shelf region. In the fall, a change to upwelling favorable winds produces onshore transport. This transport, coupled with the swimming behavior of Karenia, leads to physical accumulation at frontal regions near the coast, resulting in fall blooms. Strong thermal fronts during the winter provide a mechanism for re-intensification of the blooms, if Karenia cells are located north of the fronts. This conceptual model leads to testable hypotheses on bloom development throughout the Gulf of Mexico.  相似文献   

19.
通过一系列的理想数值试验,研究了亚、非地区热带次尺度的海陆分布和青藏高原大地形在亚洲夏季风形成中的作用.试验结果显示:海陆分布的存在以及海陆分布的几何形状对亚洲夏季风的形成有非常重要的影响.下垫面全是海洋,没有陆地时,无季风现象的存在.当仅有副热带大尺度陆地,而缺乏南亚次尺度陆地和非洲大陆热带陆地时,夏季无明显的越赤道气流,仅在欧亚副热带陆地的东南部有弱的季风,无印度、孟加拉湾和南海夏季风.中南半岛、印度半岛和非洲大陆热带陆地的存在,在夏季引导南半球的东南信风越赤道转向为西南气流,使得南海的北部、中南半岛、孟加拉湾和印度半岛、阿拉伯海上空的低层为强西南气流控制,印度、孟加拉湾和南海夏季风产生.副热带陆地向热带的深入对副热带陆上产生夏季强对流性降水起着至关重要的作用.青藏高原的存在加强了高原东侧的季风,使得季风区向北发展,青藏高原对东亚季风起放大器的作用;减弱了高原西侧的季风,使得季风区向南收缩.  相似文献   

20.
Evolution of an anticyclonic eddy southwest of Taiwan   总被引:8,自引:1,他引:7  
Satellite images of sea-surface temperature, surface chlorophyll a concentration, and sea-level anomaly, together with ocean reanalysis data of Asia and Indian–Pacific Ocean (AIPOcean1.0), are utilized to study the three-dimensional characteristics and evolution of an anticyclonic warm eddy adjacent to the southwest coast of Taiwan during October and November 2006. Originated from the Kuroshio intrusion in the Luzon Strait, but unlike previously found westward moving anticyclonic eddies (AE) in the northeastern South China Sea, this AE was so close to the Taiwan coast and stayed where it was formed for over 1 month until it dissipated. Energy analysis is utilized to study the evolution process of the AE, and it shows that the barotropic instability (BTI) and baroclinic instability introduced by the Kuroshio intrusion flow appear to be the main energy sources for the AE. Periodical enhancement/relaxation of local northeasterly monsoon and its associated negative wind stress curl modify the current patterns in this region, reinforce the intraseasonal variability of the Kuroshio intrusion flow, and act together with Kuroshio to form the AE. Eddies detected from AIPOcean1.0 data also show that AEs are most likely to be generated southwest of Taiwan during the transition period of summer monsoon to winter monsoon, and generally, the BTI of Kuroshio intrusion contributes more than the direct wind stress work to the increase of the eddy kinetic energy for the generation and growth of the AEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号