首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
不同分辨率CCSM4对东亚和中国气候模拟能力分析   总被引:9,自引:4,他引:5  
田芝平  姜大膀 《大气科学》2013,37(1):171-186
本文利用通用气候系统模式CCSM4在三种水平分辨率下的工业化革命前期气候模拟试验,结合观测和再分析资料,比较了各分辨率下模式对中国温度和降水、东亚海平面气压和850 hPa风场的模拟能力,综合评价了模式分辨率对东亚和中国气候模拟的影响.结果表明,三种分辨率对中国温度均具有很好的模拟能力,除春季外,低分辨率(T31,约3.75°×3.75°)对全年温度的模拟能力均要稍好于中(f19,约1.9°×2.5°)、高(f09,约0.9°×1.25°)分辨率;各分辨率对中国降水的模拟能力远不如温度,除冬季外全年都出现的中部地区虚假降水并未因为模式分辨率提高而得到本质改善;对于东亚海平面气压场,低分辨率在冬季模拟能力相对最好,中等分辨率在夏季相对较好,而高分辨率的模拟能力均表现最差;低分辨率对850 hPa东亚冬季风和夏季风的模拟能力均要好于中、高分辨率,而两种较高分辨率的模拟能力则比较接近.总的来说,低分辨率CCSM4在东亚和中国气候模拟中表现出了较大优势,加之其计算代价小,适合进行需要较长时间积分的气候模拟研究.  相似文献   

2.
Regional dynamical downscaling with CCLM over East Asia   总被引:1,自引:1,他引:0  
Inspired by the framework of the Coordinated Regional Climate Downscaling Experiment (CORDEX), the hindcast (1971–2000) and projection (2021–2050) simulations based on a resolution of $0.44^\circ$ over the East Asia domain are performed with the regional climate model COSMO-CLM (CCLM). The simulations are driven by ERA-40 reanalysis data and output of the global climate model ECHAM5. This is the first time that the CCLM is adapted and evaluated for the East Asia Monsoon region; the setup is considered a starting point for further improvements in this region by the CCLM community. The evaluation results show that the CCLM is able to reasonably capture the climate features in this region, especially the monsoon dynamics on small scales. However, total precipitation in the northern part of the domain, over the Tibetan Plateau, and over east Indonesia has a pronounced wet bias. The projected climate change under the A1B scenario indicates an overall annual surface temperature increase of 1–2 K, but no significant precipitation changes.  相似文献   

3.
We present the results of the application of the COSMO-CLM Regional Climate Model (CCLM) over the CORDEX-Africa domain. Two simulations were performed driven by the ERA-Interim reanalysis (1989–2008): the first one with the standard CORDEX spatial resolution (0.44°), and the second one with an unprecedented high resolution (0.22°). Low-level circulation and its vertical structure, the geographical and temporal evolution of temperature and precipitation are critically evaluated, together with the radiation budget and surface energy fluxes. CCLM is generally able to reproduce the overall features of the African climate, although some deficiencies are evident. Flow circulation is generally well simulated, but an excessive pressure gradient is present between the Gulf of Guinea and the Sahara, related to a marked warm bias over the Sahara and a cold bias over southern Sahel. CCLM underestimates the rainfall peak in the regions affected by the passage of the monsoon. This dry bias may be a consequence of two factors, the misplacement of the monsoon centre and the underestimation of its intensity. The former is related to the northern shift of the West African Heat Low. On the other hand, the underestimation of precipitation intensity may be related to the underestimation of the surface short-wave radiation and latent heat flux. The increase of the model resolution does not bring evident improvements to the results for monthly means statistics. As a result, it appears that 0.44° is a suitable compromise between model performances and computational constrains.  相似文献   

4.
变网格模式LMDZ4对东亚夏季气候的模拟检验   总被引:1,自引:0,他引:1       下载免费PDF全文
对法国动力气象实验室发展的变网格全球大气环流模式LMDZ4在东亚地区的模拟性能进行评估。LMDZ4作为海气耦合模式IPSL-CM5A的大气模块,本文局地格点加密区域位于东亚上空,加密区外使用ERA-interim再分析资料进行驱动,积分时段为1979—2009年。通过对模式在东亚东部区域夏季气候的模拟能力评估,发现模式整体上能够真实地模拟出南亚高压、西风急流、西太副高、水汽输送以及夏季风等环流系统的气候平均态,地面雨带和气温的分布及极值中心都得到较好再现。同时模式仍显现一定的偏差,具体表现为,华南沿海的模拟偏冷偏湿,江淮流域偏暖偏干,而东北地区则偏暖偏湿,导致这种地面要素场偏差的原因来自于中上层环流场的系统性模拟偏差。例如,高层南亚高压、西风急流模拟偏弱,而印度季风和来自印度洋的水汽输送偏强,导致华南沿海降水偏多。西太平洋副高偏东偏弱,低纬东风带强度偏弱,西太平洋区域比湿偏小,使得东南风带来的水汽无法到达江淮流域。上述偏差的产生可能由于LMDZ4模式中的云参数化方案尚存在不足之处,使得云量的模拟偏少,并且该版本模式的垂直分辨率不足,限制了它对高层环流系统的模拟能力,增加了模式的系统误差。  相似文献   

5.
In this study the results of the regional climate model COSMO-CLM (CCLM) covering the Greater Alpine Region (GAR, 4°–19°W and 43°–49°N) were evaluated against observational data. The simulation was carried out as a hindcast run driven by ERA-40 reanalysis data for the period 1961–2000. The spatial resolution of the model data presented is approx. 10 km per grid point. For the evaluation purposes a variety of observational datasets were used: CRU TS 2.1, E-OBS, GPCC4 and HISTALP. Simple statistics such as mean biases, correlations, trends and annual cycles of temperature and precipitation for different sub-regions were applied to verify the model performance. Furthermore, the altitude dependence of these statistical measures has been taken into account. Compared to the CRU and E-OBS datasets CCLM shows an annual mean cold bias of ?0.6 and ?0.7 °C, respectively. Seasonal precipitation sums are generally overestimated by +8 to +23 % depending on the observational dataset with large variations in space and season. Bias and correlation show a dependency on altitude especially in the winter and summer seasons. Temperature trends in CCLM contradict the signals from observations, showing negative trends in summer and autumn which are in contrast to CRU and E-OBS.  相似文献   

6.
We present an analysis of a high resolution multi-decadal simulation of recent climate (1971–2000) over the Korean Peninsula with a regional climate model (RegCM3) using a one-way double-nested system. Mean climate state as well as frequency and intensity of extreme climate events are investigated at various temporal and spatial scales, with focus on surface air temperature and precipitation. The mother intermediate resolution model domain encompasses the eastern regions of Asia at 60 km grid spacing while the high resolution nested domain covers the Korean Peninsula at 20 km grid spacing. The simulation spans the 30-year period of January 1971 through December 2000, and initial and lateral boundary conditions for the mother domain are provided from ECHO-G fields based on the IPCC SRES B2 scenario. The model shows a good performance in reproducing the climatological and regional characteristics of surface variables, although some persistent biases are present. Main results are as follows: (1) The RegCM3 successfully simulates the fine-scale structure of the temperature field due to topographic forcing but it shows a systematic cold bias mostly due to an underestimate of maximum temperature. (2) The frequency distribution of simulated daily mean temperature agrees well with the observed seasonal and spatial patterns. In the summer season, however, daily variability is underestimated. (3) The RegCM3 simulation adequately captures the seasonal evolution of precipitation associated to the East Asia monsoon. In particular, the simulated winter precipitation is remarkably good, clearly showing typical precipitation patterns that occur on the northwestern areas of Japan during the winter monsoon. Although summer precipitation is underestimated, area-averaged time series of precipitation over Korea show that the RegCM3 agrees better with observations than ECHO-G both in terms of seasonal evolution and precipitation amounts. (4) Heavy rainfall phenomena exceeding 300 mm/day are simulated only at the high resolution of the double nested domain. (5) The model shows a tendency to overestimate the number of precipitation days and to underestimate the precipitation intensities. (6) A CSEOF analysis reveals that the model captures the strength of the annual cycle and the surface warming trend throughout the simulated period.  相似文献   

7.
不同区域气候模式对中国地区温度和降水的长期模拟比较   总被引:19,自引:9,他引:19  
冯锦明  符淙斌 《大气科学》2007,31(5):805-814
利用亚洲区域模式比较计划RMIP第二阶段五个区域模式和一个变网格全球模式,对中国地区1988年12月~1998年11月十年模拟的平均温度和降水结果,分析比较了不同区域气候模式对中国地区温度和降水的模拟能力。研究结果表明:几乎所有模式都能模拟出中国地区多年平均温度和降水的基本空间分布形态,但模式模拟的温度普遍偏低,在大部分区域,大多数模式模拟的降水偏多,而且不同模式之间存在较大差别。模式能较好地反映出中国地区温度的年际变化,对夏季降水的年际变化模拟较差,对冬季模拟较好。  相似文献   

8.
CCSM4.0的长期积分试验及其对东亚和中国气候模拟的评估   总被引:3,自引:3,他引:0  
田芝平  姜大膀  张冉  隋月 《大气科学》2012,36(3):619-632
本文利用通用气候系统模式CCSM4.0的低分辨率 (T31, 约3.75° × 3.75°) 版本进行了700年的长期积分试验, 将中国地表气温、降水及东亚海平面气压、500 hPa和100 hPa位势高度、850 hPa风场的最后100年模拟结果与观测和再分析资料进行了定性比较, 并对前三个要素的不同统计量值进行了定量计算, 系统评估了CCSM4.0对东亚及我国气候的模拟能力。结果表明, 模式能够合理模拟各变量的基本分布形态, 但幅度与观测有所差别, 其中地表气温的模拟效果最好, 降水的相对最差。具体而言, 地表气温空间分布型与观测一致, 但全年青藏高原地表气温模拟值偏高, 位于塔里木盆地的暖中心未能模拟出来; 降水空间分布型模拟较差, 除冬季不明显之外, 我国中南部全年都存在一个虚假降水中心, 并在夏季达到最强; 冬季东亚地区海陆热力对比大于观测, 夏季海平面气压场整体模拟效果不如冬季; 模式对冬、夏季500 hPa东亚大槽和西北太平洋副热带高压的主要特征刻画较好, 但模拟结果整体比观测偏强; 夏季100 hPa南亚高压强度与观测接近, 但高压范围及中心位置存在偏差; 850 hPa东亚冬季风和夏季风环流模拟较好, 但冬季西北气流偏强, 夏季索马里越赤道气流偏弱、我国东部西南气流偏强。总的来说, CCSM4.0对东亚和我国大尺度气候特征具备合理的模拟能力, 尽管在定量上还存在着不足。  相似文献   

9.
This paper assesses future climate changes over East and South Asia using a regional climate model (RegCM4) with a 50?km spatial resolution. To evaluate the model performance, RegCM4 is driven with ??perfect boundary forcing?? from the reanalysis data during 1970?C1999 to simulate the present day climate. The model performs well in reproducing not only the mean climate and seasonality but also most of the chosen indicators of climate extremes. Future climate changes are evaluated based on two experiments driven with boundary forcing from the European-Hamburg general climate model (ECHAM5), one for the present (1970?C1999) and one for the SRES A1B future scenario (2070?C2099). The model predicts an annual temperature increase of about 3°?C5° (smaller over the ocean and larger over the land), and an increase of annual precipitation over most of China north of 30°N and a decrease or little change in the rest of China, India and Indochina. For temperature-related extreme indicators in the future, the model predicts a generally longer growing season, more hot days in summer, and less frost days in winter. For precipitation-related extremes, the number of days with more than 10?mm of rainfall is predicted to increase north of 30°N and decrease in the south, and the maximum five-day rainfall amount and daily intensity will increase across the whole model domain. In addition, the maximum number of consecutive dry days is predicted to increase over most of the model domain, south of 40°N. Most of the Yangtze River Basin in China stands out as ??hotspots?? of extreme precipitation changes, with the strongest increases of daily rain intensity, maximum five-day rain amount, and the number of consecutive dry days, suggesting increased risks of both floods and droughts.  相似文献   

10.
A continuous 10-year simulation in Asia for the period of 1 July 1988 to 31 December 1998 was conducted using the Regional Integrated Environmental Model System (RIEMS) with NCEP Reanalysis II data as the driving fields. The model processes include surface physics state package (BATS 1e), a Holtslag explicit planetary boundary layer formulation, a Grell cumulus parameterization, and a modified radiation package (CCM3). Model-produced surface temperature and precipitation are compared with observations from 1001 meteorology stations distributed over Asia and with the 0.5 × 0.5 CRU gridded dataset. The analysis results show that: (1) RIEMS reproduces well the spatial pattern and the seasonal cycle of surface temperature and precipitation; (2) When regionally averaged, the seasonal mean temperature biases are within 1–2C. For precipitation, the model tends to give better simulation in winter than in summer, and seasonal precipitation biases are mostly in the range of ?12%–50%; (3) Spatial correlation coefficients between observed and simulated seasonal precipitation are higher in north of the Yangtze River than in the south and higher in winter than in summer; (4) RIEMS can well reproduce the spatial pattern of seasonal mean sea level pressure. In winter, the model-simulated Siberian high is stronger than the observed. In summer, the simulated subtropical high is shifted northwestwards; (5) The temporal evolution of the East Asia summer monsoon rain belt, with steady phases separated by more rapid transitions, is reproduced.  相似文献   

11.
Summary This study investigates the capability of the regional climate model RegCM3 to simulate surface air temperature and precipitation over the Korean Peninsula. The model is run in one-way double nested mode, with a 60 km grid point spacing “mother” domain encompassing the eastern regions of Asia and a 20 km grid point spacing nested domain covering the Korean Peninsula. The simulation spans the three-year period of 1 October 2000 through 30 September 2003 and the boundary conditions needed to run the mother domain experiment are provided from the NCEP reanalysis of observations. The model results are compared with a high density station observation dataset to examine the fine scale structure of the surface climate signal. The model shows a good performance in capturing both the sign and magnitude of the seasonal and inter-annual variations of the surface variables both over East Asia as a whole and over the Korean Peninsula in the nested system. Some persistent biases are however present. Surface temperature is systematically underestimated, especially over mountainous regions in the warm season. This feature may be due to the relatively coarse representation of the Korean topography. The simulated precipitation over the mother domain successfully reproduces the broad spatial pattern of observed precipitation over East Asia along with its seasonal evolution. On the other hand, fine scale details from the nested results show a varying level of quality for the different individual years. Because of the better resolved topographic forcing, the increased resolution of the nested model improves the spatial agreement with the fine scale observation fields for temperature and cold season precipitation. For summer monsoon precipitation the simulation of individual monsoon convective events and tropical storms is however more important than the topographic forcing, and therefore the performance of the nested system is more case-dependent.  相似文献   

12.
Using a regional climate model with detailed land surface processes (RegCM2), East Asian monsoon climates at 6 ka BP and 21 ka BP are simulated by prescribing vegetation and employing paleovegetation respectively in order to examine land surface effects on East Asian climate system and the potential mechanisms for climate change. The RegCM2 with a 120 × 120 km2 resolution has simulated the enlargement of the seasonal cycle of insolation, the temperature rising the whole year, and the reduction of perpetual snow in high latitudes at 6 ka BP. The simulation shows the East Asian summer monsoon strengthening, precipitation and PE increasing, and the monsoon rain belt shifting westwards and northwards. Effect of paleovegetation included in the modeling reduced surface albedo and caused an increase in the winter temperature, which led to weakening of the winter continental cold anticyclone over China. The results make the seasonal characteristics of simulated temperature changes in better agreement with the geological records, and are an improvement over previous simulations of Paleoclimate Modeling Intercomparison Project (PMIP). The RegCM2 simulated the 21 ka BP climate with lowered temperature throughout the year, and with precipitation reduced in most areas of East Asia (but increased in both the Tibetan Plateau and Central Asia). Low temperature over East Asia led to the strengthening of the East Asian winter monsoon and the shrinking of the summer monsoon. The effect of paleovegetation included in the experiment has enlarged the glacial climate influence in East Asia, which is closer to geological data than the PMIP simulations directly driven by insolation, glaciation and low CO2 concentration.  相似文献   

13.
本文采用NCAR的WRF3.5.1模式,以NOAA的20世纪再分析资料作为区域气候模式的初始场和侧边界场,对东亚地区进行了百年以上(1900~2010年)尺度、水平分辨率为50 km的动力降尺度数值模拟试验。通过与观测气候资料的对比,分析了驱动场(20世纪再分析资料)和区域气候模式对我国南方地区近50年(1961~2010年)气温和降水的气候平均态的模拟能力。结果表明:经过动力降尺度的区域气候模式试验结果能更好地模拟我国南方地区气温气候平均态和季节循环。WRF模式模拟的气温与观测的气温的空间相关系数均在0.97以上。年平均和夏季,WRF模式模拟的气温与观测的气温的偏差大多介于-1°C到+1°C之间。对于降水,WRF模式显著提高了我国南方降水的模拟能力。和驱动场相比,WRF模式模拟的降水与观测的偏差明显减小。夏季,WRF模式模拟的降水空间相关系数在0.5以上。由此延伸至对近百年我国南方地区三个子区域(华南地区、江淮地区和西南地区)四个时段(1914~1942年、1943~1971年、1972~2000年和2001~2010年)的分析,结果表明区域气候模式动力降尺度的结果在区域平均的气温和降水的模拟数值上与观测比较接近,夏季模拟能力有明显的提高,冬季存在气温模拟偏低的误差。对气温趋势分析表明,在20世纪40年代以后的两个时间段,区域气候模式明显提高了气温变化线性趋势的模拟性能。  相似文献   

14.
RegCM3对东亚环流和中国气候模拟能力的检验   总被引:31,自引:1,他引:31  
使用RegCM3区域气候模式,嵌套ERA40再分析资料,对东亚地区进行了15年(1987~2001年)时间长度的数值积分试验,分析了模式对东亚平均环流及中国地区气温和降水的模拟。结果表明,模式对东亚平均环流的特征和中国地区降水、地面气温的年、季地理分布和季节变化特征均具有一定的模拟能力,对气温和降水年际变率的模拟也较好。此外模式模拟在测站稀少地区,可以提供局地如降水分布更可靠的信息。模式对气温的模拟存在1-3℃的系统性冷偏差;对中国地区降水地理分布的模拟也存在一定偏差,如对年平均降水的模拟中,降水最大值位置与观测有一定差距,特别是对冬季降水中心的模拟存在较大偏差。模式模拟的夏季降水,在中国北方地区总体偏大100-200 mm,南方总体偏小100-200 mm。模式对地面气温的模拟效果好于降水。  相似文献   

15.
The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/aerosol model,which includes major anthropogenic aerosols(sulfate,black carbon,and organic carbon) and natural aerosols(soil dust and sea salt) .Anthropogenic emissions used in model simulation are from a global emission inventory prepared for the Intergovernmental Panel on Climate Change Fifth Assessment Report(IPCC AR5) ,whereas natural aerosols are calculated online in the model.The simulated 20-year average direct solar radiative effect due to aerosols at the surface was estimated to be in a range of-9--33 W m-2 over most areas of China,with maxima over the Gobi desert of West China,and-12 W m-2 to-24 W m-2 over the Sichuan Basin,the middle and lower reaches of the Yellow River and the Yangtze River.Aerosols caused surface cooling in most areas of East Asia,with maxima of-0.8-C to-1.6-C over the deserts of West China,the Sichuan Basin,portions of central China,and the middle reaches of the Yangtze River. Aerosols induced a precipitation decrease over almost the entire East China,with maxima of-90 mm/year to-150 mm/year over the Sichuan Basin,the middle reaches of the Yangtze River and the lower reaches of the Yellow River.Interdecadal variation of the climate response to the aerosol direct radiative effect is evident,indicating larger decrease in surface air temperature and stronger perturbation to precipitation in the 1990s than that in the 1980s,which could be due to the interdecadal variation of anthropogenic emissions.  相似文献   

16.
This study examines cloud radiative forcing (CRF) in the Asian monsoon region (0o--50oN,60o--150oE) simulated by Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) AMIP models. During boreal winter, no model realistically reproduces the larger long-wave cloud radiative forcing (LWCF) over the Tibet Plateau (TP) and only a couple of models reasonably capture the larger short-wave CRF (SWCF) to the east of the TP. During boreal summer, there are larger biases for central location and intensity of simulated CRF in active convective regions. The CRF biases are closely related to the rainfall biases in the models. Quantitative analysis further indicates that the correlation between simulated CRF and observations are not high, and that the biases and diversity in SWCF are larger than that in LWCF. The annual cycle of simulated CRF over East Asia (0o--50oN, 100o--145oE) is also examined. Though many models capture the basic annual cycle in tropics, strong LWCF and SWCF to the east of the TP beginning in early spring are underestimated by most models. As a whole, GFDL-CM2.1, MPI-ECHAM5, UKMO-HadGAM1, and MIROC3.2 (medres) perform well for CRF simulation in the Asian monsoon region, and the multi-model ensemble (MME) has improved results over the individual simulations. It is suggested that strengthening the physical parameterizations involved over the TP, and improving cumulus convection processes and model experiment design are crucial to CRF simulation in the Asian monsoon region.  相似文献   

17.
RegCM4对中国东部区域气候模拟的辐射收支分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用卫星和再分析数据,评估了区域气候模式Reg CM4对中国东部地区辐射收支的基本模拟能力,重点关注地表净短波(SNS)、地表净长波(SNL)、大气顶净短波(TNS)、大气顶净长波(TNL)4个辐射分量。结果表明:1)短波辐射的误差值在夏季较大,而长波辐射的误差值在冬季较大。但各辐射分量模拟误差的空间分布在冬、夏季都有较好的一致性。2)对于地表辐射通量,SNS表现为正偏差(向下净短波偏多),在各分量中误差最大,区域平均误差值近50 W/m2;SNL表现为负偏差(向上净长波偏多);对于大气顶辐射通量,TNS和TNL分别表现为"北负南正"的误差分布和整体正偏差。3)利用空间相关和散点线性回归方法对4个辐射分量的模拟误差进行归因分析,发现在云量、地表反照率、地表温度三个直接影响因子中,云量模拟误差的贡献最大,中国东部地区云量模拟显著偏少。  相似文献   

18.
选取1991年夏季江淮流域发生的持续性特大暴雨洪涝个例,利用NCAR第二代区域气候模式RegCM2对逐日降水过程及其关键物理因子进行了数值模拟.模式的侧边界条件由ECMWF的大尺度分析资料提供,模拟时间为1991年5-8月.模式范围包括东亚地区及相邻海域,水平分辨率为60 km×60 km,垂直方向为23层.试验结果显示,该模式能够合理地模拟出1991年夏季东亚地区的逐日降水过程,特别是在江淮流域发生的异常降水事件.对一些关键物理变量和过程时空结构的分析表明,大气垂直速度和水平散度的时间演变与江淮流域的5次降水事件一致;形成异常降水的水汽来源主要是大气的水平运动输送。西太平洋副热带高压控制着东亚夏季季风的进退,RegCM2能够模拟出西太平洋副高的南北位置移动。而且,模式能够较好地再现出对水汽输送至关重要的低空急流的逐日变化。  相似文献   

19.
The authors used a high-resolution regional climate model(RegCM3) coupled with a chemistry/aerosol module to simulate East Asian climate in 2006 and to test the climatic impacts of aerosols on regionalscale climate.The direct radiative forcing and climatic effects of aerosols(dust,sulfate,black carbon,and organic carbon) were discussed.The results indicated that aerosols generally produced negative radiative forcing at the top-of-the-atmosphere(TOA) over most areas of East Asia.The radiative forcing induced by aerosols exhibited significant seasonal and regional variations,with the strongest forcing occurring in summer.The aerosol feedbacks on surface air temperature and precipitation were clear.Surface cooling dominated features over the East Asian continental areas,which varied in the approximate range of-0.5 to-2°C with the maximum up to-3-C in summer over the deserts of West China.The aerosols induced complicated variations of precipitation.Except in summer,the rainfall generally varied in the range of-1 to 1 mm d-1 over most areas of China.  相似文献   

20.
Regional climate models (RCMs) have the potential for more detailed surface characteristic and mesoscale modeling results than general circulation models (GCMs).These advantages have drawn significant focus on RCM development in East Asia.The Regional Integrated Environment Modeling System,version 2.0 (RIEMS2.0),has been developed from an earlier RCM,RIEMS1.0,by the Key Laboratory of Regional ClimateEnvironment for Temperate East Asia (RCE-TEA) and Nanjing University.A numerical experiment covering 1979 to 2008 (simulation duration from 1 January 1978 to 31 December 2008) with a 50-km spatial resolution was performed to test the ability of RIEMS2.0 to simulate long-term climate and climate changes in East Asia and to provide a basis for further development and applications.The simulated surface air temperature (SAT) was compared with observed meteorological data.The results show that RIEMS2.0 simulation reproduced the SAT spatial distribution in East Asia but that it was underestimated.The simulated 30-year averaged SAT was approximately 2.0°C lower than the observed SAT.The annual and interannual variations in the averaged SAT and their anomalies were both well reproduced in the model.A further analysis of three sub-regions representing different longitudinal ranges showed that there is a good correlation and consistency between the simulated results and the observed data.The annual variations,interannual variations for the averaged SAT,and the anomalies in the three sub-regions were also captured well by the model.In summary,RIEMS2.0 shows stability and does well both in simulating the long-term SAT in East Asia and in expressing sub-regional characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号