首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
全球深水油气勘探简论   总被引:5,自引:6,他引:5  
全球深水油气资源非常丰富,估计全球深水区最终潜在石油储量有可能超过1000×108bbl。随着深水油气勘探开发的不断深入,深水油气探明储量和产量不断增加,所占比重越来越大。预测至2015年世界海洋石油的25%将来自深水区。巴西近海、美国墨西哥湾和西非沿海是当前世界三大深水勘探热点地区,这里集中了世界84%的深水钻探活动,其储量占据了全球深水储量的88%。近几年全球不断取得深水油气重大发现,对全球新增探明储量和提高产量起到了主要作用。深水油气勘探与浅海及陆上油气勘探相比,技术要求高、资金风险高、作业难度高,施工工艺也有很大区别。高科技在深水油气勘探开发中的广泛应用不仅提高了深水油气勘探开发的成功率,促进了深水勘探的发展,反过来又带动了一大批学科专业的快速发展。  相似文献   

2.
A quantitative analytical method, using a spreadsheet, has been developed that allows the determination of values of the three parameters that characterize the Hubbert-style Gaussian error curve that best fits the conventional oil production data both for the U.S. and the world. The three parameters are the total area under the Gaussian, which represents the estimated ultimate (oil) recovery (EUR), the date of the maximum of the curve, and the half-width of the curve. The best fit is determined by adjusting the values of the three parameters to minimize the root mean square deviation (RMSD) between the data and the Gaussian. The sensitivity of the fit to changes in values of the parameters is indicated by an exploration of the rate at which the RMSD increases as values of the three parameters are varied from the values that give the best fit. The results of the analysis are as follows: (1) the size of the U.S. EUR of oil is suggested to be 0.222 × 1012 barrels (0.222 trillion bbl) of which approximately three-fourths appears to have been produced through 1995; (2) if the world EUR is 2.0 × 1012 bbl (2.0 trillion bbl), a little less than half of this oil has been produced through 1995, and the maximum of world oil production is indicated to be in 2004; (3) each increase of one billion barrels in the size of the world EUR beyond the value of 2.0 × 1012 bbl can be expected to result in a delay of approximately 5.5 days in the date of maximum production; (4) alternate production scenarios are presented for world EURs of 3.0 and 4.0 × 1012 bbl.  相似文献   

3.
油气是重要的战略资源。其中天然气作为清洁能源,它曾经是,现在是,在可预期的未来——全球碳减排、中国碳达峰情景下,仍然是最重要的能源资源。能源进口渠道的多元化一直是中国缓解能源紧张的有效措施之一。北极地区油气资源丰富且以天然气为主,已发现的油气资源中绝大多数在俄罗斯,尤其是天然气。但是俄罗斯天然气生产的油气田80%以上已经进入北极圈。2012年,中俄合作开发北极亚马尔液化天然气项目正式启动,标志着中国参与北极油气资源开发利用取得重要进展,也事实上开启了中国主导的"丝绸之路经济带建设"和俄罗斯主导的"欧亚经济联盟建设"对接合作的进程。北极地区已发现的油气资源共计3289.4亿桶油当量,其中石油605.4亿桶(84.1亿吨)油当量,仅为全球已发现石油资源的2.5%;天然气41.4万亿立方米(约合2683亿桶,372.6亿吨油当量),占全球已发现天然气资源的15.5%。北极地区已发现的油气总资源中绝大多数在俄罗斯,俄罗斯已发现的北极油气资源合计2905亿桶油当量(403.5亿吨),占88.3%;其中天然气约39.47万亿立方米,约合2557.9亿桶(355.3亿吨)油当量,占北极地区已发现天然气总资源的95%以上。北极待发现的油气资源量也非常可观,约占世界待发现常规石油资源的15%;天然气占世界待发现常规天然气资源的30%,其分布也主要在俄罗斯。随着全球气候变暖和能源战略博弈,俄罗斯为确保其天然气出口及财政来源,必然要加大北极油气、特别是天然气的开采和开发,并通过北极航道运到中国和其他消费国。本文在概括分析北极油气资源分布特点、俄罗斯油气资源与北极战略及北方海航道通行能力的基础上,回顾了北极亚马尔液化天然气项目诞生、发展演变及其国际博弈的背景;概括介绍了中国成功介入北极油气资源项目这一标志性事件过程,并进一步提出了中国对北极油气资源利用战略举措的建议。   相似文献   

4.
伊拉克油气资源丰富,探明石油储量超过1125亿桶,天然气储量110万亿立方英尺。中国2001年石油进口量的55%来自中东,中东局势紧张,会直接影响中国石油的稳定供应。通过详细分析伊拉克石油资源状况,结合中国实际情况,探讨其对中国能源安全战略的影响,认为中国在摸清家底,加强国内油气地质勘查工作,包括全国油气资源战略选区工作,提高石油地质储量,增加国内生产能力的同时,应积极拓展中亚—俄罗斯、中东—北非和南美石油市场,实现原油进口地区的多元化,以降低对中东石油进口的依赖程度。  相似文献   

5.
In recent years, much attention has been paid to nontraditional hydrocarbon sources. Today the portion of nontraditional gas in the world extraction is 15% or 450 billion cubic meters, which hat makes up the volume of total gas exports from Russia. As is known, the easy-prospecting oil has been already found. The innovative technologies in geophysics, drilling, and excavation and the increased extraction coefficient expect further development and industrial compliance with these requirements. Based on calculations, the world oil reserves are now one trillion of stock tank barrels and one trillion barrels have been already extracted. The evergrowing demand for energy gives rise to the necessity of searching for and extracting more oil resources, and both these aspects are unique problems. The search for profitable petroleum deposits has become more and more difficult even in the leading companies. The increment of the world resources is a key vital question; therefore, the elaboration of criteria for the discovery of nontraditional deposits take on special significance in the economic respect. The authors are working out a conception that will be a guideline for future finding of the richest oil deposits in active geodynamic zones. For the first time, we suggest the polygenic formation model of the planet’s bituminous belts.  相似文献   

6.
Decline function methods for projecting future discoveries generally capture the crowding effects of wildcat wells on the discovery rate. However, these methods do not accommodate easily situations where exploration areas and horizons are expanding. In this paper, a method is presented that uses a mapping algorithm for separating these often countervailing influences. The method is applied to Nigeria and the North Sea. For an amount of future drilling equivalent to past drilling (825 wildcat wells), future discoveries (in resources found) for Nigeria are expected to decline by 68% per well but still amount to 8.5 billion barrels of oil equivalent (BOE). Similarly, for the total North Sea for an equivalent amount and mix among areas of past drilling (1322 wildcat wells), future discoveries are expected to amount to 17.9 billion BOE, whereas the average discovery rate per well is expected to decline by 71%.  相似文献   

7.
《International Geology Review》2012,54(11):1062-1088
Kazakhstan, the second-largest oil-producing former Soviet republic, accounts for 5 to 6 percent of total Soviet output in recent years. With over 15 billion barrels of proven and probable reserves, it has attracted some capital from major international oil companies and has been in the forefront of their “rush” into the region. Kazakhstan has signed contracts with more than 40 foreign companies from 17 different countries, including several mega-deals. Output has declined over the past two years (by 13.5%, from 26.6 million tons in 1991 to 23.0 million tons in 1993), mainly because of the ongoing economic and political changes set in motion after the demise of the USSR, and principally due to problems involving Kazakhstan's trade relations with Russia. Output continues to be restricted because of the lack of an independent pipeline route to the world market. Kazakhstan's main oil-producing areas are concentrated in the North Caspian Basin. Early production in the area was from suprasalt Permian and Cretaceous rocks, in structural traps originating from salt tectonism. More recently, significant discoveries such as Tengiz and Karachaganak have been made in subsalt upper Paleozoic rocks. The greatest hydrocarbon potential is in the infrasalt Paleozoic deposits; the suprasalt deposits tend to have smaller reserves, and the deeper, lower Paleozoic sediments appear to have the least potential. Other areas of established or potential hydrocarbon accumulation include the older producing areas on the Mangyshlak-Buzachi peninsula, which still account for most of Kazakhstan's hydrocarbon production; the Turgay syneclise, which is the location of the Kumkol field and the unexploited Kushmurun basin; and the Zaysan basin in eastern Kazakhstan.  相似文献   

8.
The world’s present demand for oil and gas is still in a rapid growth period, and traditional oil and gas resources account for more than 60% of the global oil and gas supply. The Americas is the world’s second largest production and consumption center of liquid fuel, and is also the world’s largest natural gas producer. In 2016, the Americas had 85.3 billion tons of proven oil reserves and 18.7 trillion m3 of proven natural gas reserves, which account for 35.4% and 10.0% of world’s total reserves, respectively. It produced 1267.1 Mt of oil and 1125.4 billion m3 of natural gas, which account for 28.9% and 31.7% of the world’s total production, respectively. The crude oil and natural gas reserves are mainly distributed in the U.S., Canada and Venezuela. The U.S. is the earliest and most successful country in shale gas exploration and development, and its shale gas is concentrated in the southern, central and eastern U.S., including the Marcellcus shale, Barnett shale, EagleFord shale, Bakken shale, Fayettevis shale, Haynsvill shale, Woodford shale and Monterey/Santos shale. The potential oil and gas resources in the Americas are mainly concentrated in the anticline and stratigraphic traps in the Middle-Upper Jurassic slope deposition of the North Slope Basin, the Paleozoic Madsion group dolomite and limestone in the Williston Basin, dominant stratigraphic traps and few structural traps in the Western Canada Sedimentary Basin, the Eocene structural-stratigraphic hydrocarbon combination, structural-unconformity traps and structural hydrocarbon combination, and the Upper Miocene stratigraphic-structural hydrocarbon combination in the Maracaibo Basin of Venezuela, the stratigraphic-structural traps and fault horst, tilting faulted blocks and anticlines related to subsalt structure and basement activity in the Campos Basin, the subsalt central low-uplift belt and supra-salt central low-uplift belt in the Santos Basin of Brazil, and the structural-stratigraphic traps in the Neuquen Basin of Argentina. In addition, the breakthrough of seismic subsalt imaging technology makes the subsalt deepwater sea area of eastern Barzil an important oil and gas potential area.  相似文献   

9.
A number of composite sedimentary basins are present on the Qinghai-Tibet (Tibetan) Plateau. Some of these basins are filled with marine sediments, whereas others are fault-bounded continental depressions. Mixed source-rock types are present, of variable organic matter content; source rocks are mainly carbonates and secondarily mudstones. Vitrinite reflectance and biomarker analyses show that Mesozoic and Cenozoic source rocks have reached the peak stages of oil generation; older source rocks may have generated natural gas. The hydrocarbon reserves of these basins are believed to total ~37.2 billion barrels. The Qiangtang-Qamdo basin probably has the greatest potential for oil exploration.  相似文献   

10.
Gavin Bridge  Andrew Wood 《Geoforum》2010,41(4):565-576
Our objective in this paper is to understand the significance of the peak oil claim for the large, publicly-traded oil companies to whom the tasks of finding oil, extracting it and delivering it to market have been allocated. On the face of it, peak oil would appear to offer the ultimate solution to a problem that has plagued the international oil industry for the last one hundred years: how to organise scarcity in the face of prodigious abundance. We examine how publicly-traded oil firms (‘Big Oil’) are engaging with the discourse and science of peak oil, and find that peak oil positions firms like Exxon, BP and Shell in a number of different and quite complex ways: as a beneficiary (of a higher price regime), but also as a victim (of shrinking reserves) and a suspect (for under-investing in exploration or exploiting reserves too rapidly). We find a surprising lack of consensus among Big Oil about the significance of peak oil’s core claim for an imminent, permanent decline in the production of conventional grades of crude, and we conclude that peak oil is not regarded as strategic priority for oil producers (the contrast here with climate change is instructive). To understand why this is the case we turn from the physical science-based account of peak oil to political economy, and examine the contradictory character of Big Oil’s current position. We show how the strong financial returns to Big Oil in the last few years mask a precarious structural position when it comes to reserves access and reserves replacement. Critically the origins of this squeeze originate primarily above-ground: in the ownership of reserves, the politics of resource access and the changing structure of the international oil industry, and not below-ground in geological limits. Accordingly, we reject the simple assumption that increasing geological scarcity explains/justifies high returns, and argue that the relative marginalisation of peak oil within Big Oil’s strategic concerns reflects the way it misdiagnoses the cause of oil companies’ woes when it comes to finding and replacing reserves. We conclude that peak oil’s claim of physically-induced scarcity obfuscates rather than illuminates when it comes to understanding the opportunities for - and constraints on - accumulation in the upstream oil sector.  相似文献   

11.
基于对全球主要地质时期构造、沉积演化、盆地类型和主要成藏期的地质研究,评价全球重油和油砂资源潜力,进而指出有利勘探方向.据CNPC(2011)评价结果:全球重油地质资源量为42 712亿桶,可采资源量为7 147亿桶,油砂地质资源量为66 945亿桶,可采资源量为7 095亿桶;主要分布在北美、南美、俄罗斯和高加索地区,产区集中于北美和南美.以构造域进行划分,全球重油和油砂主要富集在科迪勒拉褶皱造山带、喜马拉雅阿尔卑斯褶皱造山带、西伯利亚地台周缘山系和乌拉尔山前四个大型构造带,盆地类型以克拉通和前陆为主,以斜坡降解、抬升破坏型两种模式成藏.未来重油和油砂勘探主要集中在3类地区:1)资源落实程度较高、勘探程度高的美洲地区;2)资源潜力大、勘探程度低的俄罗斯东西伯利亚盆地、伏尔加乌拉尔盆地;3)资源潜力大、尚未引起注意的中东地区.  相似文献   

12.
为保证云南钢铁工业可持续发展,解决矿石资源的不足,从分析截止2002年底保有资源量数据入手,研究尚未上表的铁矿资源现状,发现全省上表98处产地保有的35.52亿t储量中,仅有7.91亿t为当前可应用储量。应从补勘升级上表D级储量(3亿t)、择优勘查未上表的矿区(2亿t)、试验-研究3类矿石的选矿回收(菱铁矿石1亿t,鲕状高磷赤铁矿石1亿t,高磷非鲕状赤铁矿石0.5亿t),合计可新增可应用矿石7.5亿t,加上已有的7.91亿t,可应用矿石最终达15.41亿t。再加上第二轮国土资源大调查铁矿的新发现,立足省内,扩大进口,必将缓解云南铁矿资源紧缺的现状。  相似文献   

13.
陕北三叠纪煤田勘探中油页岩的地球物理测井效果   总被引:2,自引:1,他引:2  
油页岩是一种重要的潜在能源,储量巨大,若折算成发热量,它的储量在化石燃料中仅次于煤而列第二位;若折算成页岩油,世界上油页岩储量约为4750亿t,相当于目前世界天然原油探明可采储量的5.4倍,因此油页岩的勘探与开发已成为世界性新能源开发的课题。本文针对综合地球物理测井曲线在油页岩上具体的反映特征进行了系统论述,对以后的勘探与开发利用具有重要意义。  相似文献   

14.
以收集到的挪威中部陆架最新地质基础资料和油气田资料为依据,归纳总结该区的烃源岩、储集层、生储盖组合及油气运移特征,分析其勘探潜力,为相关公司介入本区的油气勘探提供依据。综合研究结果认为,挪威中部陆架烃源岩主要为下侏罗统re组三角洲平原相泥页岩及煤层和上侏罗统Spekk组海相泥页岩,其中上侏罗统Spekk组海相泥页岩是主力烃源岩;储层主要为白垩系—新近系浊积砂岩和中侏罗统裂谷期Fangst群滨浅海相砂岩,其中主力储层为中侏罗统裂谷期滨浅海相砂岩;发育裂谷期下生上储(正常)和上生下储两种组合模式;油气通过裂缝、疏导层及断层等作短距离汇聚,通过地层不整合面或连通砂体作长距离运移。该区油气成藏条件优越,资源潜力巨大,储量约为73×108桶油当量,待发现油气田约36个,随着油气勘探的逐步展开,挪威中部陆架必将还有重大油气发现。  相似文献   

15.
周剑  杨毅恒 《世界地质》2009,28(1):82-85
根据中国石油资源现状及其开发利用程度, 运用回归分析预测模型、HCZ模型、Hubbert模型和翁氏模型进行定量分析, 并结合定性分析得出, 到2010年和2020年时, 中国石油可采储量分别为 39.87~45.17亿t和54.37~64.57亿t, 扣除开采消耗的可供储量, 原油生产能力可保持在1.56 ~ 1.85亿t。  相似文献   

16.
世界油页岩资源利用和发展趋势   总被引:13,自引:0,他引:13  
世界油页岩资源丰富, 其探明储量换算成页岩油,远大于世界原油的探明储量。美国油页岩储量居世界首位, 其次则为俄罗斯、扎伊尔、巴西、加拿大、约旦、澳大利亚和中国。油页岩干馏制取页岩油始于19世纪上半叶的法国、英国、德国、西班牙等西欧国家。而后页岩油生产由于廉价原油的开采而衰落, 又由于世界石油危机而兴起; 100多年来、油页岩工业几经波折; 如今中国、爱沙尼亚和巴西拥有页岩油的工业生产。此外、爱沙尼亚、德国、中国和以色列则拥有油页岩燃烧产蒸汽发电的工业装置。当前、由于世界原油价格上涨,页岩油的生产在不少国家已有利可图, 中国、爱沙尼亚等国家正扩建、新建页岩油工厂; 蒙古、约旦等国正考虑筹建页岩油厂, 美国也计划对其丰富的油页岩资源进行加工利用。  相似文献   

17.
A Western specialist on the liquid fuel industries and resources of Russia surveys trends in and factors affecting output in Russia's most important oil-producing region, accounting for nearly 70% of the country's production in 1994 and a similar share of oil reserves. A prolonged decline in oil output in the region, starting in 1988, appears to be bottoming out as a function of efforts to rehabilitate idle wells and liberalized regulations governing oil exports. A focus is on documenting trends in production within a series of regional production associations charged with operation of specific fields (of widely variable age and reserves) in West Siberia and on surveying Western participation in joint ventures involved in field development for deposits characterized by difficult geological conditions. Official projections of West Siberian crude oil output based on various assumptions regarding rates of investment, well rehabilitation, exploratory drilling, secondary recovery, etc. are reviewed and evaluated.  相似文献   

18.
Western Canadian oil sands contain over 170 billion barrels of proven unconventional petroleum reserves currently extracted at 1.8 million barrels per day by either surface mining, or by in situ techniques that require subsurface injection of steam and hydrocarbon solvents. Natural high-salinity springs are known to add water and entrained inorganic and organic constituents to the Athabasca River and its tributaries in the region of ongoing bitumen production. However, the magnitude and synoptic distribution of these saline inputs has remained unquantified. Here, a chloride mass balance is used to estimate saline groundwater discharge to the Athabasca River from 1987 to 2010. Results show that the highest saline water discharge rate to the Athabasca River occurs between Ft. McMurray and the Peace-Athabasca Delta, supported by subcrop exposure of lower Cretaceous- and Devonian-aged formations bearing saline waters. Further, the input of saline groundwater is found to be an important control on the chemistry of the lower Athabasca River, despite comprising 10−1 to 3% of the Athabasca River’s discharge. The flux of natural saline groundwater entering the Athabasca does not appear to have increased or decreased from 1987 to 2010. The origin of seep salinity is interpreted as relict subglacial meltwater that has dissolved Devonian-aged evaporites, supported by saline Na-Cl type waters with low 18O/16O and 2H/1H ratios relative to modern precipitation. The magnitude of groundwater discharge and its impact on the Athabasca River’s chemistry in the area of ongoing bitumen development warrants the incorporation of natural groundwater seepages into surface water quality monitoring networks.  相似文献   

19.
A probabilistic model for oil exploration can be developed by assessing the conditional relationship between perceived geologic variables and the subsequent discovery of petroleum. Such a model includes two probabilistic components, the first reflecting the association between a geologic condition (structural closure, for example) and the occurrence of oil, and the second reflecting the uncertainty associated with the estimation of geologic variables in areas of limited control. Estimates of the conditional relationship between geologic variables and subsequent production can be found by analyzing the exploration history of a training area judged to be geologically similar to the exploration area. The geologic variables are assessed over the training area using an historical subset of the available data, whose density corresponds to the present control density in the exploration area. The success or failure of wells drilled in the training area subsequent to the time corresponding to the historical subset provides empirical estimates of the probability of success conditional upon geology. Uncertainty in perception of geological conditions may be estimated from the distribution of errors made in geologic assessment using the historical subset of control wells. These errors may be expressed as a linear function of distance from available control. Alternatively, the uncertainty may be found by calculating the semivariogram of the geologic variables used in the analysis: the two procedures will yield approximately equivalent results. The empirical probability functions may then be transferred to the exploration area and used to estimate the likelihood of success of specific exploration plays. These estimates will reflect both the conditional relationship between the geological variables used to guide exploration and the uncertainty resulting from lack of control. The technique is illustrated with case histories from the mid-Continent area of the U.S.A.This paper was presented at Symposium 116.3, Quantitative Strategy for Exploration, held as part of the 25th International Geological Congress, Sydney, Australia, August 1976.  相似文献   

20.
Phosphate trade in the Pacific Basin is dominated by imports from outside the region. The principal suppliers within the area have been Nauru and Christmas Islands and the now depleted supplies of Makatea and Ocean Islands. Rapidly dwindling reserves on these islands coupled with expectations of a four to five fold increase in demand of phosphate fertilizer by the end of this century place considerable stress on the phosphate supply system in the Pacific. Anticipated developments in production from inactive deposits in Australia, Peru, and possibly Baja California, Mexico may eventually hold a major share in the Pacific markets. Other possibilities in the region include contributions from new discoveries and utilization of submarine deposits, especially those of the Chatham Rise and Baja California areas. Increased interest in small-scale mining for use in local agricultural operations may result in increased utilization of smaller deposits found throughout the Pacific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号