首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Detrital amphiboles from the Famennian, Saxothuringian greywackes of the “Erbendorf Paleozoic” in Bavaria were analysed with an electron microprobe. The results were compared with recalculated literature data of amphiboles from potential source rocks to obtain more detailed information about the provenance of the oldest preserved synorogenic sediments in the Saxothuringian belt.

All of the detrital amphiboles show very similar, homogeneous chemical compositions. All of them are Ca-amphiboles (with (Ca+Na)B ≥: 1.34; NafB < 0.67; (Na+K)A < 0.50 and Ti < 0.50), mostly inagnesio-hornblende and tschermakitic hornblende. The comparison with amphiboles from rocks of potential provenance areas reveals that the Randamphibolit-Series of the Miinchberg Massif – or an equivalent, already eroded unit – can be regarded as source rock of the detrital amphiboles.

The presented data are the first evidence, that the Randamphibolit of the Miinchberg Massif was exhumed as early as in the Famennian, shortly after its metamorphism. It can be concluded that before Famennian time the complete Saxothuringian oceanic crust and large parts of the Saxothuringian continental crust had been subducted at the active margin. This implies that the collision of the Saxothuringian plate with the Tepla-Barrandian microplate, leading to the accretion of the Saxothuringian plate, happened 15–20 Ma earlier than previous authors had supposed. Accordingly, the collisional stage must have been reached not later than in the middle Devonian (approx. 380 Ma).  相似文献   

2.
At the northwestern edge of the Hercynian Bohemian Massif (Saxothuringian belt) new U-Pb zircon age data from rift-related magmatic rocks indicate that the initiation of Gondwana break-up in this area started during the Middle to Upper Cambrian. Magmatic rocks from a bimodal, MORB- to within-plate volcanic sequence in the Vesser area are dated between ca. 517 and 501 Ma. The volcaniclastic sequences analysed exhibit basal layers of conglomerates and mature sandstones, which can be correlated with a widespread Gondwana-derived onlap horizon of an uppermost Cambrian/Tremadocian age that links the Vesser area with the Saxothuringian continental basin. The association of the Vesser rocks with the Saxothuringian terrane as part of the Armorican terrane assemblage is further demonstrated by a coeval magmatic development and by identical detrital components which are derived from a common Cadomian basement (white mica with a ca. 539 Ma K-Ar minimum age and inherited zircon signatures). The Vesser unit, situated between the NW margin of the Saxothuringian zone and the Mid-German Crystalline Zone, probably represents a N-facing remnant of an ocean-continent transition of the, or within the, Armorican terrane assemblage and involves sections of the early break-up process at the peri-Gondwanan shelf south of the Rheic ocean.  相似文献   

3.
Thrusting, folding, and metamorphism of late Paleozoic to middle Mesozoic sedimentary rocks, together with high precision U–Pb zircon ages from Middle to Late Jurassic volcanic and granitic rocks, reveal evidence for a major deformation event in northwestern Hong Kong between 164 and 161 Ma. This episode can be linked with collision of an exotic microcontinental fragment along the southeast China continental margin determined from contrasting detrital zircon provenance histories of late Paleozoic to middle Mesozoic sedimentary rocks either side of an NE-trending suture zone through central Hong Kong. The suture zone is also reflected by isotopic heterogeneities and geophysical anomalies in the crustal basement. Detrital zircon provenance of Early to Middle Jurassic rocks from the accreted terrane have little in common with the pre-Middle Jurassic rocks from southeast China. Instead, the zircon age spectra of the accreted terrane show close affinities to sources along the northern margin of east Gondwana. These data provide indisputable evidence for Mesozoic terrane accretion along the southeast China continental margin. In addition, collision of the exotic terrane, accompanied by subduction rollback, is considered to have hastened foundering of the postulated flat slab beneath southeast China, leading to a widespread igneous flare-up event at 160 Ma.  相似文献   

4.
The Eastern Kunlun Range, as a high-elevation and granitoid-rich tectonic element in northern Tibet, records Paleozoic–Mesozoic amalgamation process of the East Asia continent and Cenozoic uplift of the Tibetan Plateau. However, Precambrian evolution of the Eastern Kunlun remains poorly understood and relations between Eastern Kunlun and adjacent terranes (e.g., Qaidam and Qilian) during the Phanerozoic accretion process are still highly controversial. We use detrital zircon U-Pb geochronological and Hf isotopic data of Proterozoic and Paleozoic metasedimentary rocks from the Eastern Kunlun Range, to reconstruct its origin and subsequent evolutionary history. Detrital zircons of the Proterozoic rocks are dominated by early–middle Neoproterozoic ages (700–1000 Ma), with two age peaks at ca. 800 Ma and ca. 920 Ma and εHf(t) values ranging from −10 to 5. The youngest detrital zircon ages (648–788 Ma) demonstrate that these investigated Proterozoic strata, which were previously mapped as Paleoproterozoic to Mesoproterozoic, were most likely deposited in the middle–late Neoproterozoic. Abundant 0.9–1.0 Ga detrital zircon crystals are consistent with those crystalline rocks of similar ages across the Kunlun-Qaidam and Qilian terranes, which are generally interpreted as the product of Grenvillian orogenesis. These findings support the hypothesis that these terranes were probably within a single continental landmass (named as KQQ block) during the Neoproterozoic. The high similarity of detrital zircon ages, Hf isotopes and Neoproterozoic lithostratigraphy between western Yangtze and KQQ blocks, supports a temporary connection of the KQQ block to western Yangtze in Rodinia supercontinent. Detrital zircons of the analyzed Paleozoic rocks are characterized by 390–490 Ma age populations. These results, in combination with published granitoids data of the northern Tibet, favor a scenario in which the Kunlun-Qaidam and Qilian terranes underwent separated subduction and accretion processes during the late Cambrian–Devonian, but together formed an upper plate to northward subduction of the Paleo-Tethys during the Permian–Triassic.  相似文献   

5.
敦煌造山带南部红柳峡混杂带基质的研究,为认识敦煌造山带的形成和演化提供了新的依据。本文从沉积学、地球化学和年代学等方面系统讨论了该混杂带基质的特征和形成环境。结果显示,基质的岩石类型主要包括变泥质岩(云母石英片岩)和变质砂岩,普遍发生强烈变形。局部弱变形变质的基质仍保留有原生沉积构造(如T_(ab)、T_(de)、T_(bde)组合的鲍马序列),反映原岩是一套浊积岩复理石。显微岩相学特征显示,基质碎屑组分以长石、石英和岩屑为主,长石和岩屑含量较高,分别为47%和27%,反映大量火成岩物质的加入,且碎屑颗粒的分选性和磨圆度较差,说明搬运距离较近。地球化学方面,低的化学蚀变指数(CIA=49~67),反映复理石基质物源区母岩经历的风化程度较低。高的成分变化指数(ICV0.8)以及Zr/Sc-Th/Sc投图结果显示,沉积物再循环程度低,为近物源区的初次沉积。基质Sc、Cr、Co、Ni含量低,Eu/Eu*、La/Sc、Th/Sc、La/Co、Th/Co和Cr/Th等元素比值类似于来自长英质源区的沉积物,暗示其物源区母岩以中-酸性岩石为主。La/Sc-Ti/Zr和Th-ScZr/10投图结果显示,复理石基质形成于陆缘弧或活动大陆边缘构造背景。弱变形浅变质砂岩的碎屑模式表明,基质的物源来自"切割型弧-过渡型弧"源区。综上,红柳峡混杂带基质在碎屑组成方面,以再循环程度低、近物源堆积的"切割型弧-过渡型弧"源区长英质碎屑组分为主,在沉积构造方面,发育鲍马序列和深水块体搬运沉积(MTD)构造,表明基质形成于陆缘弧或活动大陆边缘的俯冲带海沟环境。碎屑锆石年代学显示三组年龄:2300Ma、1850Ma和423Ma,结合区域地质背景分析,初步认为物源碎屑可能来自混杂带北侧的三危山弧和东巴兔-蘑菇台弧的古生代花岗岩类以及俯冲折返的变质基性岩岩块。复理石基质的变质砂岩中获得的最年轻的岩浆碎屑锆石年龄为389Ma,说明该砂岩形成于中泥盆世之后,暗示敦煌造山带南部红柳峡地区洋盆尚未俯冲完毕,碰撞作用尚未开始。  相似文献   

6.
张里  吴耀 《岩石学报》2012,28(5):1674-1688
本文对拉萨地体东南部林芝地区分布的变质岩进行了岩相学和锆石年代学研究。结果表明,林芝杂岩中的变质沉积岩主要由片麻岩和片岩组成,它们经历了中压角闪岩相变质作用。变质岩中的锆石多由继承的碎屑岩浆核和新生的变质边组成。继承锆石核给出了新太古代至晚古生代的年龄范围,其主要年龄峰值在~1560Ma、~1190Ma、~620Ma和~340Ma,而锆石变质边给出了53Ma和27Ma的变质年龄。这一结果表明,林芝杂岩中的变质沉积岩很可能形成在古生代,其物质源区具有Grenville和Pan-Africa期造山作用的构造热事件记录。这一研究和已有的成果进一步证明,拉萨地体起源于Gondwana大陆北缘,在新生代印度与欧亚大陆的碰撞/俯冲过程中,拉萨地体作为俯冲带的上盘经历了多期变质作用改造。本研究为拉萨地体起源与多期构造演化提供了重要信息。  相似文献   

7.
The Early Jurassic basin in Zhangshudun of northeastern Jiangxi Province is located in the southeastern part of Jiangnan orogeny, and revealing the basin depositional source is of great importance for understanding and discussing the orogenic events and ancient geography during Early Mesozoic. The research of petrography, detrital zircons U-Pb geochronology, Lu-Hf isotope geochemistry of Early Jurassic clastic rocks was conducted in this paper. The results show that the Early Jurassic Shuibei Formation includes molasse-like deposits and fluviatile-lacustrine facies, and the detrital zircons U-Pb ages are within the wide scope of 2 431~263 Ma, with no existence of synsedimentary or pensynsedimentary detrital zircons. The detrital zircons display a very obvious peak age in Early Paleozoic of 420~380 Ma, with εHf(t) values between -10.7 and -3 and TDMC values between 2.08 and 1.58 Ga. The weak peak ages of 370~355 Ma and 858~663 Ma are displayed in Late Paleozoic and Neoproterozoic,respectively, with εHf(t) values of -18.8 to -6.7 and TDMC values of 2.08 to 1.58 Ga. The detrital zircons also contain a few Early Mesozoic (263 Ma) and Paleo-Meso proterozoic (2 431~1 224 Ma) ages. The detrital zircons ages and Lu-Hf isotope are similar with geological entities in northwestern Wuyi area of Cathaysia Block, while they are obviously different from the ages of the geological body in southeastern Yangtze region. The detrital materials are mainly from Early Cambrian basement and Paleozoic geological body northwestern Wuyi area. While little detrital rocks may come from northwestern Zhejiang with sedimentary characters of passive continental margin. Combined with the comprehensive regional research results of Early Mesozoic basin, the authors conclude that the southeastern Jingdezhen-Huangshan of eastern Jiangnan orogenic belt was not uplifting with erosion in Early and Middle Jurassic, and the Mesozoic structural-magmatic activities in the inland of South China were the tectonic response to the dive and influx of multiplates. The uplift in the southezstern part of South China caused by the subduction of the paleo-pacific plate to the East Asian continent from the Late Triassic to Early Jurassic can provide provenance for the inland basin, and the tectonic constitution at the turn of the Early-Middle Jurassic has been transformed into the subduction of the paleo-pacific plate.  相似文献   

8.
赣东北樟树墩地区早侏罗世盆地处于江南造山带东南缘,揭示盆地沉积物质来源对于认识和探讨周缘早中生代造山事件和古地理格局具有重要意义。对樟树墩早侏罗世盆地开展了岩相学、碎屑锆石U-Pb年代学和Lu-Hf同位素研究。结果表明: 盆地为类磨拉石建造与内陆湖沼含煤建造,碎屑锆石年龄跨度大(2 431~263 Ma),未出现同沉积或准同沉积的碎屑锆石; 碎屑锆石年龄呈现极强的早古生代峰值(420~380 Ma,εHf(t)为-10.7~-3.0, TDMC为2.08~1.58 Ga)、弱的新元古代峰值(858~663 Ma,εHf(t)为-18.8~-6.7, TDMC为2.79~2.09 Ga)和晚古生代峰值(370~355 Ma),另有少量早中生代((263±5) Ma)、中—古元古代(2 431~1 224 Ma)碎屑锆石记录。碎屑锆石年龄和Hf同位素组成与华夏地块西北武夷山地区所出露地质体组成相似,而与扬子东南缘地质体组成存在显著差异,其碎屑物质主要来自陆内西北武夷山地区前寒武纪基底和古生代地质体,少量碎屑物质可能来源于浙西北地区,具有被动型大陆边缘盆地沉积特征。综合区域上早中生代盆地研究成果,认为江南造山带东段景德镇—黄山东南在早—中侏罗世并未整体隆升剥蚀,华南内陆中生代的构造-岩浆活动是其周缘多板块俯冲汇聚的构造响应,晚三叠世—早侏罗世古太平洋板块向东亚大陆的俯冲造成华南东南部隆升,使其开始为内陆盆地提供物源,至早—中侏罗世之交构造体制转换为古太平洋板块的俯冲消减。  相似文献   

9.
富含继承锆石的过铝质花岗岩一般来源于富铝质岩石(如变泥质岩)的部分熔融,因而分析这些继承锆石的U-Pb年龄可以像分析沉积岩碎屑锆石的U-Pb年龄一样,提供过铝质花岗岩源区物质中碎屑沉积物物源区的丰富信息。本文报道了中部拉萨地块早侏罗世过铝质花岗岩的全岩地球化学和锆石U-Pb年代学数据,结合拉萨地块已有二叠纪和晚三叠世过铝质花岗岩的继承锆石年代学数据,总结了目前已有的拉萨地块过铝质花岗岩的继承锆石U-Pb年龄特征(共199个谐和测点)。这些过铝质花岗岩属强过铝质S型花岗岩,其中的继承锆石定义了1250~1100Ma(峰值1181±14Ma)和550~450Ma(峰值494±7Ma)2个最突出的年龄群,分别可比于拉萨地块古生代沉积岩的碎屑锆石年龄峰值(约1170Ma)和寒武纪火山岩的侵位时代,明显不同于西羌塘、安多和特提斯喜马拉雅新元古代-古生代沉积岩中的碎屑锆石年龄频谱。拉萨地块过铝质花岗岩中约1181Ma的继承锆石,可能与拉萨地块古生代沉积岩中的同期碎屑锆石一样,都来自澳大利亚南西部Albany-Fraser造山带和东南极Wilkes等地,而约494的继承锆石,既可能来自澳大利亚西部,也可能来自拉萨地块本地。本文提供了拉萨地块与澳大利亚大陆北缘具有古地理联系的过铝质花岗岩继承锆石U-Pb年龄证据。拉萨地块的研究实践表明,采用过铝质花岗岩继承锆石和古生代沉积岩碎屑锆石相结合的锆石U-Pb年代学方法,可为重建冈瓦纳大陆北缘其它微陆块的古地理和构造岩浆演化提供重要约束。  相似文献   

10.
In this paper, U‐Pb zircon, monazite and rutile data for crystalline rocks deposited as clasts in the Upper Viséan conglomerates at the eastern margin of the Bohemian Massif are reported. U‐Pb data of spherical zircon from three different granulite clasts yielded a mean age of 339.0 ± 0.7 Ma (±2σ), while oval and spherical grains of another granulite pebble define a slightly younger date of 337.1 ± 1.1 Ma. These ages are interpreted as dating granulite facies metamorphism. Thermochronology and the derived pressure–temperature (P–T) path of the granulite pebbles reflect two‐stage exhumation of the granulites. Near‐to‐isothermal decompression from at least 44 km to mid‐crustal depths of around 22 km was followed by a near‐isobaric cooling stage based on reaction textures and geothermobarometry. Minimum average exhumation rate corresponds to 2.8–4.3 mm year?1. The extensive medium‐pressure/high‐temperature overprint on granulite assemblages is dated by U‐Pb in monazite at c. 333 Ma. This thermal event probably has a close link to generation and emplacement of voluminous Moldanubian granites, including the cordierite granite present in clasts. This granite was emplaced at mid‐crustal levels at 331 ± 3 Ma (U‐Pb monazite), whereas the U‐Pb zircon ages record only a previous magmatic event at c. 378 Ma. Eclogites and garnet peridotites normally associated with high‐pressure granulites are absent in the clasts but exotic subvolcanic and volcanic members of the ultrapotassic igneous rock series (durbachites) of the Bohemian Massif have been found in the clasts. It is therefore assumed that the clasts deposited in the Upper Viséan conglomerates sampled a structurally higher tectonic unit than the one that corresponds to the present denudation level of the Moldanubicum of the Bohemian Massif. The strong medium‐temperature overprint on granulites dated at c. 333 Ma is attributed to the relatively small size of the entirely eroded bodies compared with the presently exposed granulites.  相似文献   

11.
《International Geology Review》2012,54(18):2211-2226
ABSTRACT

To constrain the timing from the accretion to the subduction-related metamorphism of the protolith in the Sanbagawa eclogites, we performed zircon U–Pb datings and REE composition analyses on pelitic schist of the Seba eclogite-facies region in the Besshi area in central Shikoku, Japan. The detrital igneous cores of the zircons show ages from ca. 2000 to 100 Ma, and the metamorphic rims show ca. 90 Ma. These results show that the protolith was accreted at ca. 100–90 Ma, which is significantly younger than the previously reported accretion age of ca. 130 Ma of other eclogite-facies regions in this area. And, the metamorphic rim domains show HREE decrease without Eu anomalies, suggesting that they were formed at ca. 90 Ma eclogite-facies metamorphism. Our results combined with previous reports for the tectonics of the Sanbagawa metamorphic rocks suggest that there are at least two eclogite-facies units with different accretion ages in the Besshi area; ca. 130 Ma unit (Besshi unit) and ca. 100–90 Ma unit (Asemi-gawa unit), which structurally contact with each other. It is likely that the older unit was subducted into a depth of over 50 km and stagnated until the younger unit was subducted to the same depth. Probably, both units were juxtaposed at a mantle depth and began to exhume to the surface at the same timing after ca. 90 Ma. The juxtaposition and exhumation process might have relation to multi-factors such as tectonic erosion along the subduction zone, shallowing subduction angle of the hotter slab, backflow in the mantle and fluid infiltration along exhumation route.  相似文献   

12.
The North China Craton (NCC) is bounded by two Paleozoic accretionary arc terranes: the North Qinling terrane to the south and the Bainaimiao terrane to the north. The timing of arc accretion to the NCC and the architecture of the Bainaimiao arc remain unclear. During the building and accretion of the arcs along its margins, the NCC experienced a long sedimentary hiatus since the Ordovician, which ended with the deposition of bauxite-bearing sediments in the Late Carboniferous. In this paper we report the U–Pb and Hf isotopes of detrital zircons from the Late Carboniferous bauxite layer and use these data to constrain the tectonic evolution of the margin of the NCC. The detrital zircons yield a minimum U–Pb age of ca. 310 Ma and a prominent age peak at ca. 450 Ma. Zircon crystals with ages of ca. 330 Ma and ca. 1900 Ma are more common in the bauxite samples from the northern part of the NCC than in those from the central part. The εHf(t) values of the ca. 450 Ma detrital zircon crystals of the bauxite samples from the NCC are similar to those of the contemporaneous detrital zircon crystals from the North Qinling arc terrane to the south, but different from those of the contemporaneous detrital zircon crystals from the Bainaimiao arc terrane to the north. The ca. 450 Ma detrital zircon crystals in the ca. 310 Ma bauxite deposits are therefore interpreted to have been derived from the North Qinling arc terrane. The source of the ca. 330 Ma detrital zircon crystals of the bauxite deposits is interpreted to be the northern margin of the NCC, where intermediate-felsic plutons formed at ca. 330 Ma are common. The results from this study support the interpretation that the Paleozoic continental arc terranes and their concomitant back-arc basins were developed along the margins of the NCC before ca. 450 Ma, and the arc complexes were subsequently accreted to the craton in the Late Carboniferous. This was then followed by the formation of a walled continental basin within the NCC.  相似文献   

13.
The Charysh–Terekta–Ulagan–Sayan suture zone was regarded as a tectonic boundary separating two distinct subduction–accretion systems in the Central Asian Orogenic Belt (CAOB). In the north, magmatic arcs, such as the Gorny Altai terrane, formed in the southwestern periphery of the Siberian continent, whereas in the south, arc-prism systems, such as the Altai–Mongolian terrane, formed around the so-called Kazakhstan–Baikal composite continent with Gondwana affinity. When did these two systems amalgamate and whether the metamorphic complexes in the suture zone represent Precambrian micro-continental slivers are critical for our understanding of the accretionary orogenesis and crustal growth rate in the CAOB. A combined geochemical and detrital zircon U–Pb–Hf isotopic study was conducted on the meta-sedimentary rocks from the Ulagan (also referred to Bashkaus) and Teletsk Complexes in the suture zone. The results indicate that the protoliths of these rocks were dominated by immature sediments deposited in a time period between 500 and 420 Ma. Thus, Precambrian micro-continental slivers may not exist in the suture zone and even in the whole Altai Orogen.The meta-sedimentary rocks from the Ulagan Complex yield geochemical compositions between those of common intermediate and felsic igneous rocks, implying that these kinds of rocks possibly served as dominant sources. Detrital zircons from this complex consist of a major population of ca. 620–500 Ma, a subordinate one of ca. 931–671 Ma and rare grains of ca. 2899–1428 Ma. This age spectrum is compatible with the magmatic records of the western Mongolia. We propose that the Ulagan Complex possibly represents part of a subduction–accretion complex built upon an active continental margin of the western Mongolia in the early Paleozoic. The remarkable similarities in source nature, provenance, and depositional setting to the early Paleozoic meta-sedimentary rocks from the northern Altai–Mongolian terrane imply that the Ulagan Complex was possibly fragmented from this terrane.The meta-sedimentary rocks from the Teletsk Complex show similar detrital zircon populations but contain higher proportions of mafic sediments and have more depleted whole-rock Nd isotopic compositions. Our data suggest that the detritus mostly came from the same source as that for the Ulagan Complex but those from the Gorny Altai terrane also contributed. This implies that the Gorny Altai and Altai-Mongolian terranes possibly amalgamated prior to the early Devonian rather than in the middle Devonian to early Carboniferous as previously thought. Thus, the widespread Devonian to early Carboniferous magmatism within these two terranes was possibly generated in a similar tectonic setting. Moreover, the dominant Neoproterozoic to early Paleozoic detrital zircons from the Teletsk Complex yield largely varied ɛHf(t) values of − 23.8 to 12.4, indicating that crustal growth and reworking are both important in the accretionary orogenesis.  相似文献   

14.
The basement of most peri-Gondwanan terranes in Mexico, the Appalachians, the Caledonides, and the Variscides is buried beneath younger Ediacaran arc, Palaeozoic passive margin, and/or Mesozoic–Cenozoic platformal carbonates. However, it is exposed in the Oaxaquia terrane of Mexico (Oaxacan, Novillo, Huiznopala, and Guichicovi complexes), where it is characterized by ca. 1.0–1.3 billion year protolith ages and igneous rocks with depleted mantle model ages (T DM) of 1.35–1.77 billion years. The T DM ages represent a bulk average composition of the source and can be used as a tracer; these T DM ages overlap with those in ca. 546 Ma arc clasts from the 65.5 Ma Chicxulub bolide breccia, suggesting that the northern Maya block is also underlain by Oaxaquia-type basement. Similar T DM ages occur in Ediacaran arc rocks in Suwannee (Florida), NW Avalonia, Ganderia, Iberia, Armorica, and Bohemia, and in lower Palaeozoic plutons cutting adjacent Palaeozoic passive margin rocks (Acatlán Complex, Gander Group), suggesting that Oaxaquia-type basement underlies these regions. These T DM ages are intermediate between those of SE Avalonia/Carolinia (0.75–1.1 billion years) and the ca. 2.0 Ga basement typical of NW Africa and the Channel Islands of the United Kingdom. The lateral extent of this Oaxaquia-type basement suggests that it formed a Precambrian rim around the periphery of northern Gondwana (Amazonia and NW Africa). The Oaxaquia-type basement beneath Ganderia and northwestern Avalonia suggests that these terranes were derived from the Oaxaquia margin of Amazonia. The polarity of the T DM ages in Avalonia (younger to the SE) suggests that, rather than being transferred orthogonally across Iapetus, these peri-Gondwanan terranes rotated clockwise through ~90° before accretion to Laurentia.  相似文献   

15.
The age of the major geological units in Japan ranges from Cambrian to Quaternary. Precambrian basement is, however, expected, as the provenance of by detrital clasts of conglomerate, detrital zircons of metamorphic and sedimentary rocks, and as metamorphic rocks intruded by 500 Ma granites. Although rocks of Paleozoic age are not widely distributed, rocks and formations of late Mesozoic to Cenozoic can be found easily throughout Japan. Rocks of Jurassic age occur mainly in the Jurassic accretionary complexes, which comprise the backbone of the Japanese archipelago. The western part of Japan is composed mainly of Cretaceous to Paleogene felsic volcanic and plutonic rocks and accretionary complexes. The eastern part of the country is covered extensively by Neogene sedimentary and volcanic rocks. During the Quaternary, volcanoes erupted in various parts of Japan, and alluvial plains were formed along the coastlines of the Japanese Islands. These geological units are divided by age and origin: i.e. Paleozoic continental margin; Paleozoic island arc; Paleozoic accretionary complexes; Mesozoic to Paleogene accretionary complexes and Cenozoic island arcs. These are further subdivided into the following tectonic units, e.g. Hida; Oki; Unazuki; Hida Gaien; Higo; Hitachi; Kurosegawa; South Kitakami; Nagato-Renge; Nedamo; Akiyoshi; Ultra-Tamba; Suo; Maizuru; Mino-Tamba; Chichibu; Chizu; Ryoke; Sanbagawa and Shimanto belts.The geological history of Japan commenced with the breakup of the Rodinia super continent, at about 750 Ma. At about 500 Ma, the Paleo-Pacific oceanic plate began to be subducted beneath the continental margin of the South China Block. Since then, Proto-Japan has been located on the convergent margin of East Asia for about 500 Ma. In this tectonic setting, the most significant tectonic events recorded in the geology of Japan are subduction–accretion, paired metamorphism, arc volcanism, back-arc spreading and arc–arc collision. The major accretionary complexes in the Japanese Islands are of Permian, Jurassic and Cretaceous–Paleogene age. These accretionary complexes became altered locally to low-temperature and high-pressure metamorphic, or high-temperature and low-pressure metamorphic rocks. Medium-pressure metamorphic rocks are limited to the Unazuki and Higo belts. Major plutonism occurred in Paleozoic, Mesozoic and Cenozoic time. Early Paleozoic Cambrian igneous activity is recorded as granites in the South Kitakami Belt. Late Paleozoic igneous activity is recognized in the Hida Belt. During Cretaceous to Paleogene time, extensive igneous activity occurred in Japan. The youngest granite in Japan is the Takidani Granite intruded at about 1–2 Ma. During Cenozoic time, the most important geologic events are back-arc opening and arc–arc collision. The major back-arc basins are the Sea of Japan and the Shikoku and Chishima basins. Arc–arc collision occurred between the Honshu and Izu-Bonin arcs, and the Honshu and Chishima arcs.  相似文献   

16.
拉萨地体东南缘始新世早期变质作用及其构造意义   总被引:1,自引:1,他引:0  
林彦蒿  张泽明  董昕 《岩石学报》2013,29(6):1962-1976
本文对位于青藏高原拉萨地体东南缘林芝杂岩中的片麻岩进行了岩石学和锆石U-Pb年代学研究.所研究的样品包括正片麻岩和副片麻岩,它们经历了中压角闪岩相变质作用.岩石地球化学分析结果表明,所研究的正片麻岩的原岩具有钙碱性岛弧岩浆岩的特征.锆石U-Pb年代学分析结果表明,副片麻岩中的碎屑锆石核部为岩浆成因,它们给出的206Pb/238U年龄范围为3012~ 522Ma,其锆石的增生边给出了~51Ma的变质年龄.在正片麻岩中,黑云母片麻岩给出了~67Ma的原岩结晶年龄和~ 55 Ma的变质年龄;石榴石角闪黑云斜长片麻岩给出了~58Ma的原岩结晶年龄和~54Ma的变质年龄.因此,所研究的林芝杂岩并不能代表拉萨地体中的前寒武纪变质基底,而是古生代的沉积岩和晚白垩纪至早新生代的岩浆岩在始新世早期变质而成.这一时期,表壳岩和侵入岩一起经历的中压角闪岩相变质作用很可能跟新特提斯洋俯冲导致的地壳增生、加厚有关.  相似文献   

17.
We report the presence of a Grenvillian ophiolite on the northern margin of the Yangtze craton, drastically changing current ideas about South China's role in plate reconstructions of the Rodinia supercontinent. Strongly deformed amphibolites that locally show relict pillow lavas, isotropic and layered metagabbro, diabase dikes, serpentinized dunite and harzburgite with podiform chromite are dated at circa 1100–985 Ma (U–Pb zircon). The ophiolite is structurally dismembered and thrust over the Proterozoic shelf sequence that covers the north margin of the Yangtze craton, and overrode a flysch to conglomerate-wildflysch unit shed from the ophiolite and a magmatic arc terrane and deposited on the older Yangtze carbonate platform. The youngest clasts in the conglomerate are circa 861–813 Ma (U–Pb zircon), giving a maximum age for ophiolite emplacement. Fine-grained layered amphibolites exhibit slightly depleted-flat type REE curves with no obvious Eu anomalies, and are N-MORB type tholeiites. Metagabbro has typical cumulate textures, flat REE distributions and obvious positive Eu anomalies. The REE characteristics of serpentinized dunites show a U-shape of slight loss of middle REE, representing cumulates metasomatized by LREE slightly enriched mantle. All these features indicate that the metamafic–ultramafic rocks from the Proterozoic Miaowan Formation form a structurally dismembered ophiolite resting above an ophiolitic wildflysch, sitting on top of the Proterozoic shelf sequence on the Yangtze craton. The ophiolite is contemporaneous with an arc sequence preserved to the north on the edge of the Yangtze craton, suggesting that the entire ophiolitic forearc–arc was accreted to the Yangtze craton between 1000 and 850 Ma. Xenocrystic zircons in granite clasts in the basal wildflysch unit have ages consistent with Australian affinity, and detrital zircons in the arc sequence also show derivation from Australia, suggesting that the arc formed on the Australian segment of Rodinia before collision with the Yangtze craton. The discovery of the Proterozoic Miaowan ophiolite supplies important evidence for the existence of a Neoproterozoic oceanic basin on the north margin of the Yangtze craton, and demonstrates that the Yangtze craton first collided with Rodinia on its northern margin, with subsequent accretion of the Cathaysian block on the southern margin of the craton.  相似文献   

18.
The southwestern margin of the North China Craton (NCC) is located between the Alxa Terrane to the northwest, the North Qilian Orogen to the west and the North Qinling Orogen to the south. However, the paleogeographic and tectonic evolution for the southwestern part of the NCC in the Late Paleozoic is still poorly constrained. In order to constrain the Late Paleozoic tectonic evolution of the southwestern NCC, we carried out detailed field work and detrital zircon U-Pb geochronological research on Middle–Late Permian sedimentary rocks at the southwestern margin of the NCC. The U-Pb age spectra of detrital zircons from six samples are similar, showing four populations of 2.6–2.4 Ga, 2.0–1.7 Ga, 500–360 Ma and 350–250 Ma. Moreover, on the basis of the weighted-mean age of the youngest detrital zircons (257 ± 4 Ma), combined with the published results and volcanic interlayers, we propose that the Shangshihezi Formation formed during the Middle–Late Permian. Our results and published data indicate that the detrital zircons with age groups of 2.6–2.4 Ga and 2.0–1.7 Ga were likely derived from the Khondalite Belt and Yinshan Block in the northwestern NCC. The junction part between the North Qinling and North Qilian Orogen may provide the 500–360 Ma detrital zircons for the study area. The 350–250 Ma detrital zircons were probably derived from the northwestern part of the NCC. The majority of materials from Shangshihezi Formation within the study area were derived from the northwestern part of the NCC, indicating that the northwestern part of the NCC was strongly uplifted possibly resulting from the progressive subduction and closure of the Paleo-Asian Ocean. A small amount of materials were sourced from southwestern part of the NCC, indicating that the North Qinling Orogen experienced a minor uplift resulting from the northward subduction of the South Qinling terrane.  相似文献   

19.
The St. Marys Basin, along the southern flank of the composite Late Paleozoic Magdalen Basin in the Canadian Appalachians and along the Avalon-Meguma terrane boundary, contains Late Devonian-Early Carboniferous continental clastic rocks of the Horton Group that were deposited in fluvial and lacustrine environments after the peak of the Acadian orogeny. SHRIMP II (Geological Survey of Canada) data on approximately 100 detrital zircons from three samples of Horton Group rocks from the St. Marys Basin show that most of the zircons have been involved in a multistage history, recycled from clastic rocks in the adjacent Meguma and Avalonian terranes. Although there is a minor contribution from Early Silurian (411 Ma) and Late Devonian suites (ca. 380-370 Ma), Neoproterozoic (ca. 700-550 Ma) and Paleoproterozoic (ca. 2.0-2.2 Ga) zircon populations predominate, with a minor contribution from ca. 1.0-, 1.2-, and 1.8-Ga zircons. Published U-Pb single-zircon analyses on clastic sedimentary rocks indicate that the Meguma and Avalon terranes have different populations of detrital zircons, sourced from discrete portions (Amazonian and West African cratons) of the ancient Gondwanan margin. Both terranes contain Neoproterozoic and Late Archean populations. The SHRIMP data, in conjunction with published sedimentological and geochemical data, indicate that the Horton Group basin-fill sediments are largely the result of rapid uplift and erosion of Meguma terrane metasedimentary and granitoid rocks immediately to the south of the St. Marys Basin during the waning stages of the Acadian orogeny. Regional syntheses indicate that this uplift occurred before and during deposition and was a consequence of dextral ramping of the Meguma terrane over the Avalon terrane along the southern flank of the Magdalen Basin.  相似文献   

20.
Zircon U-Pb LA-ICPMS ages were obtained from three metasedimentary and two metavolcanic samples from the Monte Cavallino (South Tyrol) and the Cima Vallona (Carnic Alps) tectono-metamorphic groups from the eastern South Alpine crystalline basement in NE Italy. These analyses were performed to constrain the maximum depositional ages of the South Alpine domain, and to compare the spatial and temporal provenance variations with those of adjacent terranes. The detrital zircon dataset from the metasedimentary rocks (416 grains) yield populations with age peaks at 2.7–2.9 Ga, 1.8–2.1 Ga, 1.2–0.85 Ga, and 0.65–0.45 Ga, with maximum depositional ages ranging from the latest Neoproterozoic to the Silurian. The metavolcanic zircon dataset (209 grains) documents the presence of a two Ordovician volcanic events in the South Alpine domain. The detrital zircon dataset implies that the clastic units of the South Alpine crystalline basement were (a) deposited on the peri-Gondwanan active continental margin and (b) were originally sourced from the Proterozoic and Paleozoic units of NW Gondwana and hence should no longer be considered as exotic elements. The age spectra of the three metasedimentary units highlight differences between the Ediacaran basement gneiss, the Ordovician greywacke, and the Silurian metaconglomerate, suggesting up-section age variations due to a temporal change in provenance. Collectively, these new detrital zircon U-Pb ages imply that the clastic units within the South Alpine domain recorded sedimentation at c. 550 Ma on the peri-Gondwanan active continental margin, followed by rift-related continental and marine sedimentation in a back-arc basin setting until at least the Silurian. The South Alpine domain ultimately rifted off from Gondwana due to back-arc spreading, and subsequently underwent Variscan metamorphism during accretion onto the Laurussia margin, which started at c. 380 Ma and lasted until at least c. 320 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号