首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper demonstrates the close relationships between the polar cap magnetic activity, which is characterized by PC index (Troshichev et al., 1988, Troshichev et al., 2006) and some atmospheric phenomena typical of the winter Antarctica, such as enhancement of cloudiness, sudden warmings of the ground atmosphere in near-pole area, and formation of anomalous wind regimes above Antarctica. It was shown previously (Troshichev et al., 2004, Troshichev et al., 2008, Troshichev and Janzhura, 2004) that these atmospheric phenomena are controlled by variations of the geoeffective interplanetary electric field impacting the Earth’s magnetosphere. On the other hand, the polar cap magnetic activity is also determined by the interplanetary electric field influence through the field-aligned magnetospheric currents and electric field in the polar cap ionosphere. The results imply that the PC index, available online at http://www.aari.nw.ru from the near-pole station Vostok, can be used to monitor the anomalous atmospheric processes in winter Antarctica.  相似文献   

2.
The results from the numerical calculations of the global distribution of topside ionospheric parameters such as H+ ions and ion and electron temperatures up to 1500 km height are presented for equinoctial conditions at solar minimum. Calculations are carried out using the Global Self-consistent Model of Thermosphere, Ionosphere and Protonosphere (GSM TIP) developed in WD IZMIRAN, and using a new calculation block for electric fields due to dynamo and of magnetospheric origin. A comparison of two sets of calculations of magnetospheric convection electric field for a given potential difference is carried out, one through polar caps and other through field aligned currents of first zone. It is shown that the distribution of the electric potential obtained through field aligned currents of first zone is more self-consistent than that through polar caps. The light ion trough in H+ ions is deeper and occupies larger region for the potential difference through polar cap. For a given potential difference through field aligned current, at 1500 km, the maximum ion temperature is 150 K higher, minimum ion temperature is 200 K lower and maximum electron temperature is 100 K higher than those obtained for the same potential difference through polar caps. It is concluded that for modeling the electric field of magnetospheric origin, it is necessary to use the potential difference through field aligned current of first zone instead of through polar caps.  相似文献   

3.
By using Tsyganenko's model for the magnetosphere's magnetic field, which links two hemispheres of the ionosphere, and adopting a practical boundary condition for the electric potential around the polar cap, we developed a new ionosphere–magnetosphere coupling model based on prairie view dynamo code (PVDC). The new model takes the variations in solar wind and interplanetary magnetic field, as well as the geomagnetic activity, into account. Rather than the previous version of PVDC that is useful only for quiet conditions, the new model enables to calculate the electric potential and currents in the ionosphere and the field-aligned current (FAC) off the ionosphere in quiet and disturbed times. Comparison of the calculated FAC with the measurements of Space Technology 5 (ST5) mission shows a good agreement.  相似文献   

4.
Polar regionSq     
Geomagnetically quiet day variations in the polar region are reviewed with respect to geomagnetic field variation, ionospheric plasma convection, electric field and current. Persistently existing field-aligned currents are the main source of the polar regionSq. Consequently, the morphology and variability of the polar regionSq largely depend upon both field-aligned currents and ionospheric conductivity. Since field-aligned currents are the major linkage between the ionosphere and the magnetosphere, the latter is controlled by solar wind state, in particular, the interplanetary magnetic field, the polar regionSq exhibits remarkable IMF dependence.  相似文献   

5.
The spatial distributions of electric fields and currents in the Earth’s atmosphere are calculated. Electric potential distributions typical of substorms and quiet geomagnetic conditions are specified in the ionosphere. The Earth is treated as a perfect conductor. The atmosphere is considered as a spherical layer with a given height dependence of electrical conductivity. With the chosen conductivity model and an ionospheric potential of 300 kV with respect to the Earth, the electric field near the ground is vertical and reaches 110 Vm−1. With the 60-kV potential difference in the polar cap of the ionosphere, the electric field disturbances with a vertical component of up to 13 V m−1 can occur in the atmosphere. These disturbances are maximal near the ground. If the horizontal scales of field nonuniformity are over 100 km, the vertical component of the electric field near the ground can be calculated with the one-dimensional model. The field and current distributions in the upper atmosphere can be obtained only from the three-dimensional model. The numerical method for solving electrical conductivity problems makes it possible to take into account conductivity inhomogeneities and the ground relief.  相似文献   

6.
The paper is dedicated to studying the dynamics of the auroral ionosphere at the level of the sporadic Es layer during magnetospheric disturbances. A new approach to this problem, proposed in the paper, uses the geomagnetic PC index, which is calculated using the magnetic data in the polar caps of the northern and southern hemispheres and manifests the geoefficiency of the interplanetary electric field. It is shown that variations in the sporadic electron concentration in the auroral Es layer could be related to changes in the PC index with a high degree of statistical reliability. However, the character of precipitations of sporadic particles into the ionosphere under high (PC > 2 mV/m) and low (PC < 2 mV/m) magnetic activity differs substantially. During strong magnetic disturbances and under intensified electric fields in the interplanetary environment, the intensity of particle precipitation from the magnetosphere into the E region of the high-latitude ionosphere is governed by the values of the PC magnetic index. During weak magnetic disturbances, short-time pulses of an increase in the PC values, caused by the variability in electric field in the magnetosphere, are the main factor in the occurrence of sporadic ionization in the Es layer.  相似文献   

7.
We have used the global numerical model of the coupled ionosphere-thermosphere-protonosphere system to simulate the electric-field, ion- and electron-temperature and -concentration variations observed by EISCAT during the substorm event of 25 March 1987. In our previous studies we adopted the model input data for field-aligned currents and precipitating electron fluxes to obtain an agreement between observed and modelled ionospheric variations. Now, we have calculated the field-aligned currents needful to simulate the substrom variations of the electric field and other parameters observed by EISCAT. The calculations of the field-aligned currents have been performed by means of numerical integration of the time-dependent continuity equation for the cold mag-netospheric electrons. This equation was added to the system of the modelling equations including the equation for the electric-field potential to be solved jointly. In this case the inputs of the model are the spatial and time variations of the electric-field potential at the polar-cap boundaries and those of the cold magnetospheric electron concentration which have been adopted to obtain the agreement between the observed and modelled ionospheric variations for the substorm event of 25 March 1987. By this means it has been found that during the active phase of the substorm the current wedge is formed. It is connected with the region of the decreased cold magnetospheric electron content travelling westwards with a velocity of about 1 km s–1 at ionospheric levels.  相似文献   

8.
The effects of morning magnetospheric substorms in the variations in near-Earth atmospheric electricity according to the observations of the electric field vertical component (E z ), at Hornsund polar observatory (Spitsbergen). The E z, data, obtained under the conditions of fair weather (i.e., in the absence of a strong wind, precipitation, and fog), are analyzed. An analysis of the observations indicated that the development of a magnetospheric substorm in the Earth’s morning sector is as a rule accompanied by positive deviations in E z, independently of the Hornsund location: in the polar cap or at its boundary. In all considered events, Hornsund was located near the center of the morning convection vortex. In the evening sector, when Hornsund fell in the region of evening convection vortex, the development of a geomagnetic substorm was accompanied by negative deviations in E z., It has been concluded that the variations in the atmospheric electric field E z), at polar latitudes, observed during the development of magnetospheric substorms, result from the penetration of electric fields of polar ionospheric convection (which are intensified during a substorm) to the Earth’s surface.  相似文献   

9.
It is well known that the cross polar cap potential is saturated under a strong interplanetary electric field and is often said to be related to the ionospheric currents. To investigate the other factors influencing this phenomenon, a global magnetohydrodynamics simulation not including the feedback from the ionosphere to the magnetosphere was conducted. The simulation results showed that an increase in the southward IMF causes a smaller increase in the cross polar cap potential than that caused by an increase in the solar wind velocity. This difference was caused by the transportation of reconnected magnetic field lines towards the tail.  相似文献   

10.
The observations of the variations in the vertical component of the atmospheric electric field (E z ) at Swider midlatitude Poland observatory (geomagnetic latitude 47.8°) under the conditions of fair weather during 14 magnetic storms have been analyzed. The effect of the magnetic storm main phase in the daytime midlatitude variations in E z in the absence of local geomagnetic disturbances has been detected for the first time. Considerable (~100–300 V m?1) decreases in the electric field strength (E z ) at Swider observatory were observed in daytime simultaneously with the substorm onset in the nighttime sector of auroral latitudes (College observatory). The detected effects indicate that an intensification of the interplanetary electric field during the magnetic storm main phase, the development of magnetospheric substorms, and precipitation of energetic electrons into the nighttime auroral ionosphere can result in considerable disturbances in the midlatitude atmospheric electric field.  相似文献   

11.
Summary The atmospheric electrical structure of the earth is postulated to be controlled by a motivating force in the lower ionosphere which is produced by interaction between neutral atmosphere tidal circulations and the ionospheric plasma in the presence of the earth's magnetic field. Associated electric fields power the dynamo currents through the Hall effect with a resulting development of a gross electric potential distribution in the lower ionosphere. Asymmetries in these hemispheric potential distributions result in exospheric current flows in lowL-shells and larger differences in potential produced by dynamo return current flows in high magnetic latitudes result in strong currents through highL-shells between auroral zones. Vertical thunderstorm currents with their associated lightning discharges effectively connect the earth to a low potential region of the dynamo circuit and thus supply the earth with an average negative charge which motivates a leakage tropospheric electrical circuit. In addition, the dynamo currents maintain the magnetic polar regions at different potentials with a resulting electrical exchange with the solar wind through the earth's near space. These considerations indicate that observed electrical and variable magnetic phenomena near the earth are all part of a single comprehensive electrical current system.This paper was read byH. Dolezalek in an abbreviated form supplied by the author.  相似文献   

12.
This paper gives a topical review of theoretical models of magnetospheric convection based on the concept of minimal Joule dissipation. A two-dimensional slab model of the ionosphere featuring an enhanced conductivity auroral oval is used to compute high-latitude electric fields and currents. Mathematical methods used in the modeling include Fourier analysis, fast Fourier transforms, and variational calculus. Also, conformal transformations are introduced in the analysis, which enable the auroral oval to be represented as a nonconcentric, crescent-shaped figure. Convection patterns appropriate to geomagnetic quiet and disturbed conditions are computed, the differentiating variable being the relative amount of power dissipated in the magnetospheric ring current. When ring current dissipation is small, the convection electric field is restricted to high latitudes (shielding regime), and when it is large, a significant penetration of the field to low latitudes occurs, accompanied by an increase in the ratio of the region 1 current to the region 2 current.  相似文献   

13.
Morphological analysis of variations of the critical frequency foF2 in the midlatitude ionosphere at various sectors of local time is carried out on the basis of data from ground-based stations of vertical sounding of the ionosphere in the period when during use of the incoherent scatter radar at Saint-Santin an anomalously strong increase in the electric field was observed at heights of the ionospheric F region in the period of enhanced geomagnetic activity (4+ < Kp < 6−). The obtained picture of the space-time distribution of disturbances in foF2 makes it possible to assume that they could be caused by penetration to middle latitudes of the large-scale electric field of the magnetospheric convection directed westward in the nighttime and morning hours and eastward in the noon and evening sectors.  相似文献   

14.
We use magnetic field-aligned mapping between the ionosphere and the magnetosphere to intercompare ground-based observations of storm enhanced density (SED), and plasmasphere drainage plumes imaged from space by the IMAGE EUV imager, with the enhanced inner-magnetosphere/ionosphere SAPS electric field which develops during large storms. We find that the inner edge of the SAPS electric field overlaps the erosion plume and that plume material is carried sunward in the SAPS overlap region. The two phenomena, SED in the ionosphere and the erosion plume at magnetospheric heights, define a common trajectory for sunward-propagating cold plasma fluxes in the midnight—dusk–postnoon sector. The SAPS channel at ionospheric heights and its projection into the equatorial plane serve to define the sharp outer boundary of the erosion plume. The SAPS electric field abuts and overlaps both the plasmasphere boundary layer and the plasmasphere erosion plume from pre-midnight through post-noon local times.  相似文献   

15.
本文利用SWARM A和C双星高精度的矢量磁场数据研究了不同季节高纬地区场向电流(FACs)随地磁经度和地方时的变化情况.研究发现:在南北半球,FACs存在明显的经度变化,南半球FACs的变化强度大约是北半球的1.2~3.2倍.利用潮汐谱分析法我们发现FACs中占主导的非迁移潮汐分量为DW2和D0.在春秋和夏季半球,DW2波更为明显.D0波可用太阳光照的经度变化来解释,向阳侧靠近磁极的经度带比远离磁极的经度带有更强的太阳光照射.DW2波则与地磁场强度和地磁倾角等因素有关.全球电离层与热层模型计算的FACs中D0波占主导,且中性风和对流电场对D0波的贡献几乎相当.  相似文献   

16.
用Kamide-Matsushita方法,在行星际磁场具有较小的北向分量,且|By|>>|Bk|时,对磁语和磁扰状态以及Br>0和By<0等不同情况,分别计算了场向电流引起的电离层电势、电场和电流体系.结果表明,极隙区场向电流的存在使高纬向日面区域的电势发生畸变,当By>0时,无论是磁扰还是磁静日,极隙区电场具有显著的北向分量;等离子体对流有较大的西向分量;电离层电流为东向电流.当By<0时,电场和等离子体对流的方向与By>0时相反;电离层电流在磁抗日有西向分量,但在磁静日没有西向分量.电导率对电场和电流体系的影响十分明显,磁扰极光带电导率增强使电流涡从背阳面向向阳而漂移,与静日相比,磁扰时极隙区场向电流引起的电场畸变更为明显,但电场和电流强度的大小却基本保持不变.  相似文献   

17.
对流电场、场向电流和极光区电集流是磁层一电离层耦合的主要物理过程.它们的演化发展时间分别为几分钟至半小时的量级.本文用100°E和300°E的两个地磁经度链附近各11个台站的1min均值地磁H和Z分量资料,分析了1994年4月16-17日磁暴期间磁层耦合过程对极光区和中低纬区电离层扰动的地磁特征.强磁暴开始时,台站所处的地方时位置不同,则观测到的电离层和地磁响应也完全不同.这是磁层对流和一、二区场向电流共同作用的结果.一般说,扰时极光区的西向电集流变化更为强烈.随着耦合的发展,极光区范围会向南北扩展,电集流中心带则向低纬侧移动.在中低纬区,二区场向电流的建立能屏蔽一区场向电流所产生的扰动,并引起反向的电流及地磁变化.由此,中低纬区夜间有可能出现短时间的东向电场,又可通过EXB的垂直向上漂移作用抬升F层等离子体,并发生同一经度链附近的多站电离层h'F同时突增现象.另一方面,磁赤道附近的台站则更多地受内磁层赤道环电流和电离层赤道电集流的影响.  相似文献   

18.
{1} The first phase of the superstorm on April 6, 2000 was studied based on the analogy between systems of magnetospheric currents and wire electric currents. The conventional dataset supplemented with maps of ionospheric equivalent currents (ECs) and field-aligned currents (FACs) was also used. The application of this analogy made it possible to introduce spatial R.N inhomogeneities into FAC distributions in the two-dimensional ionosphere and three types of meridional current systems, MCS-0, MCS-1, and MCS-2, providing electric coupling of three Iijima and Potemra FAC Regions. This basis was used to describe the formation and observed dynamics of ionospheric auroral electrojets and three-dimensional current systems in a disturbed magnetosphere-ionosphere system. The results the modify known paradigms of the substorm current wedge (SCW). A new important fact was noted: simultaneously with the beginning of the disturbance expansion phase due to the stepwise growth in the dynamic pressure of the solar wind (SW), the stepwise growth in the area of polar cap and in the electromagnetic energy flux coming to the magnetosphere from the SW were observed.  相似文献   

19.
关于暴时电离层电流分布的南北半球不对称性   总被引:4,自引:1,他引:3       下载免费PDF全文
采用国际上广泛认可的高层大气和电离层经验模式提供的各种参数, 通过电离层电流连续方程, 计算出强磁暴条件下6月至日和12月至日内, 磁纬±72°和磁地方时00:00~24:00之间电离层电场、电流等的分布. 计算中考虑了地磁和地理坐标间的偏离; 除中性风场感生的发电机效应外, 还包含了磁层耦合(极盖区边界的晨昏电场和二区场向电流)的驱动外源. 结果表明, 6月至日时, 磁层扰动自极光区向中低纬的穿透情况在南、北半球内基本接近, 北半球内略强; 但12月至日时, 呈现明显的不对称性, 南半球的电流穿透远强于北半球, 而电场的穿透则是在北半球更强. 无论南北半球, 在中高纬地区, 午夜至黎明时段出现较强的东向电场分量, 其[WTHX]E×B[WTBZ]的向上漂移效应, 正是解释我们以往不少研究现象中所期盼的物理机制.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号