首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 127 毫秒
1.
对流电场、场向电流和极光区电集流是磁层一电离层耦合的主要物理过程.它们的演化发展时间分别为几分钟至半小时的量级.本文用100°E和300°E的两个地磁经度链附近各11个台站的1min均值地磁H和Z分量资料,分析了1994年4月16-17日磁暴期间磁层耦合过程对极光区和中低纬区电离层扰动的地磁特征.强磁暴开始时,台站所处的地方时位置不同,则观测到的电离层和地磁响应也完全不同.这是磁层对流和一、二区场向电流共同作用的结果.一般说,扰时极光区的西向电集流变化更为强烈.随着耦合的发展,极光区范围会向南北扩展,电集流中心带则向低纬侧移动.在中低纬区,二区场向电流的建立能屏蔽一区场向电流所产生的扰动,并引起反向的电流及地磁变化.由此,中低纬区夜间有可能出现短时间的东向电场,又可通过EXB的垂直向上漂移作用抬升F层等离子体,并发生同一经度链附近的多站电离层h'F同时突增现象.另一方面,磁赤道附近的台站则更多地受内磁层赤道环电流和电离层赤道电集流的影响.  相似文献   

2.
对磁层-电离层电动耦合和电离层发电机两种效应进行了模式计算,并对所得的一些耦合现象作了综合讨论.结果表明,在中低纬和赤道区的电离层和地磁研究中必须考虑磁层-电离层耦合效应向中低纬区的穿透和屏蔽;潮汐发电机效应对极光区(电导率增高时)的作用也值得重视.这两效应的特征和相对重要性随磁暴的发展阶段而异,在高低纬区也各不相同,但都有明显的晨昏不对称性.此外,弱磁扰对中低纬电离层形态的影响也不容忽视.  相似文献   

3.
用Kamide-Matsushita方法,在行星际磁场具有较小的北向分量,且|By|>>|Bk|时,对磁语和磁扰状态以及Br>0和By<0等不同情况,分别计算了场向电流引起的电离层电势、电场和电流体系.结果表明,极隙区场向电流的存在使高纬向日面区域的电势发生畸变,当By>0时,无论是磁扰还是磁静日,极隙区电场具有显著的北向分量;等离子体对流有较大的西向分量;电离层电流为东向电流.当By<0时,电场和等离子体对流的方向与By>0时相反;电离层电流在磁抗日有西向分量,但在磁静日没有西向分量.电导率对电场和电流体系的影响十分明显,磁扰极光带电导率增强使电流涡从背阳面向向阳而漂移,与静日相比,磁扰时极隙区场向电流引起的电场畸变更为明显,但电场和电流强度的大小却基本保持不变.  相似文献   

4.
本文讨论了行星际磁场B2分量变化时内磁层和中低纬度电离层的响应.指出B2变化引起的磁层大尺度对流电场的变化在一定条件下有可能透入内磁层,并沿磁力线映射到中低纬度电离层,在那里产生电场和电流体系,从而使Sq电流体系发生畸变,并在地面磁场中反映出来.数值计算表明,当△B2<0时,Sq电流体系的焦点向东和向高纬移动,地面磁场会观测到数伽马的变化.这就为中低纬地磁观测诊断磁层和太阳风状态提供了一种可能性.此外,本文还用上述物理过程解释了赤道地区一些高空物理现象,如B2倒转时电离层漂移速度的变化,赤道磁场异常以及赤道q型偶现E层的消失等等.  相似文献   

5.
利用美、欧、日等国非相干散射雷达观测的离子速度,高纬地磁站链1 min分辨率H分量及多站地面电离层垂测h'F等多种资料,对高低纬电离层的磁层耦合响应进行事例分析.除常规地磁资料外,极光区两雷达站对F层离子速度的测量是考察高纬电离层对流的很有效手段.本次中强磁暴期间赤道环电流指数Dst的最小值为-136 nT,但其最大的离子速度却超过2500 m/s,双对流圈的西旋则约为30°.从此次事件中极光区两雷达站离子速度的连续观测,得出了物理上合理的电离层对流形态,此图象得到地磁站链记录的有力支持.本事例的中低纬电离层响应再次确认了磁层扰动从高纬向中低纬穿透的事实.此外,Arecibo非相干散射雷达站资料又进一步证明:在同一经度链附近,磁暴期夜间电离层垂测h'F的多站突增现象是东向扰动电场从高纬穿透到中低纬,再通过E×H垂直向上的等离子漂移,使F层底部上升的结果.本文用高、低纬台站的多种观测资料较好地分析了该典型电离层物理现象.  相似文献   

6.
本文利用2001至2010年间CHAMP(CHallenging Minisatellite Payload)卫星标量磁力仪(Overhauser Magnetometer)观测的磁场数据,反演得到电离层霍尔(Hall)电流,并且对极区电离层Hall电流的特征进行了统计学研究.研究主要关注平静期,即重联电场小于2 mV·m~(-1)条件下,在磁纬60°至90°范围内的Hall电流在不同太阳活动、季节、磁经度、磁地方时等条件下的变化特征.研究发现:Hall电流具有明显的经度差异,在南北半球呈现显著一波经度结构,而且南北半球反相,即北半球电流密度呈现峰-谷-峰结构,而南半球呈现谷-峰-谷结构.Hall电流密度的经度结构与太阳活动紧密相关,太阳活动高年经度差异最大,太阳活动中年经度差异次之,太阳活动低年经度差异最小.研究发现,在磁地方时为10-14MLT的白天,影响Hall电流的因素主要是太阳辐射;而磁地方时为21-03MLT的夜晚,除了电导率的影响之外,可能存在其他的重要的物理过程影响着Hall电流的经度分布.本文还研究了与电流相关的焦耳热的经度分布情况,发现其在南北半球分别呈现单峰、单谷结构,经度差异亦十分明显.  相似文献   

7.
地震电离层异常电场模拟及初步研究   总被引:1,自引:0,他引:1       下载免费PDF全文
强地震会造成电离层电场发生异常变化.基于大气层-电离层电动力学理论对地震电离层异常电场开展数值模拟和研究,将理论推导出来的电离层异常电场方程扩展到球面坐标系中,并且考虑到电离层层电导率的各向异性,建立新的地震电离层异常电场模式.引进一个电离层层电导率经验公式(Nopper and Carovillano,1979),对中低纬度地震电离层异常电场特性进行数值模拟.模拟结果表明:附加电流引起电离层异常电场范围远大于自身在地表上的分布.且发生在低纬地区的异常电场主要成分是纬向电场,在东西两侧显偶极子分布.在额外电流分布相同的情况下,夜晚生成的异常电场更显著,存在昼夜差异.  相似文献   

8.
磁暴的发生与环电流的变化密切相关.除了对称环电流外,部分环电流在磁暴的发展过程中也起到了重要的作用,同时部分环电流通过场向电流与极区电离层中的电流形成回路.本文应用INTERMAGNET地磁台网北半球中低纬区域地磁台站数据,对不同强度4个磁暴事件主相和恢复相期间部分环电流和场向电流的磁地方时分布进行了分析和讨论.对于每一个磁暴事件,在低纬地区(地磁纬度约0°—40°N)选用地磁经度上大致均匀的8个台站,通过坐标转换计算平行于磁偶极轴的地磁场水平分量H来分析磁暴期间环电流所引起的磁场扰动;在低纬地区8个台站的基础上增加中纬地区(地磁纬度约40°N—60°N)地磁经度上大致均匀的6个台站,计算地磁坐标系下地磁场东西分量Y来分析磁暴期间场向电流在中低纬地区引起的磁场扰动.结果表明,磁暴主相期间的部分环电流主要作用于磁地方时昏侧和夜侧扇区,并且主相和恢复相期间部分环电流引起的磁场变化随着磁暴级别的增大而增大;磁暴主相期间向下的场向电流多出现在夜侧至晨侧扇区,向上的场向电流多出现在昏侧至午后扇区,且中纬地区向下和向上场向电流的展布范围明显大于低纬地区;恢复相期间弱、中磁暴事件的场向电流呈现与部分环电流相同的减弱趋势,而强、大磁暴事件在恢复相末期场向电流引起的磁场变化明显不同于恢复相的其他时刻,这可能与高纬较强的亚暴活动有关.  相似文献   

9.
本文通过对1982年磁扰期间琼中、北京两站地磁X分量变化的分析,证实了磁层-电离层电动耦合对中纬电离层电流的影响.分析发现:磁静、磁扰条件下的平均日变化中,两站X分量变化在白天有反向的趋势.这表明它们分处于与动力效应对应的电离层发电机电流圈中心之南北两侧.在磁暴主相期间,X分量变化形态与之明显不同,两站地磁南北分量有同向变化,且变幅相近,甚至有时北京站△X更大.对环电流能量增长指数R小于-25nT/h的21次事件所作的时序叠加分析(以R最负时为零时)进一步证明,这种同向变化是普遍存在的.两站零时之△X大小相近,相关系数高达0.98.该同向变化与R指数突然变负密切相关. 以上对比表明,与发电机电流造成两站X分量反向变化不同,同向变化是磁层源高纬扰动电流向中低纬直接穿透的结果.本文对动力和电动耦合两种过程的不同进行了初步讨论.  相似文献   

10.
为了解极光电集流在sawtooth事件期间的响应情形,本文利用北半球高纬地磁台站的磁场数据,建立了以球元基本电流系反演法求得大尺度电离层水平等效电流系分布的方法,以此研究了2000年9月30日同步轨道LANL卫星观测到的sawtooth事件期间极光电集流的变化.本文将sawtooth注入事件后极区电离层夜侧西向电集流增长的特征,与中低纬地基磁场北向分量正弯扰的特征做比较分析.两者的观测结果都表明在本sawtooth注入事件期间有电流楔的形成,且电流楔约有11 h磁地方时(MLT)的宽度.此外,中低纬磁弯扰达到最大扰动值的时间一般比高纬电集流达到最大扰动值的时间长,说明影响中低纬磁弯扰变化的电流源较丰富.  相似文献   

11.
A comparison between the modeled NmF2 and hmF2 and NmF2 and hmF2, which were observed by the Kokubunji, Okinawa, Manila, Vanimo, and Darwin ionospheric sounders and by the middle and upper (MU) atmosphere radar, have been used to study the time-dependent response of the low-latitude ionosphere to geomagnetic forcing during a time series of geomagnetic storms from 22 to 26 April 1990. The reasonable agreement between the model results and data requires the modified equatorial meridional E×B plasma drift, the modified HWM90 wind, and the modified NRLMSISE-00 neutral densities. We found that changes in a flux of plasma into the nighttime equatorial F2-region from higher L-shells to lower L-shells caused by the meridional component of the E×B plasma drift lead to enhancements in NmF2 close to the geomagnetic equator. The equatorward wind-induced plasma drift along magnetic field lines, which cross the Earth equatorward of about 20° geomagnetic latitude in the northern hemisphere and about −19° geomagnetic latitude in the southern hemisphere, contributes to the maintenance of the F2-layer close to the geomagnetic equator. The nighttime weakening of the equatorial zonal electric field (in comparison with that produced by the empirical model of Fejer and Scherliess [Fejer, B.G., Scherliess, L., 1997. Empirical models of storm time equatorial zonal electric fields. J. Geophys. Res. 102, 24047–24056] or Scherliess and Fejer [Scherliess, L., Fejer, B.G., 1999. Radar and satellite global equatorial F region vertical drift model. J. Geophys. Res. 104, 6829–6842) in combination with corrected equatorward nighttime wind-induced plasma drift along magnetic field lines in the both geomagnetic hemispheres are found to be the physical mechanism of the nighttime NmF2 enhancement formation close to the geomagnetic equator over Manila during 22–26 April 1990. The model crest-to-trough ratios of the equatorial anomaly are used to study the relative role of the main mechanisms of the equatorial anomaly suppression for the 22–26 April 1990 geomagnetic storms. During the most part of the studied time period, a total contribution from geomagnetic storm disturbances in the neutral temperature and densities to the equatorial anomaly changes is less than that from meridional neutral winds and variations in the E×B plasma drift. It is shown that the latitudinal positions of the crests are determined by the E×B drift velocity and the neutral wind velocity.  相似文献   

12.
基于磁层-电离层-热层耦合模型(Coupled Magnetosphere-Ionosphere-Thermosphere Model,CMIT),本文探究了当行星际磁场Bz分量(Interplanetary magnetic field,IMF) 60 min周期震荡时,白天热层扰动风的经度差异特征.由于地磁构型、热...  相似文献   

13.
The USU time-dependent ionospheric model (TDIM) simulated the northern (winter) and southern (summer) ionospheres as they responded to the changing solar wind and geomagnetic activity on 14 January 1988. This period began with moderately disturbed conditions, but as the IMF turned northward, the geomagnetic activity decreased. By 1400 UT, the IMF By component became strongly negative with Bz near zero; and eventually Bz turned southward. This began a period of intense activity as a magnetic storm developed. The magnetospheric electric field and auroral electron precipitation drivers for these simulations were obtained from the Naval Research Laboratories (NRL) Magnetohydrodynamic (MHD) magnetospheric simulation for this event.The F-region ionospheric simulations contrast the summer–winter hemispheres. Then, the difference in how the two hemispheres respond to the geomagnetic storm is related to the differences in magnetospheric energy deposition in the two hemispheres. This also emphasizes the role played by the E-region in the magnetosphere–ionosphere (M–I) coupling and subsequent lack of conjugacy in the two hemispheres. The F-region’s response to the changing geomagnetic conditions also demonstrates a striking lack of conjugacy. This manifests itself in a well-defined ionospheric morphology in the summer hemisphere and a highly irregular morphology in the winter hemisphere. These differences are found to be associated with the differences in the magnetospheric electric field input.  相似文献   

14.
Current theories of F-layer storms are discussed using numerical simulations with the Upper Atmosphere Model, a global self-consistent, time dependent numerical model of the thermosphere-ionosphere-plasmasphere-magnetosphere system including electrodynamical coupling effects. A case study of a moderate geomagnetic storm at low solar activity during the northern winter solstice exemplifies the complex storm phenomena. The study focuses on positive ionospheric storm effects in relation to thermospheric disturbances in general and thermospheric composition changes in particular. It investigates the dynamical effects of both neutral meridional winds and electric fields caused by the disturbance dynamo effect. The penetration of short-time electric fields of magnetospheric origin during storm intensification phases is shown for the first time in this model study. Comparisons of the calculated thermospheric composition changes with satellite observations of AE-C and ESRO-4 during storm time show a good agreement. The empirical MSISE90 model, however, is less consistent with the simulations. It does not show the equatorward propagation of the disturbances and predicts that they have a gentler latitudinal gradient. Both theoretical and experimental data reveal that although the ratio of [O]/[N2] at high latitudes decreases significantly during the magnetic storm compared with the quiet time level, at mid to low latitudes it does not increase (at fixed altitudes) above the quiet reference level. Meanwhile, the ionospheric storm is positive there. We conclude that the positive phase of the ionospheric storm is mainly due to uplifting of ionospheric F2-region plasma at mid latitudes and its equatorward movement at low latitudes along geomagnetic field lines caused by large-scale neutral wind circulation and the passage of travelling atmospheric disturbances (TADs). The calculated zonal electric field disturbances also help to create the positive ionospheric disturbances both at middle and low latitudes. Minor contributions arise from the general density enhancement of all constituents during geomagnetic storms, which favours ion production processes above ion losses at fixed height under day-light conditions.  相似文献   

15.
本文选取了INTERMAGNET地磁台网2001年到2012年的地磁数据,对其进行世界时(UT)到地方时(LT)的转换后利用自然正交分量法(NOC)从所选资料中提取出太阳静日变化Sq成分,再通过球谐分析方法建立模型分离内、外源Sq成分,逐日反演出内、外源Sq等效电流体系,并得到外源Sq等效电流体系南北电流涡中心电流强度.本文将外源Sq等效电流体系南北电流涡中心电流强度与同一时期的Dst指数进行了对比分析,研究表明它们之间具有同步变化的规律,且北半球电流涡中心电流强度在磁暴发生时的异常现象远高于南半球.对F10.7cm太阳射电流量与外源Sq等效电流体系南、北半球电流涡中心电流强度的长短周期分析发现,Sq等效电流表现出明显的11年周期特点,与太阳活动周期一致.外源南、北半球电流涡中心电流强度和F10.7cm年均值的相关系数分别达到了0.93和0.90,说明太阳活动是导致外源Sq电流体系变化的最直接也最主要的因素,这可能与电离层电导率受控于太阳的电磁辐射相关.  相似文献   

16.
2015年3月磁暴期间中国中低纬地区电离层变化分析   总被引:9,自引:0,他引:9       下载免费PDF全文
2015年3月17日爆发了本太阳活动周最大的地磁暴,Dst指数达到-233 nT.本文利用电离层测高仪f_。F_2和h_mF_2、北斗同步卫星(BDSGEO)TEC以及GPS电离层闪烁S4指数对此次磁暴期间中国中低纬地区(北京、武汉、邵阳和三亚)的电离层变化进行分析,并对此次磁暴所引发电离层暴的可能机制进行了探讨.磁暴期间,中低纬电离层暴整体表现为正相暴之后长时间强的负相暴.3月17日白天中纬正相暴为风场抬升电离层所致,而驼峰区及低纬地区正相暴由东向穿透电场所引起;3月18日白天长时间的强负相暴为西向扰动发电机电场和成分扰动所引起;3月17和18日夜间的负相暴可能是日落东向电场受到抑制以及赤道向风场对扩散的抑制导致驼峰向赤道压缩所致,同时被抑制的日落东向电场强度不足以触发产生赤道扩展F,导致低纬三亚和邵阳夜间电离层闪烁在磁暴期间受到完全抑制.这是我们首次基于北斗同步卫星TEC组网观测开展的电离层暴研究.  相似文献   

17.
本文利用CHAMP卫星加速度仪测量数据,计算和分析2003年11月20~21日大磁暴期间大气质量密度扰动的全球分布特征;研究暴时变化与极区大尺度对流引起的全球焦耳加热总功率及环电流指数SYM H之间的关系.结果表明,磁暴期间400 km高度上热层大气质量密度大幅度上升, NRLMSISE 00模式预测值与此相比有很大差别;暴时大气密度的增大存在昼/夜半球不对称性:白天强于夜晚,且白天随纬度的分布呈现出比较复杂的图像,在赤道附近和南半球中低纬区(10°N ~50°S)大气密度增大较强,并呈双峰分布,两个峰分别位于0°和45°S,另外在极区也出现大气密度扰动的局部极大,而在夜晚,大气密度变化南北半球比较对称,在赤道低纬区大气密度增大较强;互相关分析表明,中低纬区大气密度变化滞后于全球焦耳加热总功率3~7 h,滞后于环电流指数(SYM H)0~3 h,与二者存在很强的相关,表明极区焦耳加热和赤道环电流过程对暴时热层大气密度扰动有重要影响.  相似文献   

18.
Annual and seasonal variations in the low-latitude topside ionosphere are investigated using observations made by the Hinotori satellite and the Sheffield University Plasmasphere Ionosphere Model (SUPIM). The observed electron densities at 600 km altitude show a strong annual anomaly at all longitudes. The average electron densities of conjugate latitudes within the latitude range ±25° are higher at the December solstice than at the June solstice by about 100% during daytime and 30% during night-time. Model calculations show that the annual variations in the neutral gas densities play important roles. The model values obtained from calculations with inputs for the neutral densities obtained from MSIS86 reproduce the general behaviour of the observed annual anomaly. However, the differences in the modelled electron densities at the two solstices are only about 30% of that seen in the observed values. The model calculations suggest that while the differences between the solstice values of neutral wind, resulting from the coupling of the neutral gas and plasma, may also make a significant contribution to the daytime annual anomaly, the E × B drift velocity may slightly weaken the annual anomaly during daytime and strengthen the anomaly during the post-sunset period. It is suggested that energy sources, other than those arising from the 6% difference in the solar EUV fluxes at the two solstices due to the change in the Sun-Earth distance, may contribute to the annual anomaly. Observations show strong seasonal variations at the solstices, with the electron density at 600 km altitude being higher in the summer hemisphere than in the winter hemisphere, contrary to the behaviour in NmF2. Model calculations confirm that the seasonal behaviour results from effects caused by transequatorial component of the neutral wind in the direction summer hemisphere to winter hemisphere.  相似文献   

19.
Based on TIDI mesospheric wind observations, we analyzed the semidiurnal tide westward zonal wavenumber 1 and 2 (SW1 and SW2) component seasonal, inter-annual variations, and possible sudden stratospheric warming (SSW) related changes. Major findings are as follows: (1) The SW1 has a peak near the South Pole during the December solstice and near the North Pole during the March equinox. (2) The SW2 peaks at 60S and 60N mostly during winter solstices. The SW2 also peaks during late summer and early fall in the northern hemisphere. (3) The QBO effect on the semidiurnal tide is much weaker than that on the diurnal tide. The March equinox northern SW1 zonal amplitude appears to be stronger during the westward phase of the QBO, which is opposite of migrating diurnal tide QBO response. (4) Possible SSW event related changes in the semidiurnal tide are significant but not always consistent. Enhancements in the mid-latitude SW2 component during SSWs are observed, which may be related to the increase of total ozone at mid and high latitudes during SSW events. TIDI observations also show a decrease in the SW2 in the opposite hemisphere during a southern SSW event in 2002. Small increases in the high latitude SW1 in both hemispheres during the 2002 southern SSW event were recorded.  相似文献   

20.
Numerical calculations of the thermospheric and ionospheric parameters above EISCAT are presented for quiet geomagnetic conditions in summer. The Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) was used. The numerical results were obtained both with a self-consistent calculation of the electric fields of magnetospheric and dynamo-action origin and with the magnetospheric electric fields only. It was found that the dynamo-electric field has some effect on the ionospheric convection pattern during quiet geomagnetic conditions. It has a marked effect mainly on the zonal neutral wind component above EISCAT (±20m/s at 140 km altitude). We have studied the effects of various field-aligned current (FAC) distributions on thermosphere/ionosphere parameters and we show that a qualitative agreement can be obtained with region-I and -II FAC zones at 75° and 65° geomagnetic latitude, respectively. The maximum FAC intensities have been assumed at 03–21 MLT for both regions with peak values of 2.5 × 10–7 Am–2 (region I) and 1.25 × 10–7 A m–2 (region II). These results are in agreement with statistical potential distribution and FAC models constructed by use of EISCAT data. The lack of decreased electron density in the night-time sector as observed by the EISCAT radar was found to be due to the spatial distribution of ionospheric convection resulting from electric fields of magnetospheric origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号