首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Mediterranean ponds, summer drought enhances seasonality whose intensity varies along topographic and climatic gradients. The alternation of wet and dry periods in rain dependent ponds affects their biogeochemistry and differentiates them from ponds fed by more stable water sources, such as groundwater springs. Superimposed onto this, land use is also a very strong factor of variability. In this study we compared nutrients and organic matter concentrations, in water and in sediment, among different types of Mediterranean ponds based on the source of water, hydroperiod and land use. Forty-three ponds were sampled in Eastern Spain corresponding to five pond types: (1) permanent spring ponds in lowlands, (2) permanent spring ponds in mountains, (3) semi-permanent rain ponds, (4) temporary rain ponds with long hydroperiod and (5) temporary rain ponds with short hydroperiod.The results of this study indicate relevant differences among these pond types. The temporary rain ponds with short hydroperiod are characterized by high turbidity due to suspension of sediment particles rich in phosphorous adsorbed onto them (argillotrophic aquatic systems). They are used for watering domestic sheep that enhance sediment suspension by trampling. Total phosphorous (TP) concentrations in the water are high (like those of hypertrophic lakes), but planktonic chlorophyll a is very low and not correlated with TP, because of the low P-bioavailavility in the water. At the other extreme, we have permanent ponds in lowlands fed by groundwater springs. They are heavily loaded with nitrates due to the surrounding intensive agriculture. In these and other permanent/semipermanent ponds chlorophyll is highly correlated with TP. Sediment characteristics provide a good indication of the hydroperiod, since desiccation has important effects on biogeochemical transformations. A threshold of 5% organic matter (OM) in the sediment separates temporary ponds with a short hydroperiod from those with a long hydroperiod, and a threshold of 8% separates the later from the semi-permanent and permanent ponds. Besides OM reduction, important loss of N occurs during desiccation through mineralization, ammonia volatization and the sequential nitrification/denitrification pathway. On the other hand, the increase of organic P mineralization in dry sediments does not represent a loss of P from the system, since o-P remains adsorbed or bound onto the soil. This leads to a low TN/TP ratio in sediments in temporary ponds with short hydroperiod. These characteristics have to be taken into account when establishing pond typologies and ecological thresholds to assess water quality in these unique aquatic habitats.  相似文献   

2.
In temporary ponds, reestablishment of zooplankton communities depends on recruitment from the egg bank, the arrival of dispersers from within the region, and on successful establishment of newly arrived species following interaction with local abiotic and biotic factors. When the ponds dry up, zooplankton species may survive as dormant eggs, and since not all eggs hatch in the next season, eggs will accumulate in the sediment over time, representing an archive of the pond's historical biodiversity.To study the effect of “restoration age” (the time since a water body was restored), we studied groups of ponds that were restored in different years (1998, 2003 and 2007). The restoration process involved extensive dredging of sediments which were used to bury the ponds in the 1960s. Our expectation was that the oldest ponds would have the richest zooplankton community, as they have been accumulating biodiversity over a longer time period. We took weekly quantitative samples of zooplankton during four consecutive weeks after flooding to compare taxon richness and zooplankton community composition between ponds of different restoration age during an early stage of zooplankton community re-establishment.Taxon richness was high and similar to regional levels in all the ponds under investigation, suggesting restoration success and unlimited dispersal. Although cumulative richness at the end of the period was not significantly different between ponds, we observed temporal changes within the study period and certain age-related trends in relation to differences in zooplankton composition. These results suggest a difference in the succession of zooplankton communities depending on restoration age (which could be due to historical or local factors) and that this effect becomes evident from the beginning of the pond hydroperiod.  相似文献   

3.
Given their small size, isolation and unpredictability, temporary rockpools present high environmental stress and impoverished communities of species that have adapted to such stressful conditions. Special adaptations of the invertebrates living in these habitats include tolerance to desiccation and fast ontogenetic development in order to maintain stable populations and face high risk of extinction. Dozens of small rockpools (mostly with Ø < 1 m) can be found in east Spain on limestone substrate, where the only known Iberian populations of Heterocypris bosniacaPetkovski et al. (2000), an ostracod species with geographic parthenogenesis, have been recently found. In this survey, two of these rockpools have been monitored during the main hydroperiod between the fall of 2005 and summer 2006 to test the ability of H. bosniaca parthenogenetic populations to face unpredictable hydroperiod dynamics. Pools were visited weekly, and limnological data and ostracod samples were obtained from either water or substrate in dry periods. Ostracod individuals were counted and assigned to growth instars to monitor population changes. In the laboratory, experimental cultures allowed the estimation of survival dependence on the substrate desiccation rate. Throughout the hydrological cycle studied, several hatching periods were observed, usually preceded by desiccation, followed by substrate hydration and water dilution by rain. The demographic changes observed indicate that H. bosniaca populations are able to persist in intermittently inundated environments and produce several generations per annual hydrological cycle. In addition, adult individuals were able to survive in the wet mud of dry pools for longer than five weeks. The experimental data suggest a lower average survival time when exposed to desiccation processes, and that the velocity of substrate water loss is a determining factor for the survival rate of ostracods resisting dry events in temporary ponds. As shown by ostracods’ life histories in temporary aquatic environments undergoing unpredictable desiccation events, a combined strategy of adult tolerance to short periods of water scarcity and rapid hatching from resting egg banks can be advantageous for the monopolization of small-sized ephemeral habitats.  相似文献   

4.
Wetlands represent one of the world's most biodiverse and threatened ecosystem types and were diminished globally by about two‐thirds in the 20th century. There is continuing decline in wetland quantity and function due to infilling and other human activities. In addition, with climate change, warmer temperatures and changes in precipitation and evapotranspiration are reducing wetland surface and groundwater supplies, further altering wetland hydrology and vegetation. There is a need to automate inventory and monitoring of wetlands, and as a study system, we investigated the Shepard Slough wetlands complex, which includes numerous wetlands in urban, suburban, and agricultural zones in the prairie pothole region of southern Alberta, Canada. Here, wetlands are generally confined to depressions in the undulating terrain, challenging wetlands inventory and monitoring. This study applied threshold and frequency analysis routines for high‐resolution, single‐polarization (HH) RADARSAT‐2, synthetic aperture radar mapping. This enabled a growing season surface water extent hyroperiod‐based wetland classification, which can support water and wetland resource monitoring. This 3‐year study demonstrated synthetic aperture radar‐derived multitemporal open‐water masks provided an effective index of wetland permanence class, with overall accuracies of 89% to 95% compared with optical validation data, and RMSE between 0.2 and 0.7 m between model and field validation data. This allowed for characterizing the distribution and dynamics of 4 marsh wetlands hydroperiod classes, temporary, seasonal, semipermanent, and permanent, and mapping of the sequential vegetation bands that included emergent, obligate wetland, facultative wetland, and upland plant communities. Hydroperiod variation and surface water extent were found to be influenced by short‐term rainfall events in both wet and dry years. Seasonal hydroperiods in wetlands were particularly variable if there was a decrease in the temporary or semipermanent hydroperiod classes. In years with extreme rain events, the temporary wetlands especially increased relative to longer lasting wetlands (84% in 2015 with significant rainfall events, compared with 42% otherwise).  相似文献   

5.
A variety of multivariate statistical procedures were applied to three separate sets of quantitative analytical data from a coastal aquifer located in Malia, Crete (Greece), in order to identify the major hydrochemical processes affecting the groundwater quality and to investigate the evolution of groundwater composition in three different sampling periods. Two of them were carried out on October 2001 and September 2002 at the end of the dry season and the third on April 2002 at the end of the wet period. Two factors were found that explained major hydrochemical processes in the aquifer. These factors reveal the existence of an intensive intrusion of seawater and mechanisms of nitrate contamination of groundwater. Bivariate plots of the scores of the two main factors showed that the seawater intrusion and nitrate pollution processes are maintained through three surveys and that the process of nitrate pollution increases from the first to the second dry survey. Q‐mode factor analysis and discriminant analysis of the three sampling periods clearly showed a seasonal variation of the whole chemistry of groundwater samples. This seasonal variation can be attributed to the freshwater recharge and seawater intrusion that affect the groundwater quality of the Malia aquifer. The results of trend surface analysis are in agreement with those of factor analysis. Moreover, the fourth‐order trend surfaces of EC, Cl? and NO3? showed that the salinization process is more intensive during the first dry period and the spatial variation of NO3? maxima plumes are strongly affected by the flow regime of the Malia aquifer. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Relatively little is known about the role of perched aquifers in hydrological, biogeochemical, and biological processes of vernal pool landscapes. The objectives of this study are to introduce a perched aquifer concept for vernal pool formation and maintenance and to examine the resulting hydrological and biogeochemical phenomena in a representative catchment with three vernal pools connected to one another and to a seasonal stream by swales. A combined hydrometric and geochemical approach was used. Annual rainfall infiltrated but perched on a claypan/duripan, and this perched groundwater flowed downgradient toward the seasonal stream. The upper layer of soil above the claypan/duripan is ~0·6 m in thickness in the uplands and ~0·1 m in thickness in the vernal pools. Some groundwater flowed through the vernal pools when heads in the perched aquifer exceeded ~0·1 m above the claypan/duripan. Perched groundwater discharge accounted for 30–60% of the inflow to the vernal pools during and immediately following storm events. However, most perched groundwater flowed under or around the vernal pools or was recharged by annual rainfall downgradient of the vernal pools. Most of the perched groundwater was discharged to the outlet swale immediately upgradient of the seasonal stream, and most water discharging from the outlet swale to the seasonal stream was perched groundwater that had not flowed through the vernal pools. Therefore, nitrate‐nitrogen concentrations were lower (e.g. 0·17 to 0·39 mg l?1) and dissolved organic carbon concentrations were higher (e.g. 5·97 to 3·24 mg l?1) in vernal pool water than in outlet swale water discharging to the seasonal stream. Though the uplands, vernal pools, and seasonal stream are part of a single surface‐water and perched groundwater system, the vernal pools apparently play a limited role in controlling landscape‐scale water quality. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
8.
About 87 % of the anuran species that occur in Brazil possess a larval stage, i.e., tadpoles. Throughout this stage of development, tadpoles are subject to predation and the conditions of their aquatic habitat, including environmental heterogeneity, physical and chemical properties of the water, and hydroperiod of the water body. We assessed the patterns of species composition and richness of tadpoles in permanent and temporary ponds, with the objective of evaluating how morphometric, physical and chemical factors of the ponds and environmental heterogeneity (surrounding vegetation and substrate cover and aquatic vegetation) affect anuran occupation of these environments. The study was performed in five permanent and four temporary ponds. Tadpoles of 20 anuran species differed in species composition between permanent and temporary environments. Environmental factors were significant drivers for tadpole richness: turbidity and dissolved oxygen were significantly related to richness in permanent ponds, while water temperature and pH were significantly correlated to richness in temporary environments. Higher species richness was related to the heterogeneity of the ponds and greater complexity associated with the stratification of the surrounding vegetation. In general, the results suggest that species sorting of tadpoles is probably related to the high environmental variation among permanent and temporary aquatic habitats. The spatial heterogeneity of these two types of environments increases local diversity by accommodating species that are unique to only one habitat type.  相似文献   

9.
Snow cover depletion curves are required for several water management applications of snow hydrology and are often difficult to obtain automatically using optical remote sensing data owing to both frequent cloud cover and temporary snow cover. This study develops a methodology to produce accurate snow cover depletion curves automatically using high temporal resolution optical remote sensing data (e.g. Terra Moderate Resolution Imaging Spectroradiometer (MODIS), Aqua MODIS or National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR)) by snow cover change trajectory analysis. The method consists of four major steps. The first is to reclassify both cloud‐obscured land and snow into more distinct subclasses and to determine their snow cover status (seasonal snow cover or not) based on the snow cover change trajectories over the whole snowmelt season. The second step is to derive rules based on the analysis of snow cover change trajectories. These rules are subsequently used to determine for a given date, the snow cover status of a pixel based on snow cover maps from the beginning of the snowmelt season to that given date. The third step is to apply a decision‐tree‐like processing flow based on these rules to determine the snow cover status of a pixel for a given date and to create daily seasonal snow cover maps. The final step is to produce snow cover depletion curves using these maps. A case study using this method based on Terra MODIS snow cover map products (MOD10A1) was conducted in the lower and middle reaches of the Kaidu River Watershed (19 000 km2) in the Chinese Tien Shan, Xinjiang Uygur Autonomous Region, China. High resolution remote sensing data (charge coupled device (CCD) camera data with 19·5 m resolution of the China and Brazil Environmental and Resources Satellite (CBERS) data (19·5 m resolution), and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data with 15 m resolution of the Terra) were used to validate the results. The study shows that the seasonal snow cover classification was consistent with that determined using a high spatial resolution dataset, with an accuracy of 87–91%. The snow cover depletion curves clearly reflected the impact of the variation of temperature and the appearance of temporary snow cover on seasonal snow cover. The findings from this case study suggest that the approach is successful in generating accurate snow cover depletion curves automatically under conditions of frequent cloud cover and temporary snow cover using high temporal resolution optical remote sensing data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
The balance of a component contained in river water is considered taking into account its input with lateral inflow and decay in the aquatic environment. Random changes in lateral inflow causes fluctuations in the parameters of component input and decay. A stochastic equation of component balance is derived and used as the basis for the construction of an equation for the probability density of component concentration. The solution of this equation shows that the probability density follows lognormal law. This theoretical result is applicable to the analysis of time series of water salt composition components, including pH, alkalinity, chlorides, ammonia, iron, and aluminum. The applicability of the lognormal law is proved and distribution parameters are evaluated. The distributions of three components (pH, alkalinity, and chlorides) are found to split into two lognormal branches, describing high and low component concentrations. In the case of pH and alkalinity, this splitting is due to seasonal effects, while in the case of chlorides, it is caused by the difference between concentrations in the surface runoff at the early and final stages of snow melting and rainfalls. The application of the statistical distributions for probabilistic forecasting of extreme component concentrations is considered. The exceedance probability of standard limits of the components is considered. The use of exceedance probability in hydrochemical standardization is demonstrated.  相似文献   

11.
Zooplankton community analyses can reveal valuable information about the trophic status and secondary production in reservoirs. The zooplankton seasonal distribution and important physical and chemical parameters in Prado Reservoir (Tolima, Central Colombia) were studied in monthly surveys throughout a hydrological cycle (February 2000-January 2001) in order to establish seasonal patterns and the biotic and abiotic relationships for the reservoir. Surface zooplankton collections at 1 m depth were taken at six sampling stations with regard to reservoir morphometry, location of main tributaries and mixing areas of the incoming tributaries. Cladocerans numerically dominated (48.1%) the community throughout the study period followed by Copepoda (32.7%), Rotifera (19.1%), and Diptera larvae (0.01%). Among the cladocerans, there was a greater abundance of Bosmina longirostris (69.8%) than other crustaceans. Among the Rotifera, Brachionus falcatus was the most abundant with 23% and Keratella tropica was least abundant with 8%. The only cyclopoid species found was Thermocyclops decipiens. The phantom midge Chaoborus sp. was also part of the zooplankton community. Based on numbers, cladocerans represented a significant component of the zooplankton in both dry and rainy seasons. Four species (Brachionus spp., K. tropica, Diaphanosoma brachyurum, Ceriodaphnia cornuta, Moina sp., and T. decipiens) had never previously been found in the reservoir, but were recorded for other standing Colombian water bodies. The replacement of B. longirostris instead of Daphnia sp. as dominant species was observed. The results of the comparison of the different studies confirmed that the trophic state of this artificial lake may be classified as eutrophic, and in general, physical, and chemical homogeneity were observed both spatially and temporally.  相似文献   

12.
Josep Pi  ol  Anna   vila  Ferran Rod 《Journal of Hydrology》1992,140(1-4):119-141
Streamwater chemistry is described for three streams draining undisturbed, evergreen broad-leaved forested catchments on phyllites in NE Spain: two streams with no or negligible flow in summer are located in the Prades massif, and one perennial stream is in the wetter Montseny mountains. Weekly data for a study period of 2–4 years are provided to (1) describe the seasonal variations in streamwater chemistry, (2) analyse the relationship between stream discharge and solute concentrations using a two-component mixing model and (3) search for patterns of temporal variation in stream solute concentrations after discounting the effects of discharge. At Prades, concentrations of all analysed ions, except NO3, showed marked seasonal variations in stream water, whereas at Montseny only ions related to mineral weathering (HCO3, Na+, Ca2+ and Mg2+) showed strong seasonality. Ion concentrations were more closely dependent on instantaneous discharge at Montseny than at Prades. The residuals of the relationship between solute concentrations and discharge retained a strong seasonality at Prades, but not at Montseny. These differences are related to the major hydrochemical processes that determine the streamwater chemistry at each site. The same processes are probably operative in the three catchments, but are of varying relative importance. At Montseny, the mixing of waters of different chemical composition seems to be the major process controlling streamwater chemistry, although the soilwater end-member composition predicted by the mixing model applied did not match the measured soilwater chemistry. In the drier Prades catchments, the two major hydrochemical processes determining the seasonal variation of streamwater chemistry are (1) the restart of flow after the summer drought, which flushes out the solutes accumulated during the dry period, and (2) the seasonal changes in groundwater chemistry that result from the interplay of water residence time, temperature and CO2 partial pressure. In Mediterranean catchments with relatively high precipitation, such as Montseny, the seasonal variation in the streamwater chemistry is largely determined by the same processes as at humid-temperate sites, whereas in drier Mediterranean catchments, such as Prades, the major hydrochemical processes are clearly distinct.  相似文献   

13.
C. L. I. Ho  C. Valeo 《水文研究》2005,19(2):459-473
Urban winter hydrology has garnered very little attention owing to the general notion that high‐intensity rainfalls are the major flood‐generating events in urban areas. As a result, few efforts have been made to research urban snow and its melt characteristics. This study investigates the characteristics of urban snow that differentiate it from rural snow, and makes recommendations for incorporating these characteristics into an urban snowmelt model. A field study was conducted from the fall of 2001 to the spring of 2002 in the city of Calgary, Canada. Snow depths and densities, soil moisture, soil temperature, snow albedo, net radiation, snow evaporation, and surface temperature were measured at several locations throughout the winter period. The combination of urban snow removal practices and the physical elements that exist in urban areas were found to influence the energy balance of the snowpack profoundly. Shortwave radiation was found to be the main source of energy for urban snow; as a consequence, the albedo of urban snow is a very important factor in urban snowmelt modelling. General observations lead to the classification of snow as one of four types: snow piles, snow on road shoulders, snow on sidewalk edges, and snow in open areas. This resulted in the development of four separate functions for the changing snow albedo values. A study of the frozen ground conditions revealed that antecedent soil moisture conditions had very little impact on frozen ground, and thus frozen ground very nearly always acts as a near impervious area. Improved flood forecasting for urban catchments in cold regions can only be achieved with accurate modelling of urban winter runoff that involves the energy balance method, incorporating snow redistribution and urban snow‐cover characteristics, and using small time steps. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Climate patterns over preceding years affect seasonal water and moisture conditions. The linkage between regional climate and local hydrology is challenging due to scale differences, both spatially and temporally. In this study, variance, correlation, and singular spectrum analyses were conducted to identify multiple hydroclimatic phases during which climate teleconnection patterns were related to hydrology of a small headwater basin in Idaho, USA. Combined field observations and simulations from a physically based hydrological model were used for this purpose. Results showed statistically significant relations between climate teleconnection patterns and hydrological fluxes in the basin, and climate indices explained up to 58% of hydrological variations. Antarctic Oscillation (AAO), North Atlantic Oscillation (NAO), and Pacific North America (PNA) patterns affected mountain hydrology, in that order, by decreasing annual runoff and rain on snow (ROS) runoff by 43% and 26% during a positive phase of NAO and 25% and 9% during a positive phase of PNA. AAO showed a significant association with the rainfall-to-precipitation ratio and explained 49% of its interannual variation. The runoff response was affected by the phase of climate variability indices and the legacy of past atmospheric conditions. Specifically, a switch in the phase of the teleconnection patterns of NAO and PNA caused a transition from wet to dry conditions in the basin. Positive AAO showed no relation with peak snow water equivalent and ROS runoff in the same year, but AAO in the preceding year explained 24 and 25% (p < 0.05) of their variations, suggesting that the past atmospheric patterns are equally important as the present conditions in affecting local hydrology. Areas sheltered from the wind and acted as a source for snow transport showed the lowest (40% below normal) ROS runoff generation, which was associated with positive NAO that explained 33% (p < 0.01) of its variation. The findings of this research highlighted the importance of hydroclimatic phases and multiple year variations that must be considered in hydrological forecasts, climate projections, and water resources planning.  相似文献   

15.
Perennial pools are common natural features of peatlands, and their hydrological functioning and turnover may be important for carbon fluxes, aquatic ecology, and downstream water quality. Peatland restoration methods such as ditch blocking result in many new pools. However, little is known about the hydrological function of either pool type. We monitored six natural and six artificial pools on a Scottish blanket peatland. Pool water levels were more variable in all seasons in artificial pools having greater water level increases and faster recession responses to storms than natural pools. Pools overflowed by a median of 9 and 54 times pool volume per year for natural and artificial pools, respectively, but this varied widely because some large pools had small upslope catchments and vice versa. Mean peat water‐table depths were similar between natural and artificial pool sites but much more variable over time at the artificial pool site, possibly due to a lower bulk specific yield across this site. Pool levels and pool‐level fluctuations were not the same as those of local water tables in the adjacent peat. Pool‐level time series were much smoother, with more damped rainfall or recession responses than those for peat water tables. There were strong hydraulic gradients between the peat and pools, with absolute water tables often being 20–30 cm higher or lower than water levels in pools only 1–4 m away. However, as peat hydraulic conductivity was very low (median of 1.5 × 10?5 and 1.4 × 10?6 cm s?1 at 30 and 50 cm depths at the natural pool site), there was little deep subsurface flow interaction. We conclude that (a) for peat restoration projects, a larger total pool surface area is likely to result in smaller flood peaks downstream, at least during summer months, because peatland bulk specific yield will be greater; and (b) surface and near‐surface connectivity during storm events and topographic context, rather than pool size alone, must be taken into account in future peatland pool and stream chemistry studies.  相似文献   

16.
Terrestrial and aquatic ecological productivity are often nutrient limited in subarctic permafrost environments. High latitude regions are experiencing significant climatic change, including rapid warming and changing precipitation patterns, which may result in changes in nutrient dynamics within terrestrial and aquatic systems and hydrochemical transport between them. The objective of this research was to characterize changes in runoff quantity and quality within, and between peatlands and ponds throughout the snow‐free summer season. Two ponds and their catchments were monitored over the snow‐free season to measure changes in hydrologic storage, and to determine how water chemistry changed with the evolution of the frost table depth. Thresholds in hydrologic storage combined with frost table position (which inhibited infiltration and storage) produced nonlinear responses for runoff generation through highly conductive shallow peat layers while deeper, less conductive layers retarded flow. Greater inputs were required to exceed hydrologic storage (fill and spill) as a deepening frost table increased the hydrologically active portion of the soil, leading to seasonal variability in runoff pathways between peatlands and ponds. Runoff contributions to ponds were an integral component of the snow‐free water balance during the study period, contributing up to 60% of all snow‐free inputs. Groundwater chemistry (and pond chemistry following runoff events when ponds were connected with peatlands) reflected the different depths of peat and mineral soil accessed throughout the season. This work has improved scientific understanding of the combined controls of hydrologic inputs and ground frost on runoff and nutrient transport between peatlands and ponds, and sheds insight into how nutrient dynamics in cold regions may evolve under a changing climate.  相似文献   

17.
In this study we examined the importance of seasonal changes in habitat features and aquatic macroinvertebrate responses in temporary and perennial streams from two different catchments in the Western Mediterranean region in Spain. Macroinvertebrate sampling was spatially intensive to account for the relative frequency of meso- (i.e., riffles and pools) and micro-habitats (i.e., different mineral and organic-based substrata) at each site. Samples were collected at two distinctly different phases of the hydrograph: (1) during the flowing period, when pool-riffle sequences were well-established, and (2) during the dry phase, when only isolated pools were expected to occur in the temporary streams. During the dry season, both a reduction in the available total habitat and in microhabitat diversity in all sites studied was observed. As a result, taxon richness decreased in all streams, but more dramatically at temporary stream sites and particularly so in the infrequently remaining discontinuous riffles. Macroinvertebrate assemblages differed among catchments (i.e., geographical identity) and sites (perennial vs. temporary). Invertebrate differences were also strong within and among meso- and micro-habitats, particularly mineral and organic microhabitat patches, and differences were due to both loss of taxa from some habitats and some taxa exhibiting certain habitat affinities.  相似文献   

18.
The seasonal variations in biomass, abundance, and species composition of plankton in relation to hydrography were studied in saline lake Namuka Co, northern Tibet, China. The sampling was carried out at approximately monthly intervals from June 2001 to July 2002. The salinity ranged from 5.5 to 26 g/L. The mean annual air and water temperature showed a clear seasonal pattern, which was approximately 4.4 and 7.4°C, respectively, with the lowest water temperature in winter (from December to March, −1°C) and the highest in June and July (18°C). The results showed that 36 taxa of phytoplankton and 16 taxa of zooplankton were identified. Both the biomass and abundance of total phytoplankton were lower in the winter and peaked once or twice during the summer and spring in the early August (8.23 mg/L and 158.2 × 106 ind./L). The seasonal variation in total zooplankton biomass and abundance was characterized by lower values in both winter and early spring, and one maximum (90.5 mg/L and 935 ind. L−1) occurred in the late summer. Major phytoplankton species were Gloeothece linearis, Oscillatoria tenuis, Gloeocapsa punctata, Ctenocladus circinnatus, Ulothrix sp., and Spirogyra sp. And major zooplankton species included Vorticella campanula, Brachionus plicatilis, Daphniopsis tibetana, Cletocamptus dertersi, Arctodiaptomus stewartianus. The production of D. tibetana was 420.3 g m3 a−1. The total number of plankton species has a significant negative correlation with the salinity.  相似文献   

19.
Abstract

Abstract At least one-quarter of the Lebanese terrain is covered by snow annually, thus contributing integrally to feeding surface and subsurface water resources. However, only limited estimates of snow cover have been carried out and applied locally. The use of remote sensing has enhanced significantly the delineation of snow cover over the mountains. Several satellite images and sensors are used in this respect. In this study, SPOT-4 (1-km resolution) satellite images are used. They have the capability to acquire consecutive images every 10 days, thus monitoring the dynamic change of snow and its maximum coverage could be achieved. This was applied to Mount Lebanon for the years 2001–2002. The areas covered by snow were delineated, and then manipulated with the slope angle and altitudes in order to classify five major zones of snowmelt potential. The field investigation was carried out in each zone by measuring depths and snow/water ratio. A volume of around 1100 × 106 m3 of water was derived from snowmelt over the given period. This is equivalent to a precipitation rate of about 425 mm in the region, revealing the considerable portion of water that is derived from snowmelt.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号