首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Reliable estimates of wetland loss require improved wetland inventories and effective monitoring programmes. The Prairie Pothole Region of North America is experiencing rapid urban, agricultural and economic development, which places wetlands at risk, especially small geographically isolated wetlands. This loss is concomitant with a loss of ecosystem services. To improve upon current wetland inventories, a method for mapping wetlands using an automated object‐based approach was developed for a regional watershed in Alberta. The method improves upon existing wetland mapping methods by effectively mapping small wetlands and better capturing the convolution of wetland edges. This approach uses digital terrain objects derived from light detection and ranging data, from which 130 157 wetlands were identified. Wetland loss estimates (% number and % area) were obtained by applying a wetland area versus frequency power‐law function to the wetland inventory. We estimated a 16.2% historic loss of wetland number and a 2.6% loss of wetland area, with the size of these lost wetlands <0.04 ha. The improved techniques for mapping wetland loss and estimating wetland loss provide a more accurate representation of the magnitude of wetland loss in the Prairie Pothole Region. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Predicting Water Table Response to Rainfall Events,Central Florida   总被引:1,自引:0,他引:1  
A rise in water table in response to a rainfall event is a complex function of permeability, specific yield, antecedent soil‐water conditions, water table level, evapotranspiration, vegetation, lateral groundwater flow, and rainfall volume and intensity. Predictions of water table response, however, commonly assume a linear relationship between response and rainfall based on cumulative analysis of water level and rainfall logs. By identifying individual rainfall events and responses, we examine how the response/rainfall ratio varies as a function of antecedent water table level (stage) and rainfall event size. For wells in wetlands and uplands in central Florida, incorporating stage and event size improves forecasting of water table rise by more than 30%, based on 10 years of data. At the 11 sites studied, the water table is generally least responsive to rainfall at smallest and largest rainfall event sizes and at lower stages. At most sites the minimum amount of rainfall required to induce a rise in water table is fairly uniform when the water table is within 50 to 100 cm of land surface. Below this depth, the minimum typically gradually increases with depth. These observations can be qualitatively explained by unsaturated zone flow processes. Overall, response/rainfall ratios are higher in wetlands and lower in uplands, presumably reflecting lower specific yields and greater lateral influx in wetland sites. Pronounced depth variations in rainfall/response ratios appear to correlate with soil layer boundaries, where corroborating data are available.  相似文献   

3.
Ecosystem services provided by depressional wetlands on the coastal plain of the Chesapeake Bay watershed (CBW) have been widely recognized and studied. However, wetland–groundwater interactions remain largely unknown in the CBW. The objective of this study was to examine the vertical interactions of depressional wetlands and groundwater with respect to different subsurface soil characteristics. This study examined two depressional wetlands with a low‐permeability and high‐permeability soil layer on the coastal plain of the CBW. The surface water level (SWL) and groundwater level (GWL) were monitored over 1 year from a well and piezometer at each site, respectively, and those data were used to examine the impacts of subsurface soil characteristics on wetland–groundwater interactions. A large difference between the SWL and GWL was observed at the wetland with a low‐permeability soil layer, although there was strong similarity between the SWL and GWL at the wetland with a high‐permeability soil layer. Our observations also identified a strong vertical hydraulic gradient between the SWL and GWL at the wetland with a high‐permeability soil layer relative to one with a low‐permeability soil layer. The hydroperiod (i.e., the total time of surface water inundation or saturation) of the wetland with a low‐permeability soil layer appeared to rely on groundwater less than the wetland with a high‐permeability soil layer. The findings showed that vertical wetland–groundwater interactions varied with subsurface soil characteristics on the coastal plain of the CBW. Therefore, subsurface soil characteristics should be carefully considered to anticipate the hydrologic behavior of wetlands in this region.  相似文献   

4.
Dissolved organic matter (DOM) is integral to fluvial biogeochemical functions, and wetlands are broadly recognized as substantial sources of aromatic DOM to fluvial networks. Yet how land use change alters biogeochemical connectivity of upland wetlands to streams remains unclear. We studied depressional geographically isolated wetlands on the Delmarva Peninsula (USA) that are seasonally connected to downstream perennial waters via temporary channels. Composition and quantity of DOM from 4 forested, 4 agricultural, and 4 restored wetlands were assessed. Twenty perennial streams with watersheds containing wetlands were also sampled for DOM during times when surface connections were present versus absent. Perennial watersheds had varying amounts of forested wetland (0.4–82%) and agricultural (1–89%) cover. DOM was analysed with ultraviolet–visible spectroscopy, fluorescence spectroscopy, dissolved organic carbon (DOC) concentration, and bioassays. Forested wetlands exported more DOM that was more aromatic‐rich compared with agricultural and restored wetlands. DOM from the latter two could not be distinguished suggesting limited recovery of restored wetlands; DOM from both was more protein‐like than forested wetland DOM. Perennial streams with the highest wetland watershed cover had the highest DOC levels during all seasons; however, in fall and winter when temporary streams connect forested wetlands to perennial channels, perennial DOC concentrations peaked, and composition was linked to forested wetlands. In summer, when temporary stream connections were dry, perennial DOC concentrations were the lowest and protein‐like DOM levels the highest. Overall, DOC levels in perennial streams were linked to total wetland land cover, but the timing of peak fluxes of DOM was driven by wetland connectivity to perennial streams. Bioassays showed that DOM linked to wetlands was less available for microbial use than protein‐like DOM linked to agricultural land use. Together, this evidence indicates that geographically isolated wetlands have a significant impact on downstream water quality and ecosystem function mediated by temporary stream surface connections.  相似文献   

5.
鄱阳湖典型洲滩湿地水分补排关系   总被引:2,自引:1,他引:2       下载免费PDF全文
林欢  许秀丽  张奇 《湖泊科学》2017,29(1):160-175
湿地水分在地下水含水层-土壤-植物-大气界面的运移和转换是维持能量和营养物平衡的重要环节,水分运移是湿地生态水文过程研究的关键.数值模型模拟已成为水分运移研究的重要手段,然而限于复杂的湿地自然条件及有限的监测手段,部分界面水分通量连续动态变化数据的获取及定量化工作较为困难,目前应用数值模拟法于湿地水分运移研究的案例仍不多见.本文以鄱阳湖典型湿地为研究区,构建垂向一维数值模型,阐释了湖泊水位显著季节性变化条件下,湿地水分在不同界面的传输过程,量化了湿地水分的补排关系.结果表明:(1)界面水分通量季节性差异大,降雨入渗地面和根系层水分渗漏均对降雨变化响应敏感,主要集中在4—6月,分别占年总量(1450和1053 mm)的65%和73%.土面蒸发和植物蒸腾年总量为176和926 mm,土面蒸发主要受气候条件影响,植物蒸腾还与植物生长特征有关,均集中在7—8月,分别占年总量的30%和47%.深层土壤向浅层根系层的水分补给集中发生在地下水浅埋时段6—8月,占年总量(609 mm)的76%;(2)湿地植物根系层水分补排受鄱阳湖水位季节性波动影响显著.除丰水期(7—9月)主要补给为深层土壤水外,退、枯、涨水期的主要补给均为降水入渗.涨水期(4—6月)和枯水期(12—3月)的主要排泄为根系层水分渗漏,丰水期以植物蒸腾排泄为主,退水期(10—11月),土面蒸发与植物蒸腾为主要排泄,且比重相当.本文定量了鄱阳湖典型湿地不同界面水分连续交换关系,区分了土面蒸发和植物蒸腾,辨析了各界面水分的主要影响因子,研究结果有助于深入理解水分在湿地生态系统地下水含水层-土壤-植物-大气界面的相互作用机制,认识湖泊洲滩湿地水量平衡,为揭示湖泊水情变化对湿地生态的可能影响提供依据,为湿地生态水文过程研究提供重要方法和理论参考.  相似文献   

6.
Numerous studies have examined the impact of prairie pothole wetlands on overall watershed dynamics. However, very few have looked at individual wetland dynamics across a continuum of alteration status using subdaily hydrometric data. Here, the importance of surface and subsurface water storage dynamics in the prairie pothole region was documented by (1) characterizing surface fill–spill dynamics in intact and consolidated wetlands; (2) quantifying water‐table fluctuations and the occurrence of overland flow downslope of fully drained wetlands; (3) assessing the relation (or lack thereof) between intact, consolidated or drained wetland hydrological behaviour, and stream dynamics; and (4) relating wetland hydrological behaviour to landscape characteristics. Focus was on southwestern Manitoba, Canada, where ten intact, three consolidated, seven fully drained wetlands, and a nearby creek were monitored over two years with differing antecedent storage conditions. Hourly hydrological time series were used to compute behavioural metrics reflective of year‐specific and season‐specific wetland dynamics. Behavioural metrics were then correlated to wetland physical characteristics to identify landscape controls on wetland hydrology. Predictably, more frequent spillage or overland flow was observed when antecedent storage was high. Consolidated wetlands had a high degree of water permanence and a greater frequency of fill–spill events than intact wetlands. Shallow and highly responsive water tables were present downslope of fully drained wetlands. Potential wetland–stream connectivity was also inferred via time‐series analysis, while some landscape characteristics (e.g., wetland surface, catchment area, and storage volume) strongly correlated with wetland behavioural metrics. The nonstationarity of dominant processes was, however, evident through the lack of consistent correlations across seasons. This, therefore, highlights the importance of combining multiyear high‐frequency hydrometric data and detailed landscape analyses in wetland hydrology studies.  相似文献   

7.
Patterned landscapes are often evidence of biotic control on geomorphic processes, emerging in response to coupled ecosystem processes acting at different spatial scales. Self‐reinforcing processes at local scales expand patches, while self‐inhibiting processes, operating at a distance, impose limits to expansion. In Big Cypress National Preserve (BICY) in southwest Florida, isolated forested wetland depressions (cypress domes) appear to be evenly distributed within a mosaic of short‐hydroperiod marshes and pine uplands. To test the hypothesis that the apparent patterning is regular, we characterized frequency distributions and spatial patterns of vegetation communities, surface and bedrock elevation, and soil properties (thickness and phosphorus content). Nearest neighbor distances indicate strongly significant wetland spatial overdispersion, and bedrock elevations exhibited periodic spatial autocorrelation; both observations are consistent with regular patterning. Bedrock elevations and soil P were clearly bimodal, suggesting strong positive feedbacks on wetland patch development. Soil‐surface elevations exhibited weaker bimodality, indicating smoothing of surface morphology by some combination of sediment transport, mineral reprecipitation, and organic matter production. Significant negative autocorrelation of bedrock elevations at scales similar to wetland spacing suggest the presence of distal negative feedbacks on patch expansion. These findings support the inference of regular patterning, and are consistent with the presence of local positive feedbacks among hydroperiod, vegetation productivity and bedrock dissolution. These processes are ultimately constrained by distal negative feedbacks, potentially induced by landscape scale limitations on the water volume required to enable this biogeomorphic mechanism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
In the northern glaciated plain of North America, the duration of surface water in seasonal wetlands is strongly influenced by the rate of infiltration and evaporation. Infiltration also plays important roles in nutrient exchange at the sediment–water interface and groundwater recharge under wetlands. A whole‐wetland bromide tracer experiment was conducted in Saskatchewan, Canada to evaluate infiltration and solute transport processes. Bromide concentrations of surface water, groundwater, sediment pore water and plant tissues were monitored as the pond water‐level gradually dropped until there was no surface water. Hydraulic head gradients showed strong lateral flow from under the wetland to the treed riparian zone during the growing season. The bromide mass balance analysis showed that in early spring, almost 50% of water loss from the wetland was by infiltration, and it increased to about 70% in summer as plants in and around the wetland started to transpire more actively. The infiltration contributed to recharging the shallow, local groundwater under the wetland, but much of it was taken up by trees without recharging the deeper groundwater system. Emergent plants growing in the wetlands incorporated some bromide, but overall uptake of bromide by vegetation was less than 10% of the amount initially released. After one summer, most of the subsurface bromide was found within 40–80 cm of the soil surface. However, some bromide penetrated as deep as 2–3 m, presumably owing to preferential flow pathways provided by root holes or fractures. Copyright © 2004 Crown in the Right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

9.
In Mediterranean ponds, summer drought enhances seasonality whose intensity varies along topographic and climatic gradients. The alternation of wet and dry periods in rain dependent ponds affects their biogeochemistry and differentiates them from ponds fed by more stable water sources, such as groundwater springs. Superimposed onto this, land use is also a very strong factor of variability. In this study we compared nutrients and organic matter concentrations, in water and in sediment, among different types of Mediterranean ponds based on the source of water, hydroperiod and land use. Forty-three ponds were sampled in Eastern Spain corresponding to five pond types: (1) permanent spring ponds in lowlands, (2) permanent spring ponds in mountains, (3) semi-permanent rain ponds, (4) temporary rain ponds with long hydroperiod and (5) temporary rain ponds with short hydroperiod.The results of this study indicate relevant differences among these pond types. The temporary rain ponds with short hydroperiod are characterized by high turbidity due to suspension of sediment particles rich in phosphorous adsorbed onto them (argillotrophic aquatic systems). They are used for watering domestic sheep that enhance sediment suspension by trampling. Total phosphorous (TP) concentrations in the water are high (like those of hypertrophic lakes), but planktonic chlorophyll a is very low and not correlated with TP, because of the low P-bioavailavility in the water. At the other extreme, we have permanent ponds in lowlands fed by groundwater springs. They are heavily loaded with nitrates due to the surrounding intensive agriculture. In these and other permanent/semipermanent ponds chlorophyll is highly correlated with TP. Sediment characteristics provide a good indication of the hydroperiod, since desiccation has important effects on biogeochemical transformations. A threshold of 5% organic matter (OM) in the sediment separates temporary ponds with a short hydroperiod from those with a long hydroperiod, and a threshold of 8% separates the later from the semi-permanent and permanent ponds. Besides OM reduction, important loss of N occurs during desiccation through mineralization, ammonia volatization and the sequential nitrification/denitrification pathway. On the other hand, the increase of organic P mineralization in dry sediments does not represent a loss of P from the system, since o-P remains adsorbed or bound onto the soil. This leads to a low TN/TP ratio in sediments in temporary ponds with short hydroperiod. These characteristics have to be taken into account when establishing pond typologies and ecological thresholds to assess water quality in these unique aquatic habitats.  相似文献   

10.
Hydrological connectivity is a critical determinant of wetland functions and health, especially in wetlands that have been heavily fragmented and regulated by human activities. However, investigating hydrological connectivity in these wetlands is challenging due to the costs of high-resolution and large-scale monitoring required in order to identify hydrological barriers within the wetlands. To overcome this challenge, we here propose an interferometric synthetic aperture radar (InSAR)-based methodology to map hydrologic connectivity and identify hydrological barriers in fragmented wetlands. This methodology was applied along 70 transects across the Baiyangdian, the largest freshwater wetland in northern China, using Sentinel 1A and 1B data, covering the period 2016–2019. We generated 58 interferograms providing information on relative water level changes across the transects that showed the high coherence needed for the assessment of hydrological connectivity. We mapped the permanent and conditional (temporary) barriers affecting connectivity. In total, 11% of all transects are permanently disconnected by hydrological barriers across all interferograms and 58% of the transects are conditionally disconnected. Areas covered by reed grasslands show the most undisturbed hydrological connectivity while some of these barriers are the result of ditches and channels within the wetland and low water levels during different periods of the year. This study highlights the potential of the application of Wetland InSAR to determine hydrological connectivity and location of hydrological barriers in highly fragmented wetlands, and facilitates the study of hydrological processes from large spatial scales and long-time scales using remote sensing technique.  相似文献   

11.
Understanding hydrological processes in wetlands may be complicated by management practices and complex groundwater/surface water interactions. This is especially true for wetlands underlain by permeable geology, such as chalk. In this study, the physically based, distributed model MIKE SHE is used to simulate hydrological processes at the Centre for Ecology and Hydrology River Lambourn Observatory, Boxford, Berkshire, UK. This comprises a 10‐ha lowland, chalk valley bottom, riparian wetland designated for its conservation value and scientific interest. Channel management and a compound geology exert important, but to date not completely understood, influences upon hydrological conditions. Model calibration and validation were based upon comparisons of observed and simulated groundwater heads and channel stages over an equally split 20‐month period. Model results are generally consistent with field observations and include short‐term responses to events as well as longer‐term seasonal trends. An intrinsic difficulty in representing compressible, anisotropic soils limited otherwise excellent performance in some areas. Hydrological processes in the wetland are dominated by the interaction between groundwater and surface water. Channel stage provides head boundaries for broad water levels across the wetland, whilst areas of groundwater upwelling control discrete head elevations. A relic surface drainage network confines flooding extents and routes seepage to the main channels. In‐channel macrophyte growth and its management have an acute effect on water levels and the proportional contribution of groundwater and surface water. The implications of model results for management of conservation species and their associated habitats are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This paper describes how climate influences the hydrology of an ephemeral depressional wetland. Surface water and groundwater elevation data were collected for 7 years in a Coastal Plain watershed in South Carolina USA containing depressional wetlands, known as Carolina bays. Rainfall and temperature data were compared with water‐table well and piezometer data in and around one wetland. Using these data a conceptual model was created that describes the hydrology of the system under wet, dry, and drought conditions. The data suggest this wetland operates as a focal point for groundwater recharge under most climate conditions. During years of below‐normal to normal rainfall the hydraulic gradient indicated the potential for groundwater recharge from the depression, whereas during years of above‐normal rainfall, the hydraulic gradient between the adjacent upland, the wetland margin, and the wetland centre showed the potential for groundwater discharge into the wetland. Using high‐resolution water‐level measurements, this groundwater discharge condition was found to hold true even during individual rainfall events, especially under wet antecedent soil conditions. The dynamic nature of the hydrology in this Carolina bay clearly indicates it is not an isolated system as previously believed, and our groundwater data expand upon previous hydrologic investigations at similar sites which do not account for the role of groundwater in estimating the water budget of such systems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Constructed wetlands are being utilized worldwide to effectively reduce excess nutrients in agricultural runoff and wastewater. Despite their frequency, a multi‐dimensional, physically based, spatially distributed modelling approach has rarely been applied for flow and solute transport in treatment wetlands. This article presents a two‐dimensional hydrodynamic and solute transport modelling of a large‐scaled, subtropical, free water surface constructed wetland of about 8 km2 in the Everglades of Florida, USA. In this study, MIKE 21 was adopted as the basic model framework. Field monitoring of the time series hydrological and chloride data, as well as spatially distributed data such as bathymetry and vegetation distribution, provided the necessary model input and testing data. Simulated water level profiles were in good agreement with the spatio‐temporal variations of measured ones. On average, the root‐mean‐square error of model calibration on annual water level fluctuations was 0·09 m. Manning's roughness coefficients for the dense emergent and submerged aquatic vegetation areas, which were estimated as a function of vegetation type, ranged from 0·67 to 1·0 and 0·12 to 0·15 s/m1/3, respectively. The solute transport model calibration for four monitoring sites agreed well with the measured annual variations in chloride concentration with an average percent model error of about 15%. The longitudinal dispersivity was estimated to be about 2 m and was more than an order of magnitude higher than the transverse one. This study is expected to play the role of a stepping stone for future modelling efforts on the development and application of more advanced flow and transport models applicable to a variety of constructed wetland systems, as well as to the Everglades stormwater treatment areas in operation or in preparation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
With increasing urbanization and agricultural expansion, large tracts of wetlands have been either disturbed or converted to other uses. To protect wetlands, accurate distribution maps are needed. However, because of the dramatic diversity of wetlands and difficulties in field work, wetland mapping on a large spatial scale is very difficult to do. Until recently there were only a few high resolution global wetland distribution datasets developed for wetland protection and restoration. In this paper, we used hydrologic and climatic variables in combination with Compound Topographic Index(CTI) data in modeling the average annual water table depth at 30 arc-second grids over the continental areas of the world except for Antarctica. The water table depth data were modeled without considering influences of anthropogenic activities. We adopted a relationship between potential wetland distribution and water table depth to develop the global wetland suitability distribution dataset. The modeling results showed that the total area of global wetland reached 3.316×107 km2. Remote-sensing-based validation based on a compilation of wetland areas from multiple sources indicates that the overall accuracy of our product is 83.7%. This result can be used as the basis for mapping the actual global wetland distribution. Because the modeling process did not account for the impact of anthropogenic water management such as irrigation and reservoir construction over suitable wetland areas, our result represents the upper bound of wetland areas when compared with some other global wetland datasets. Our method requires relatively fewer datasets and has a higher accuracy than a recently developed global wetland dataset.  相似文献   

15.
Over the past centuries, the agricultural use of wetlands in Central Europe has required interference with the natural wetland water balance. Often this has consisted of drainage measures alone. In low‐precipitation areas, it has also involved the operation of combined drainage and sub‐irrigation systems. Model studies conducted as part of planning processes, or with a view to finding out the impact of changing climate conditions on the water balance of wetlands, must take these facts into account. For this reason, a water balance model has been devised for wetlands whose water balance is governed by water resources management systems. It is based on the WBalMo model system. Special modules were integrated into WBalMo to calculate the water balance of wetland areas (WABI module) and to regulate inflow partitioning within the wetland (REGINF module). When calculating the water balance, the WABI module takes into account precipitation and potential evapotranspiration, groundwater levels below surface, soil types, land‐use classes, inflows via the running water system, and data for target water levels. It provides actual evapotranspiration, discharge into the running water system, and groundwater levels in the area. The example of the Spreewald, a major wetland area in north‐eastern Germany, was used to design and test the WBalMo Spreewald model. The comparison of measured and calculated water balance parameters of the wetland area confirms the suitability of the model for water balance studies in wetlands with complex water resources management systems. The results reveal the strong influence of water management on the water balance of such areas. The model system has proved to be excellently suited for planning and carrying out water management measures aimed at the sustainable development of wetlands. Furthermore, scenario analyses can be used to assess the impact of global change on the water balance of wetlands. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
G. Z. Sass  I. F. Creed 《水文研究》2008,22(11):1687-1699
Characterizing the spatial and temporal variation in surface hydrological dynamics of large boreal landscapes is vital, since these patterns define the occurrence of key areas of land‐to‐lake and land‐to‐atmosphere hydrological and biogeochemical linkages that are critical in the movement of matter and energy at local to global scales. However, monitoring surface hydrological dynamics over large geographic extents and over long periods of time is a challenge for hydrologists, as traditional point measurements are not practical. In this study we used European Remote Sensing satellite radar imagery to monitor the variation in surface hydrological patterns over a 12‐year period and to assess the change in the organization of saturated and inundated areas of the landscape. Using the regional Utikuma River drainage basin (2900 km2) as the test area, the analyses of patterns of wetlands indicated that, during dry climatic conditions, wetland sizes were small and disconnected from each other and receiving bodies of water. As climatic conditions changed from dry to mesic, wetland numbers increased but were still disconnected. Very wet climatic conditions were required before the disconnected wetlands coalesced and connected to lakes. During these wet conditions, the response of the lake level at Utikuma Lake was observed to be much higher than under drier conditions. Analyses of individual wetland maps and integrated wetland probability maps have the potential to inform future biogeochemical and ecological investigations and forest management on the Boreal Plain. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Principal components analysis (PCA) is applied to a time series of European Remote Sensing (ERS) synthetic aperture radar (SAR) scenes of the Alzette River floodplain (Grand‐Duchy of Luxembourg). These images cover markedly different hydrological conditions during several winter seasons in order to enable the examination of the decrease of the radar backscattering signal during drying‐up phases following important flood events. At the floodplain scale, with homogeneous land use and constant topography, the first principal components (PCs) are mainly dominated by the variance related to the changing areas. The PCs are thus mainly controlled by subsurface and surface water dynamics. The field observations of a densely equipped piezometric network in the floodplain are used to calculate a mean soil saturation index (SSI) continuously. A classification scheme, based on the PCs and k‐means algorithm, leads to the segmentation of the floodplain into several hydrological behaviour classes with distinctive responses versus changing moisture conditions. To validate this classification method with ground‐based estimations, the relation between the mean backscattering values of microplots within each PCA‐derived hydrological class and the water table measurements, expressed by means of the SSI, is evaluated. Results show that each class of microplots is characterized by the slope of the ‘backscattering–SSI’ function and by the SSI threshold value at which groundwater resurgence appears. The water ponding implies very low signal return due to the specular backscattering effect on the water surface. Based on established relationships between measured initial water table depths, runoff coefficients and rainfall‐induced water table rises, these results are used to discuss the potential of SAR‐derived information in flood management applications. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Geographically isolated wetlands, those entirely surrounded by uplands, provide numerous landscape‐scale ecological functions, many of which are dependent on the degree to which they are hydrologically connected to nearby waters. There is a growing need for field‐validated, landscape‐scale approaches for classifying wetlands on the basis of their expected degree of hydrologic connectivity with stream networks. This study quantified seasonal variability in surface hydrologic connectivity (SHC) patterns between forested Delmarva bay wetland complexes and perennial/intermittent streams at 23 sites over a full‐water year (2014–2015). Field data were used to develop metrics to predict SHC using hypothesized landscape drivers of connectivity duration and timing. Connection duration was most strongly related to the number and area of wetlands within wetland complexes as well as the channel width of the temporary stream connecting the wetland complex to a perennial/intermittent stream. Timing of SHC onset was related to the topographic wetness index and drainage density within the catchment. Stepwise regression modelling found that landscape metrics could be used to predict SHC duration as a function of wetland complex catchment area, wetland area, wetland number, and soil available water storage (adj‐R2 = 0.74, p < .0001). Results may be applicable to assessments of forested depressional wetlands elsewhere in the U.S. Mid‐Atlantic and Southeastern Coastal Plain, where climate, landscapes, and hydrological inputs and losses are expected to be similar to the study area.  相似文献   

19.
Las Tablas de Daimiel National Park is one of Spain's most representative groundwater‐dependent ecosystems. Under natural conditions, water inflows combined brackish surface water from River Gigüela with freshwater inputs from River Guadiana and the underlying aquifer. Since the mid‐1970s, aquifer overexploitation caused the desiccation of the wetlands and neighbouring springs. The National Park remained in precarious hydrological conditions for three decades, with the only exception of rapid floods due to extreme rainfall events and sporadic water transfers from other basins. In the late 2000s, a decrease in groundwater abstraction and an extraordinarily wet period reversed the trend. The aquifer experienced an unexpected recovery of groundwater levels (over 20 m in some areas), thus restoring groundwater discharge to springs and wetlands. The complex historical evolution of the water balance in this site has resulted in substantial changes in surface and groundwater quality. This becomes evident when comparing the pre‐1980 groundwater quality and the hydrochemical status in the wetland in two different periods, under “dry” and “wet” conditions. Although the system is close to full recovery from the groundwater‐level viewpoint, bouncing back in the major hydrochemical constituents has not yet been obtained. These still appear to evolve in response to the previous overexploitation state. Moreover, in some sectors, there are groundwater‐dependent ecosystems that remain different to those found in preoverexploitation times. The experience of Las Tablas de Damiel provides an observatory of long‐term changes in wetland water quality, demonstrating that the effects of aquifer overexploitation on aquatic ecosystems are more than a mere alteration of the water balance and that groundwater quality is the key to aquifer and aquatic ecosystem sustainability.  相似文献   

20.
Assessment and monitoring of biodiversity is critical for conservation planning. Considering the cost and time associated to monitoring, selecting proper bio-indicators is important, particularly in countries where financial resources are limited. The objectives of this study were to investigate community congruence of macroinvertebrates and wetland birds in natural wetlands of southwest Ethiopia, exposed to different levels of human disturbance and to identify important environmental variables related to these bio-indicators. Data on macroinvertebrates, birds, physico-chemical water quality, human disturbance and vegetation cover were collected from 54 sampling sites distributed over 12 wetlands during dry and wet season of 2015. Procrustes analysis was used to quantify community congruence between the two assemblages across different disturbance levels. The congruence of macroinvertebrates and wetland dependent birds was higher for low disturbed wetlands (R2 = 0.60) than for moderately disturbed wetlands (R2 = 0.31). Moderately disturbed wetlands showed no significant congruence between macroinvertebrates and wetland birds and between wetland dependent and wetland associated birds. A significant and positive relation between richness of macroinvertebrates and wetland dependent birds was observed when the full data set was used, whereas no significant relation was observed when the data was split according to the different levels of human disturbance. Vegetation cover, dissolved oxygen, water depth, total nitrogen, total phosphorus and conductivity were significantly correlated with both macroinvertebrate and wetland bird occurrence. Based on our study we suggest to monitor both bio-indicators as they provide important complementary information on the status of the wetlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号