首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
长江中下游安庆沿江湖泊湿地夏季鸟类多样性调查   总被引:3,自引:3,他引:0  
湖泊湿地是鸟类的重要栖息地,湖泊湿地鸟类是湖泊生态系统重要的监测生物,湖泊湿地鸟类多样性及其影响因素的研究对湿地管理具有重要意义.2011年7-8月,采用样线法对长江中下游安庆沿江7个湖泊湿地的夏季鸟类资源进行了调查,以期为湖泊湿地资源管理提供依据.共记录到安庆沿江湖泊湿地鸟类14目35科82种,其中留鸟27种(占32.9%),夏候鸟37种(占45.1%);水鸟28种(占34.6%);肉食性、食虫和杂食性鸟类占多数,分别占30.5%、30.5%和23.2%;须浮鸥、夜鹭、丝光椋鸟、黑脸噪鹛、树麻雀、家燕等6种鸟类为优势种.物种数以黄大湖最高(50种),白荡湖和破罡湖最低(各28种);Shannon-Wiener指数以黄大湖最高(2.123),白荡湖最低(1.918);均匀度指数以龙感湖最高(0.865),菜子湖最低(0.739).进一步分析显示,鸟类物种数、多样性指数与湖泊面积呈显著正相关,鸟类物种数、多样性指数与干扰强度呈显著负相关.采取退田还湖、恢复湿地等途径增加湿地面积、生境类型和植被资源对于保护湖泊湿地的鸟类资源具有积极意义.  相似文献   

2.
邢伟  鲍锟山  韩冬雪  王国平 《湖泊科学》2019,31(5):1391-1402
沼泽湿地是陆地生态系统的重要组成部分,在维护区域环境稳定中起着重要作用.随着社会经济的发展,人类活动导致湿地大面积退化和消失,严重影响了区域生态安全;恢复退化湿地已成为各国政府和学者关注的焦点.而了解历史时期沼泽湿地发育过程及影响因素则是建立合理湿地恢复目标的重要前提.东北地区是我国最大的沼泽湿地集中分布区,其中70%的湿地面临不同程度的退化威胁;但由于数据的缺乏,东北地区沼泽湿地发育过程及其与气候变化的关系仍不清楚.基于此,本研究系统分析了全新世以来东北地区沼泽湿地形成发育的动态变化过程,并探讨了东北地区不同区域沼泽湿地的发育规律及其对气候变化的响应机理.研究发现东北地区沼泽湿地约从12 ka(1 ka=1000 cal.)开始发育,在距今8.6 ka以后开始广泛形成,约有35%的沼泽湿地形成于全新世暖湿期(8.0-4.0 ka);而沼泽湿地发育的高峰期则集中在全新世晚期.这种发育趋势与全球北方主要区域沼泽湿地大规模发育趋势显著不同.古气候重建表明,全新世早期东北地区气候温暖湿润,处在有利于沼泽发育的时期,促进了沼泽湿地的形成;而在全新世晚期,东北地区呈现冷湿的气候组合特征,冷湿的气候条件不利于有机质的分解,进而促进了沼泽湿地的大规模形成和发育.此外,研究结果也表明全新世以来东北地区不同区域沼泽湿地发育的时间和规模呈现显著的空间差异,而温度和降水则是影响不同区域沼泽湿地发育的最重要因素.本研究将为我国东北地区沼泽湿地的保护和恢复提供一定的理论和数据支持.  相似文献   

3.
High Arctic wetlands, though limited in occurrence, are an important ecological niche, providing the major vegetated areas in an arid and cold polar desert environment. These wetlands are often found as patches in the barren landscape. At a few locales which may be ice-wedge polygonal grounds, glacial terrain and zones of recent coastal uplift, wetland occurrence can become extensive, forming a mosaic that comprises patches of different wetland types. Reliable water supply during the thawed season is a deciding factor in wetland sustainability. The sources include meltwater from late-lying snowbanks, localized ground water discharge, streamflow, inundation by lakes and the sea, and for some ice-wedge wetlands, ground-ice melt. Different types of wetlands have their own characteristics, and peat accumulation or diatom depositions are common. The peat cover insulates the wetland from summer heating and encourages permafrost aggradation, with the feedback that a shallow frost table reduces the moisture storage capacity in a thinly thawed layer, which becomes easily saturated. All the wetlands studied have high calcium content since they are formed on carbonate terrain. Coastal wetlands have high salt concentration while snowmelt and ground-ice melt provides dilution. The sustainability of High Arctic wetlands is predicated upon water supply exceeding the losses to evaporation and lateral drainage. Disturbances due to natural causes such as climatic variations, geomorphic changes, or human-induced drainage, can reduce inundation opportunities or increase outflow. Then, the water table drops, the vegetation changes and the peat degrades, leading to the detriment of the wetlands.  相似文献   

4.
WETLANDLOSSINCOASTALLOUISIANAMenglouWANG1andDonaldDeanADRIAN2ABSTRACTWetlandsintheMisissippiRiverdeltaicplainarevaluableresou...  相似文献   

5.
Dissolved organic matter (DOM) is integral to fluvial biogeochemical functions, and wetlands are broadly recognized as substantial sources of aromatic DOM to fluvial networks. Yet how land use change alters biogeochemical connectivity of upland wetlands to streams remains unclear. We studied depressional geographically isolated wetlands on the Delmarva Peninsula (USA) that are seasonally connected to downstream perennial waters via temporary channels. Composition and quantity of DOM from 4 forested, 4 agricultural, and 4 restored wetlands were assessed. Twenty perennial streams with watersheds containing wetlands were also sampled for DOM during times when surface connections were present versus absent. Perennial watersheds had varying amounts of forested wetland (0.4–82%) and agricultural (1–89%) cover. DOM was analysed with ultraviolet–visible spectroscopy, fluorescence spectroscopy, dissolved organic carbon (DOC) concentration, and bioassays. Forested wetlands exported more DOM that was more aromatic‐rich compared with agricultural and restored wetlands. DOM from the latter two could not be distinguished suggesting limited recovery of restored wetlands; DOM from both was more protein‐like than forested wetland DOM. Perennial streams with the highest wetland watershed cover had the highest DOC levels during all seasons; however, in fall and winter when temporary streams connect forested wetlands to perennial channels, perennial DOC concentrations peaked, and composition was linked to forested wetlands. In summer, when temporary stream connections were dry, perennial DOC concentrations were the lowest and protein‐like DOM levels the highest. Overall, DOC levels in perennial streams were linked to total wetland land cover, but the timing of peak fluxes of DOM was driven by wetland connectivity to perennial streams. Bioassays showed that DOM linked to wetlands was less available for microbial use than protein‐like DOM linked to agricultural land use. Together, this evidence indicates that geographically isolated wetlands have a significant impact on downstream water quality and ecosystem function mediated by temporary stream surface connections.  相似文献   

6.
于超  周立志  宋昀微 《湖泊科学》2019,31(1):195-201
能量的消耗模式是动物适合度的重要体现,动物的日常行为和栖息地特征共同影响日能量消耗.稻田生境是越冬水鸟重要的觅食场所之一,同时又容易受到人为干扰,越冬水鸟应对日间不同的人为干扰因素而合理进行能量消耗配置,对于在越冬后期为迁徙而贮备能量的水鸟来说尤为迫切和重要.本文采用焦点动物取样法,观测越冬后期稻田中小天鹅(Cygnus columbianus)在干扰和非干扰环境中昼间行为的时间分配,推算其能量消耗.结果表明,小天鹅在干扰环境中警戒行为的时间分配和能量消耗、单次警戒时间和警戒频次均显著大于非干扰环境,游泳频次也是如此;在稻田中的昼间警戒能耗随干扰时间增加而增加,随干扰距离增加而降低.干扰造成小天鹅减少高能耗的取食行为,增加低能耗的警戒行为,降低昼间总能量的消耗.  相似文献   

7.
The recent transformation of wetlands into farmland in East Africa is accelerating due to growing food-demand, land shortages, and an increasing unpredictability of climatic conditions for crop production in uplands. However, the conversion of pristine wetlands into sites of production may alter hydrological attributes with negative effects on production potential. Particularly the amount and the dynamics of plant available soil moisture in the rooting zone of crops determine to a large extent the agricultural production potential of wetlands. Various methods exist to assess soil moisture dynamics with Frequency Domain Reflectometry (FDR) being among the most prominent. However, the suitability of FDR sensors for assessing plant available soil moisture has to date not been confirmed for wetland soils in the region. We monitored the seasonal and spatial dynamics of water availability for crop growth in an inland valley wetland of the Kenyan highlands using a FDR sensor which was site-specifically calibrated. Access tubes were installed within different wetland use types and hydrological situations along valley transects and soil properties affecting soil moisture (organic C, texture, and bulk density) were investigated. There was little variation in soil attributes between physical positions in the valley, and also between topsoil and subsoil attributes with the exception of organic C contents. With a root mean squared error of 0.073 m3/m3, the developed calibration function of the FDR sensor allows for reasonably accurate soil moisture prediction for both within-site comparisons and the monitoring of temporal soil moisture variations. Applying the calibration equation to a time series of profile probe readings over a period of one year illustrated not only the temporal variation of soil moisture, but also effects of land use.  相似文献   

8.
Geographically isolated wetlands, those entirely surrounded by uplands, provide numerous landscape‐scale ecological functions, many of which are dependent on the degree to which they are hydrologically connected to nearby waters. There is a growing need for field‐validated, landscape‐scale approaches for classifying wetlands on the basis of their expected degree of hydrologic connectivity with stream networks. This study quantified seasonal variability in surface hydrologic connectivity (SHC) patterns between forested Delmarva bay wetland complexes and perennial/intermittent streams at 23 sites over a full‐water year (2014–2015). Field data were used to develop metrics to predict SHC using hypothesized landscape drivers of connectivity duration and timing. Connection duration was most strongly related to the number and area of wetlands within wetland complexes as well as the channel width of the temporary stream connecting the wetland complex to a perennial/intermittent stream. Timing of SHC onset was related to the topographic wetness index and drainage density within the catchment. Stepwise regression modelling found that landscape metrics could be used to predict SHC duration as a function of wetland complex catchment area, wetland area, wetland number, and soil available water storage (adj‐R2 = 0.74, p < .0001). Results may be applicable to assessments of forested depressional wetlands elsewhere in the U.S. Mid‐Atlantic and Southeastern Coastal Plain, where climate, landscapes, and hydrological inputs and losses are expected to be similar to the study area.  相似文献   

9.
以安徽省升金湖湿地为研究对象,使用1989年、1996年、2003年、2010年和2017年四季Landsat系列遥感数据,构建景观生态风险评价模型,计算不同季节景观生态风险指数,分析风险空间分布及其变化特征,并使用Pearson相关系数分析季节间、季节与年度间景观生态风险相关性.结果显示:(1)不同季节景观生态风险指数有显著差异,生态风险从高到低依次为夏季、冬季、秋季和春季,夏、冬季风险指数平均高出春、秋季37.03%.(2) 1989—2017年升金湖湿地景观生态风险指数明显增加,湖区内泥滩、草滩等重要景观类型极易受人类活动影响,逐渐由中风险、较高风险区转变成较高风险、高风险区,且人造表面与草滩面积与较高风险和高风险区面积呈现出一定的协同变化特征.总体上,升金湖湿地以较低景观生态风险和中景观生态风险为主,较高景观生态风险与高景观生态风险主要位于上、下湖区.(3)季节间景观生态风险相关性最高的为秋季与冬季;年度生态风险与冬季生态风险高度相关.因此,近30年升金湖不同季节湿地景观生态风险时空演变趋势体现了该湿地景观格局变化对景观生态系统干扰的压力响应,且秋季与冬季湖区湿地需引起高度重视.  相似文献   

10.
Freshwater wetlands are important ecosystems experiencing rapid degradation around the world. As much as 64% of world's wetland area has been lost since 1900; the situation is even more serious in Asia, where land reclamation and anthropogenic modifications of rivers are increasing the rate of wetland disappearance. In this study, we provide a first complete estimation of daily Emergent Wetland Area (EWA) in Poyang Lake, China's largest freshwater lake, from 1955 to 2012. A wavelet analysis indicates a strong periodicity in the monthly EWA time series with two oscillations having a period of 12 and 60–72 months, respectively. A dramatic increase in mean annual EWA is detected since 2003, when the Three Gorges Dam (TGD) was completed, mainly due to the seasonal drying of 1078 km2 of wetlands in October. It is found that the timing of wetland emergence during the dry season has been anticipated of one month, from November to October, since the establishment of TGD. It is argued that a significant increase in wetland exposure and an observable shift in the seasonal timing of flooding and drying will seriously degrade the wetland system and threaten the endangered migratory birds that inhabit it unless effective countermeasures are implemented.  相似文献   

11.
With increasing urbanization and agricultural expansion, large tracts of wetlands have been either disturbed or converted to other uses. To protect wetlands, accurate distribution maps are needed. However, because of the dramatic diversity of wetlands and difficulties in field work, wetland mapping on a large spatial scale is very difficult to do. Until recently there were only a few high resolution global wetland distribution datasets developed for wetland protection and restoration. In this paper, we used hydrologic and climatic variables in combination with Compound Topographic Index(CTI) data in modeling the average annual water table depth at 30 arc-second grids over the continental areas of the world except for Antarctica. The water table depth data were modeled without considering influences of anthropogenic activities. We adopted a relationship between potential wetland distribution and water table depth to develop the global wetland suitability distribution dataset. The modeling results showed that the total area of global wetland reached 3.316×107 km2. Remote-sensing-based validation based on a compilation of wetland areas from multiple sources indicates that the overall accuracy of our product is 83.7%. This result can be used as the basis for mapping the actual global wetland distribution. Because the modeling process did not account for the impact of anthropogenic water management such as irrigation and reservoir construction over suitable wetland areas, our result represents the upper bound of wetland areas when compared with some other global wetland datasets. Our method requires relatively fewer datasets and has a higher accuracy than a recently developed global wetland dataset.  相似文献   

12.
The dynamic responses of wetlands to upstream water conservancy projects are becoming increasingly crucial for watershed management. Poyang Lake is a dynamic wetland system of critical ecological importance and connected with the Yangtze river. However, in the context of disturbed water regime in Poyang Lake resulting from human activities and climate change, the responses of vegetation dynamics to the Three Gorges Dam (TGD) have not been investigated. We addressed this knowledge gap by using daily water level data and Landsat images from 1987 to 2018. Landsat images were acquired between October and December to ensure similar phenological conditions. Object-oriented Artificial Neural Network Regression for wetland classification was developed based on abundant training and validation samples. Interactions between vegetation coverage and water regimes pre and post the operation of the TGD were compared using classification and regression trees and the random forest model. Since the implementation of the TGD in 2003, Poyang Lake has become drier, especially during the dry season. A more rapid plant growth rate was observed post TGD (44.74 km2 year−1) compared to that of the entire study period (12.9 km2 year−1). Average water level for the antecedent 20 days most significantly affected vegetation before 2003, whereas average water level for the antecedent 5 or 10 days was more important after 2003. The impoundment of the TGD after the flood season accelerated the drawdown processes of Poyang Lake, and the rapidly exposed wetlands accelerated vegetation expansion during the dry seasons, resulting in shrinkage and degradation of the lake area. This study deepens our knowledge of the influences of newly developed dams on lakes and rivers.  相似文献   

13.
《国际泥沙研究》2019,34(6):600-607
Louisiana's chronic wetland deterioration has resulted in massive soil organic matter loss and subsequent carbon release through oxidation. To combat these losses, and reestablish ecosystem function, goods, and services, many restoration projects have been constructed or planned throughout coastal Louisiana. There are significant data gaps and conflicting results regarding wetland contributions to global warming, especially related to carbon sequestration in restored wetlands. An exceptionally large data set was used to derive carbon accumulation rates from key soil characteristics and processes. Assessments and comparisons of bulk density, organic matter, total carbon, vertical accretion (short- and longer-term), and carbon accumulation rates were made across time (chronosequence) and space (i.e., coastwide, watershed basins, and vegetation zones). Carbon accumulation rates in the Louisiana coastal zone were generally correlated to hydrogeomorphology, with higher rates occurring in zones of high river connectivity or in swamp or higher salinity tolerant marsh. On average, naturally occurring wetlands had higher carbon accumulation rates than restoration sites. Although some restoration measures were higher, and most showed increasing carbon accumulation rates over time. Results demonstrate that although wetland restoration provides many ecosystem benefits, the associated carbon sequestration may also provide useful measures for climate change management.  相似文献   

14.
范少军  周立志  于超 《湖泊科学》2022,34(5):1596-1607
升金湖是长江中下游地区典型的浅水通江湖泊,是东亚-澳大利西亚候鸟迁徙路线上水鸟重要的越冬地. 2017年11月-2018年3月,以该湖泊越冬鸭属(Anas)鸟类为研究对象,对其在芦苇湿地、芡实塘、退耕还湿和水生植被恢复湿地4种湿地生境中的群落结构、行为特征及其环境影响因素进行了研究. 结果表明,升金湖分布有10种越冬鸭属鸟类,斑嘴鸭(Anas poecilorhyncha)、绿翅鸭(A. crecca)和绿头鸭(A. platyrhynchos)为该属鸟类群落的优势种. 鸭属鸟类群落在越冬前期种类和数量最多,在整个越冬期,鸭属鸟类在芦苇湿地中种数、数量、密度和多样性指数最高. 在水生植物盖度高、人为活动弱的芦苇湿地,鸭类的主要行为是休息;在食物资源丰富、人为活动强的芡实塘和退耕还湿湿地,其主要行为是觅食和警戒. 鸭属鸟类群落种数、数量、密度和多样性指数与湿地的面积、水域面积、水生植物盖度呈正相关,与干扰度和水深呈负相关. 觅食时间与气温和沉水植物的盖度呈正相关,与水深和干扰度呈负相关,警戒时间与干扰度呈正相关,与挺水植物的盖度呈负相关. 各种恢复类型的湿地生境成为越冬鸭属鸟类的重要栖息地,因此恢复多种湿地栖息地对于越冬水鸟的保护具有重要意义.  相似文献   

15.
In this paper, we report the first wetland mapping of the entire China using Landsat enhanced thematic mapper plus (ETM+) data. These data were obtained from the Global Land Cover Facility at the University of Maryland spanning from 1999 to 2002. A total of 597 scenes of Landsat images were georeferenced and mosaiced. Manual image interpretation of satellite images was aided with elevation data, soil data, land cover/land use data and Google Earth. The minimum mapping unit is 10 pixel × 10 pixel, equivalent...  相似文献   

16.
郑婷  曹艳敏  彭佳  陈旭 《湖泊科学》2019,31(4):1182-1190
偏远的亚高山湿地受人为活动直接干扰较小,是追踪气候变化和大气沉降双重影响下湿地生态系统演化的理想研究地.本研究以位于巫山的葱坪湿地为研究对象,基于一根50 cm沉积岩芯的210Pb和137Cs测年、摇蚊亚化石和元素序列,探讨该湿地近200年来环境演化历史.结果表明,摇蚊种群由1910年之前的Chironomus anthracinus-type、Limnophyes sp.、Cladotanytarsus mancus-type 1变为1910-1925年的C.mancus-type 1、C.anthracinus-type、Procladius sp.和Endochironomus impar-type的优势组合,这些优势种均指示浅水环境.此后,耐营养种E.impar-type、Polypedilum nubeculosum-type和C.anthracinus-type逐渐成为优势种.冗余分析表明,总磷、总碳和钙是解释摇蚊组合变化的显著环境因子.20世纪30年代以前摇蚊种群可能与进入湿地的径流量小、水位较低相关,而20世纪中叶以来摇蚊组合变化指示大气沉降增长背景下湿地营养富集过程.在大气沉降和气候变化的双重影响下,耐营养属种增加和生物多样性降低表明葱坪湿地生态环境正发生退化.  相似文献   

17.
滹沱河湿地是山西省重要的湿地资源,对生物多样性的保护有至关重要的作用.有壳变形虫是一类生活在淡水生态系统中的原生动物,对环境变化响应敏感,是良好的环境生物指示剂.本研究主要对山西滹沱河流域6个湿地52个不同生境的沉积样品进行有壳变形虫物种组成及多样性分析,通过对有壳变形虫和环境因子数据进行排序分析探讨影响有壳变形虫群落分布的关键环境因子.结果显示:滹沱河湿地共记录有壳变形虫20种,其中斜口三足虫(Trinema enchelys)、顶足法帽虫(Phryganella acropodia)和线条三足虫(Trinema lineare)为优势种,相对丰度分别为23.4%、17.38%、13.48%.沉积物粒度和有机质含量对有壳变形虫的物种组成及多样性有显著影响,砂粒含量越低、有机质含量越高,有壳变形虫的丰富度和多样性就越高.CCA排序结果表明硝态氮和COD是影响有壳变形虫种类组成和分布的关键环境因子,解释量分别为19.6%和17.3%,而pH的解释量最小,为8.6%.本研究结果为山西湿地有壳变形虫的现代生态学研究提供借鉴,为湿地多样性保护、管理和修复提供理论支撑.  相似文献   

18.
We assessed water quality using physical, chemical, and biological characteristics in 37 streams between Puerto Maldonado and Cusco in Peru. Study sites ranged from ∼200 to 4000 m in elevation, with streams selected as pairs (control/natural vs. human impacted) along this gradient. In general, temperature decreased (R2 = 0.82) and other parameters increased [dissolved oxygen (R2 = 0.19), conductivity (R2 = 0.17), pH (R2 = 0.37)] with elevation. Macroinvertebrates were hand collected by professional entomologists and using leaf packs implemented by conservation workers. The professionals identified 213 unique taxa from the hand collections, with 80 species collected only one time. Data from control streams showed that as elevation increased, total richness (p = 0.008) and EPT richness (p = 0.050) decreased whereas Diptera richness increased (p = 0.002). NMS ordination indicated significant differences in macroinvertebrate assemblages when control streams from low and high elevations were contrasted. Hand collections also revealed significant differences between control and impact streams for total richness, EPT richness and % Diptera, but not for % EPT, % EPT richness, or % Diptera richness. The majority of the deployed leaf packs were successfully retrieved and contained many macroinvertebrates (Avg. = 141 individuals per pack). There were 98 unique taxa (family level or higher) identified from the leaf packs by the trained conservation workers. Fourteen of 15 macroinvertebrate community metrics (at the family level) were able to detect significant differences between control and impact sites. All of the family level metrics responded similarly across the elevation gradient except total richness, EPT richness, EPT count, and % Hydropsychids. Both the Costa Rica and the Virginia Save Our Stream Indexes were able to differentiate control from impacted streams using leaf pack data. Although the diversity of macroinvertebrates was higher for hand collections relative to leaf packs (due to greater habitats sampled and higher taxonomic resolution), leaf pack samples were better able to distinguish control from impacted streams. Specifically, leaf packs were able to discern impacts in streams at low elevation better than those at high elevation. Generally, macroinvertebrates indicated impact from urbanization to be worse than impacts from other human activities (i.e., gold mining and agriculture). Overall, hand collections will serve as an important reference of species diversity going forward while leaf packs processed by trained conservation workers are a viable method to monitor stream water quality in Peru and perhaps elsewhere.  相似文献   

19.
As a result of discontinuous water flow, agriculture, and increasing urban use of fresh water affecting the natural wetlands of the Yellow River Delta, these areas have experienced significant degradation in the past two decades, ultimately diminishing the overall natural wetland land area in the region. This study aimed to address the issue of decreasing fresh water in the Yellow River Delta by studying the effects of three different approaches to restoration on long‐term wetland recovery. The results of the study demonstrated that soil salt and available Na contents significantly decreased in response to all three restoration treatments. Impacts of the restoration treatments were more significant in 2009 than in 2010, as shown by the high rate of activity in the reed debris group. The highest phosphatase activity of the experimental period was also observed in the reed debris group. Meanwhile, a marked variation in soil nutrient elements (total carbon (TC), total nitrogen (TN), available phosphorus, and available potassium) was observed in the restoration treatment plots throughout the experimental period. TC and TN contents were generally higher in the restoration treatment groups than in the control group. Moreover, urease and phosphatase activity levels were highly correlated with one another, as well as with soil nutrient elements. In 2009, the yield of the Suaeda salsa plant was highest in the reed debris treatment group and lowest in the ploughing treatment group. The S. salsa plant did show a positive response to all of the different restoration treatments. Taken together, these results suggest that restoration approaches that implement ploughing techniques aided in the restoration of degraded saline wetlands.  相似文献   

20.
Abstract

Hydrological processes of the wetland complex in the Prairie Pothole Region (PPR) are difficult to model, partly due to a lack of wetland morphology data. We used Light Detection And Ranging (LiDAR) data sets to derive wetland features; we then modelled rainfall, snowfall, snowmelt, runoff, evaporation, the “fill-and-spill” mechanism, shallow groundwater loss, and the effect of wet and dry conditions. For large wetlands with a volume greater than thousands of cubic metres (e.g. about 3000 m3), the modelled water volume agreed fairly well with observations; however, it did not succeed for small wetlands (e.g. volume less than 450 m3). Despite the failure for small wetlands, the modelled water area of the wetland complex coincided well with interpretation of aerial photographs, showing a linear regression with R2 of around 0.80 and a mean average error of around 0.55 km2. The next step is to improve the water budget modelling for small wetlands.

Editor Z.W. Kundzewicz; Associate editor X. Chen

Citation Huang, S.L., Young, C., Abdul-Aziz, O.I., Dahal, D., Feng, M., and Liu, S.G., 2013. Simulating the water budget of a Prairie Potholes complex from LiDAR and hydrological models in North Dakota, USA. Hydrological Sciences Journal, 58 (7), 1434–1444.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号