首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Amount and composition of dissolved organic matter (DOM) were evaluated for multiple, nested stream locations in a forested watershed to investigate the role of hydrologic flow paths, wetlands and drainage scale. Sampling was performed over a 4‐year period (2008–2011) for five locations with drainage areas of 0.62, 3.5, 4.5, 12 and 79 ha. Hydrologic flow paths were characterized using an end‐member mixing model. DOM composition was determined using a suite of spectrofluorometric indices and a site‐specific parallel factor analysis model. Dissolved organic carbon (DOC), humic‐like DOM and fluorescence index were most sensitive to changes with drainage scale, whereas dissolved organic nitrogen, specific UV absorbance, Sr and protein‐like DOM were least sensitive. DOM concentrations and humic‐like DOM constituents were highest during both baseflow and stormflow for a 3.5‐ha catchment with a wetland near the catchment outlet. Whereas storm‐event concentrations of DOC and humic DOM constituents declined, the mass exports of DOC increased with increasing catchment scale. A pronounced dilution in storm‐event DOC concentration was observed at peak stream discharge for the 12‐ha drainage location, which was not as apparent at the 79‐ha scale, suggesting key differences in supply and transport of DOM. Our observations indicate that hydrologic flow paths, especially during storms, and the location and extent of wetlands in the catchment are key determinants of DOM concentration and composition. This study furthers our understanding of changes in DOM with drainage scale and the controls on DOM in headwater, forested catchments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Processes occurring at various scales interact to influence the export of organic carbon from watersheds to freshwater ecosystems and eventually the ocean. The goal of this study was to determine if and how differences in wetland extent and presence of lakes influenced dissolved organic carbon (DOC) concentrations and yields in streams. We monitored stream flow, DOC and dissolved inorganic carbon concentrations periodically for 2 years at four sites with forested watersheds, four sites with wetland watersheds, and four sites with wetland watersheds that also contained in-network lakes. As expected, the presence of wetlands resulted in higher DOC concentrations and yields, but the impact of lakes was less clear on the magnitude of DOC concentrations and yields. With respect to temporal dynamics, we found positive relationships between stream flow and DOC concentration (median r2 = 0.89) in streams without upstream lakes. The relationships for forested sites are among the strongest reported in the literature, and suggest a clear shift in hydrologic flowpath from intersecting mineral soils at low flow, to organic soils at high flow. In streams with upstream lakes, the relationship between flow and concentration was non-significant for three of four sites unless time lags with flow were applied to the concentration data, after which the relationship was similar to the non-lake streams (median r2 = 0.95). These findings suggest that lakes buffering temporal patterns in streams by hydrologically delaying pulses of carbon, but provide little support that in-line lakes have a net effect on carbon exports in this region.  相似文献   

3.
4.
Relative baseflow volume and streamflow flashiness indices were used to assess relationships between land use/cover and streamflow regime in nine New Jersey (NJ) Pinelands streams. Baseflow index (BFI) and Richards–Baker flashiness index (RBI) were estimated on an October–September water year, with period‐of‐record changes assessed by trend analysis and differences between watersheds assessed by examining index versus land‐use/cover relationships using a data period common to all study sites. Four streams, among the more urbanized watersheds of the nine study sites, were found to have significant (α = 0·05) trends in both indices. The two most urbanized study sites showed decreasing baseflow and increasing flashiness; however, the other two streams showed the opposite trends. An apparent slowdown in urbanization towards the second half of the streamflow period of record, along with potential changes in wetland agricultural practices in the latter two watersheds, may explain their trend results. A marginally significant (α = 0·10) decreasing relationship was found between mean annual BFI and wetland agriculture, whereas a significant (α = 0·05) increasing relationship was determined between mean annual RBI and artificial lakes/reservoirs. Principal component analysis showed an association between wetland agriculture and artificial lakes/reservoirs which suggested that both of the significant index versus land‐use/cover relationships reflect wetland agricultural activities. Because these significant relationships involved land uses/covers with small spatial extents (?5%), they demonstrated that land‐use practices can have a greater impact than spatial extent on stream hydrology. This study is the first step in assessing the effect on the NJ Pinelands stream ecology by streamflow alteration due to wetland agricultural activities. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Geographically isolated wetlands, those entirely surrounded by uplands, provide numerous landscape‐scale ecological functions, many of which are dependent on the degree to which they are hydrologically connected to nearby waters. There is a growing need for field‐validated, landscape‐scale approaches for classifying wetlands on the basis of their expected degree of hydrologic connectivity with stream networks. This study quantified seasonal variability in surface hydrologic connectivity (SHC) patterns between forested Delmarva bay wetland complexes and perennial/intermittent streams at 23 sites over a full‐water year (2014–2015). Field data were used to develop metrics to predict SHC using hypothesized landscape drivers of connectivity duration and timing. Connection duration was most strongly related to the number and area of wetlands within wetland complexes as well as the channel width of the temporary stream connecting the wetland complex to a perennial/intermittent stream. Timing of SHC onset was related to the topographic wetness index and drainage density within the catchment. Stepwise regression modelling found that landscape metrics could be used to predict SHC duration as a function of wetland complex catchment area, wetland area, wetland number, and soil available water storage (adj‐R2 = 0.74, p < .0001). Results may be applicable to assessments of forested depressional wetlands elsewhere in the U.S. Mid‐Atlantic and Southeastern Coastal Plain, where climate, landscapes, and hydrological inputs and losses are expected to be similar to the study area.  相似文献   

6.
Frequent heavy rainfalls during the East Asian summer monsoon drastically increase water flow and chemical loadings to surface waters. A solid understanding of hydroclimatic controls on watershed biogeochemical processes is crucial for water quality control during the monsoon period. We investigated spatio‐temporal variations in the concentrations and spectroscopic properties of dissolved organic matter (DOM) and the concentrations of trace metals in Hwangryong River, Korea, during a summer period from the relatively dry month of June through the following months with heavy rainfall. DOM and its spectroscopic properties differed spatially along the river, and also depended on storm and flow characteristics around each sampling time. At a headwater stream draining a forested watershed, the concentrations (measured as dissolved organic carbon (DOC)), aromaticity (measured as specific UV absorbance at 254 nm), and fulvic acid‐ and protein‐like fluorescence of DOM were higher in stormflow than in baseflow waters. DOC concentrations and fluorescence intensities increased along the downstream rural and urban sites, in which DOC and fluorescence were not higher in stormflow waters, except for the ‘first flush’ at the urban site. The response of DOM in reservoir waters to monsoon rainfalls differed from that of stream and river waters, as illustrated by storm‐induced increases in DOM aromaticity and fulvic‐like fluorescence, and no significant changes in protein‐like fluorescence. The results suggest that surface water DOM and its spectroscopic properties differentially respond to changes in hydroclimatic conditions, depending on watershed characteristics and the influence of anthropogenic organic matter loadings. DOC concentrations and intensities of spectroscopic parameters were positively correlated with some of the measured trace metals (As, Co, and Fe). Further research will be needed to obtain a better understanding of climate effects on the interaction between DOM and trace metals. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Dissolved organic matter (DOM) source and composition are critical drivers of its reactivity, impact microbial food webs and influence ecosystem functions. It is believed that DOM composition and abundance represent an integrated signal derived from the surrounding watershed. Recent studies have shown that land-use may have a long-term effect on DOM composition. Methods for characterizing DOM, such as those that measure the optical properties and size of the molecules, are increasingly recognized as valuable tools for assessing DOM sources, cycling, and reactivity. In this study we measured DOM optical properties and molecular weight determinations to evaluate whether the legacy of forest disturbance alters the amount and composition of stream DOM. Differences in DOM quantity and composition due to vegetation type and to a greater extent, wetland influence, were more pronounced than effects due to disturbance. Our results suggest that excitation-emission matrix fluorescence with parallel factor analysis is a more sensitive metric of disturbance than the other methods evaluated. Analyses showed that streams draining watersheds that have been clearcut had lower dissolved organic carbon (DOC) concentrations and higher microbially-derived and protein-like fluorescence features compared to reference streams. DOM optical properties in a watershed amended with calcium, were not significantly different than reference watersheds, but had higher concentrations of DOC. Collectively these results improve our understanding of how the legacy of forest disturbances and natural landscape characteristics affect the quantity and chemical composition of DOM in headwater streams, having implications for stream water quality and carbon cycling.  相似文献   

8.
Boreal watersheds contain a vast quantity of terrestrially derived dissolved organic matter (DOM) originating from wetland and forest soils, yet variation in the potential for photochemical transformation of boreal aquatic DOM sources remains poorly understood. Laboratory solar radiation exposure experiments were conducted on DOM samples collected in three seasons, across nine sites, representing contrasting catchment composition and watershed position to assess variation in the photochemical lability of boreal DOM source and stable carbon isotopic signature (δ13C) of photomineralized DOM. Dissolved organic carbon (DOC) loss rates during laboratory exposure were lowest in summer, suggesting that DOM may have been more photo-degraded during summer. DOM from upstream portions of forested stream sites and wetland-influenced sites was more photolabile relative to downstream portions and the river DOM, suggesting potential losses in photolabile DOM downstream and in the lower reaches of the watershed. Increased a254:a350 and spectral slope following sample exposure suggest photoproduction of low molecular weight (LMW) CDOM and/or a higher photoreactivity of high molecular weight versus LMW compounds. Photomineralization of nitrogen was regulated by organic nitrogen concentration and resulted in NH4 +-photoproduction rates between 0.01 and 0.3?μM N?h?1 and ecologically significant increases in NH4 + for these waters. The δ13C of the photomineralized DOM was positively correlated to initial DOC concentration and generally lower when initial DOC concentrations were lower, suggesting variation in photomineralized DOM δ13C may be a result of kinetic isotope fractionation. Results from this study demonstrate significant variation in the photochemical lability of boreal watershed sources of DOM. Such variation suggests landscape and environmental change has the potential to alter the biogeochemical role photochemical transformations play in downstream portions of boreal watersheds.  相似文献   

9.
Investigating factors controlling the temporal patterns of nitrogen (N) and dissolved organic carbon (DOC) exports on the basis of a comparative study of different land uses is beneficial for managing water resources, especially in agricultural watersheds. We focused our research on an agricultural watershed (AW) and a forested watershed (FW) located in the Shibetsu watershed of eastern Hokkaido, Japan, to investigate the temporal patterns of N and DOC exports and factors controlling those patterns at different timescales (inter‐annual, seasonal, and hydrological event scales). Results showed that the annual patterns of N and DOC exports significantly varied over time and were probably controlled by climate. Higher discharge volumes in 2003, a wet year, showed higher N and DOC loadings in both watersheds. However, this process was also regulated by land use associated with N inputs. Higher concentrations and loadings were shown in the agricultural watershed. At the seasonal scale, N and DOC exports in the AW and the FW were more likely controlled by sources associated with land use. The Total N (TN) and Nitrate‐N (NO3?‐N) had higher concentrations during snowmelt season in the AW, which may be attributed to manure application in late autumn or early winter in the agricultural watershed. Concentrations of TN, NO3?‐N, dissolved organic nitrogen (DON), and DOC showed higher values during the summer rainy season in the FW, related to higher litter decomposition during summer and autumn and the fertilizer application in the agricultural area during summer. Higher DOC concentrations and loadings were observed during the rainy season in the AW, which is probably attributed to higher DOC production related to temperature and microbial activity during summer and autumn in grasslands. Correlations between discharge and concentrations differed during different periods or in different watersheds, suggesting that weather discharge can adequately represent the fact that N export depends on N concentrations, discharge level, and other factors. The differing correlations between N/DOC concentrations and the Si concentration indicated that the N/DOC exports might occur along different flow paths during different periods. During baseflow, the high NO3?‐N exports were probably derived from deep groundwater and might have percolated from uplands during hydrological events. During hydrological events, NO3?‐N exports may occur along near‐surface flow paths and in deep groundwater, whereas DOC exports could be related to near‐surface flow paths. At the event scale, the relationships between discharge and concentrations of N and DOC were regulated by antecedent soil moisture (shallow groundwater condition) in each watershed. These results indicated that factors controlling N and DOC exports varied at different timescales in the Shibetsu area and that better management of manure application during winter in agricultural lands is urgently needed to control water pollution in streams. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Stream chemistry is often used to infer catchment‐scale biogeochemical processes. However, biogeochemical cycling in the near‐stream zone or hydrologically connected areas may exert a stronger influence on stream chemistry compared with cycling processes occurring in more distal parts of the catchment, particularly in dry seasons and in dry years. In this study, we tested the hypotheses that near‐stream wetland proportion is a better predictor of seasonal (winter, spring, summer, and fall) stream chemistry compared with whole‐catchment averages and that these relationships are stronger in dryer periods with lower hydrologic connectivity. We evaluated relationships between catchment wetland proportion and 16‐year average seasonal flow‐weighted concentrations of both biogeochemically active nutrients, dissolved organic carbon (DOC), nitrate (NO3‐N), total phosphorus (TP), as well as weathering products, calcium (Ca), magnesium (Mg), at ten headwater (<200 ha) forested catchments in south‐central Ontario, Canada. Wetland proportion across the entire catchment was the best predictor of DOC and TP in all seasons and years, whereas predictions of NO3‐N concentrations improved when only the proportion of wetland within the near‐stream zone was considered. This was particularly the case during dry years and dry seasons such as summer. In contrast, Ca and Mg showed no relationship with catchment wetland proportion at any scale or in any season. In forested headwater catchments, variable hydrologic connectivity of source areas to streams alters the role of the near‐stream zone environment, particularly during dry periods. The results also suggest that extent of riparian zone control may vary under changing patterns of hydrological connectivity. Predictions of biogeochemically active nutrients, particularly NO3‐N, can be improved by including near‐stream zone catchment morphology in landscape models.  相似文献   

11.
The fluorescent properties of dissolved organic matter (DOM) enable comparisons of humic‐like (H‐L) and fulvic‐like (F‐L) fluorescence intensities with dissolved organic carbon (DOC) in aquatic systems. The fluorescence‐DOC relationship differed in gradient, i.e. the fluorescence per gram of carbon, and in the strength of the correlation coefficient. We compare the fluorescence intensity of the F‐L and H‐L fractions and DOC of freshwater DOM in north Shropshire, England, featuring a river, wetland, spring, pond and sewage DOM sources. Correlations between fluorescence and DOC varied between sample sites. Wetland water samples for the F‐L peak gave the best correlation, r = 0·756; the lowest correlation was from final treated sewage effluent, r = 0·167. The relationship between fluorescence and DOC of commercially available International Humic Substances Society standards were also examined and they generally showed a lower fluorescence per gram of carbon for the F‐L peak than the natural samples, whereas peat wetland DOM gave a greater fluorescence per gram of carbon than river DOM. Here, we propose the strength of the fluorescence–DOC correlation to be a useful tool when discriminating sources of DOM in fresh water. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
The input and fate of dissolved organic matter (DOM) can have important consequences for coastal zone productivity in large lakes and oceans. Chromophoric DOM (CDOM) is often delivered to coastal zones from rivers and streams and affects light penetration in a water column. CDOM can protect biota from damaging ultraviolet (UV) light by acting as sunscreen, resulting in increased ecosystem productivity. Alternatively, CDOM can decrease ecosystem productivity by absorbing light needed for photosynthesis and forming photoreaction products that are harmful to coastal zone biota. Increased urbanization of watersheds and seasonal differences in weather patterns change the delivery pathways, reactivity, input, and energy flow of DOM (and its CDOM component) into aquatic systems. This study investigated the effects of watershed and season on the concentrations and potential photodegradation of stream-derived DOM in Lake Superior tributaries, chosen to be geographically and geologically similar but differing in land use. Organic carbon analysis, UV–Visible spectrophotometry, and terrestrial (land use) analysis were used to investigate differences among samples and sample treatments. The major differences in DOM concentration and photochemical response appeared seasonal rather than site specific, with snow-melt samples showing stronger and more consistent changes in UV–Visible parameters while base-flow samples showed stronger and more consistent losses in DOC.  相似文献   

13.
The Soil and Water Assessment Tool (SWAT) is a physically‐based hydrologic model developed for agricultural watersheds, which has been infrequently validated for forested watersheds, particularly those with deep overwinter snow accumulation and abundant lakes and wetlands. The goal of this study was to determine the applicability of SWAT for modelling streamflow in two watersheds of the Ontonagon River basin of northern Michigan which differ in proportion of wetland and lake area. The forest‐dominated East Branch watershed contains 17% wetland and lake area, whereas the wetland/lake‐dominated Middle Branch watershed contains 26% wetland and lake area. The specific objectives were to: (1) calibrate and validate SWAT models for the East Branch and Middle Branch watersheds to simulate monthly stream flow, and (2) compare the effects of wetland and lake abundance on the magnitude and timing of streamflow. Model calibration and validation was satisfactory, as determined by deviation of discharge D and Nash and Sutcliffe coefficient values E that compared simulated monthly mean discharge versus measured monthly mean discharge. Streamflow simulation discrepancies occurred during summer and fall months and dry years. Several snow melting parameters were found to be critical for the SWAT simulation: TIMP (snow temperature lag factor) and SMFMX and SMFMN (melting factors). Snow melting parameters were not transferable between adjacent watersheds. Differences in seasonal pattern of long‐term monthly streamflow were found, with the forest‐dominated watershed having a higher peak flow during April but a lower flow during the remainder of the year in comparison to the wetland and lake‐dominated watershed. The results suggested that a greater proportion of wetland and lake area increases the capacity of a watershed to impound surface runoff and to delay storm and snow melting events. Representation of wetlands and lakes in a watershed model is required to simulate monthly stream flow in a wetland/lake‐dominated watershed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Urbanization threatens headwater stream ecosystems globally. Watershed restoration practices, such as infiltration‐based stormwater management, are implemented to mitigate the detrimental effects of urbanization on aquatic ecosystems. However, their effectiveness for restoring hydrologic processes and watershed storage remains poorly understood. Our study used a comparative hydrology approach to quantify the effects of urban watershed restoration on watershed hydrologic function in headwater streams within the Coastal Plain of Maryland, USA. We selected 11 headwater streams that spanned an urbanization–restoration gradient (4 forested, 4 urban‐degraded, and 3 urban‐degraded) to evaluate changes in watershed hydrologic function from both urbanization and watershed restoration. Discrete discharge and continuous, high‐frequency rainfall‐stage monitoring were conducted in each watershed. These datasets were used to develop 6 hydrologic metrics describing changes in watershed storage, flowpath connectivity, or the resultant stream flow regime. The hydrological effects of urbanization were clearly observed in all metrics, but only 1 of the 3 restored watersheds exhibited partially restored hydrologic function. At this site, a larger minimum runoff threshold was observed relative to the urban‐degraded watersheds, suggesting enhanced infiltration of stormwater runoff within the restoration structure. However, baseflow in the stream draining this watershed remained low compared to the forested reference streams, suggesting that enhanced infiltration of stormwater runoff did not recharge subsurface storage zones contributing to stream baseflow. The highly variable responses among the 3 restored watersheds were likely due to the spatial heterogeneity of urban development, including the level of impervious cover and extent of the storm sewer network. This study yielded important knowledge on how restoration strategies, such as infiltration‐based stormwater management, modulated—or failed to modulate—hydrological processes affected by urbanization, which will help improve the design of future urban watershed management strategies. More broadly, we highlighted a multimetric approach that can be used to monitor the restoration of headwater stream ecosystems in disturbed landscapes.  相似文献   

15.
In order to investigate the relation between water chemistry and functional landscape elements, spatial data sets of characteristics for 68 small (0·2–1·5 km2) boreal forest catchments in western central Sweden were analysed in a geographical information system (GIS). The geographic data used were extracted from official topographic maps. Water sampled four times at different flow situations was analysed chemically. This paper focuses on one phenomenon that has an important influence on headwater quality in boreal, coniferous forest streams: generation and export of dissolved organic carbon (DOC). It is known that wetland cover (bogs and fens) in the catchment is a major source of DOC. In this study, a comparison was made between a large number of headwater catchments with varying spatial locations and areas of wetlands. How this variation, together with a number of other spatial variables, influences the DOC flux in the streamwater was analysed by statistical methods. There were significant, but not strong, correlations between the total percentages of wetland area and DOC flux measured at a medium flow situation, but not at high flow. Neither were there any significant correlations between the percentage of wetland area connected to streams, nor the percentage of wetland area within a zone 50 m from the stream and the DOC flux. There were, however, correlations between catchment mean slope and the DOC flux in all but one flow situations. This study showed that, considering geographical data retrieved from official sources, the topography of a catchment better explains the variation in DOC flux than the percentage and locations of distinct wetland areas. This emphasizes the need for high‐resolution elevation models accurate enough to reveal the sources of DOC found in headwater streams. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The potential for increased loads of dissolved organic carbon (DOC) in streams and rivers is a concern for regulating the water quality in water supply watersheds. With increasing hydroclimatic variability related to global warming and shifts in forest ecosystem community and structure, understanding and predicting the magnitude and variability of watershed supply and transport of DOC over multiple time scales have become important research and management goals. In this study, we use a distributed process‐based ecohydrological model (Regional Hydro‐Ecological Simulation System [RHESSys]) to explore controls and predict streamflow DOC loads in Biscuit Brook. Biscuit Brook is a forested headwater catchment of the Neversink Reservoir, part of the New York City water supply system in the Catskill Mountains. Three different model structures of RHESSys were proposed to explore and evaluate hypotheses addressing how vegetation phenology and hydrologic connectivity between deep groundwater and riparian zones influence streamflow and DOC loads. Model results showed that incorporating dynamic phenology improved model agreement with measured streamflow in spring, summer, and fall and fall DOC concentration, compared with a static phenology. Additionally, the connectivity of deep groundwater flux through riparian zones with dynamic phenology improved streamflow and DOC flux in low flow conditions. Therefore, this study suggests the importance of inter‐annual vegetation phenology and the connectivity of deep groundwater drainage through riparian zones in the hydrology and stream DOC loading in this forested watershed and the ability of process‐based ecohydrological models to simulate these dynamics. The advantage of a process‐based modelling approach is specifically seen in the sensitivity to forest ecosystem dynamics and the interactions of hydroclimate variability with ecosystem processes controlling the supply and distribution of DOC. These models will be useful to evaluate different forest management approaches toward mitigating water quality concerns.  相似文献   

17.
The world's longest record of river water quality (River Thames—130 years) provides a unique opportunity to understand fluvial dissolved organic carbon (DOC) concentrations dynamics. Understanding riverine DOC variability through long‐term studies is crucial to capture patterns and drivers influencing sources of DOC at scales relevant for decision making. The Thames basin (United Kingdom) has undergone massive land‐use change, as well as increased urbanisation and population during the period considered. We aimed to investigate the drivers of intra‐annual to interannual DOC variability, assess the variability due to natural and anthropogenic factors, and understand the causes for the increased DOC variability over the period. Two approaches were used to achieve these aims. The first method was singular spectrum analysis, which was used to reconstruct the major oscillatory modes of DOC, hydroclimatic variables, and atmospheric circulation patterns and to visualise the interaction between these variables. The second approach used was generalised additive modelling, which was used to investigate other non‐natural drivers of DOC variability. Our study shows that DOC variability increased by 80% over the data period, with the greatest increase occurring from the beginning of World War II onwards. The primary driver of the increase in DOC variability was the increase in the average value of fluvial DOC over the period of record, which was itself linked to the increase in basin population and diffuse DOC sources to the river due to land‐use and land‐management changes. Seasonal DOC variability was linked to streamflow and temperature. Our study allows to identify drivers of fluvial intra‐annual and interannual DOC variability and therefore empowers actions to reduce high DOC concentrations.  相似文献   

18.
19.
郑达燕  刘睿  张柳柳  郑财贵  张静 《湖泊科学》2023,35(4):1343-1358
三峡库区拥有目前世界上规模最大的水利枢纽工程,自投入使用以来,为长江流域提供了丰富的水源及电力,促进了经济的发展,但同时也对该区域的生态环境造成了严重的冲击。澎溪河流域作为三峡库区长江流域干流的典型回水区和消落带,是众多学者研究三峡库区生态环境变化的重点区域。为探究不同时空尺度下土地利用对河流溶解性有机质(DOM)的影响,以澎溪河流域为研究对象,基于紫外-可见光谱分析和三维荧光光谱矩阵-平行因子分析,结合河段缓冲区、河岸带缓冲区及子流域3种空间尺度的二级土地利用类型,解析了旱雨季水体DOM的组成及来源特征,并采用相关分析和冗余分析方法探讨了3种空间尺度下土地利用方式对旱雨季水体DOM的多时空尺度影响。结果表明:(1)旱季水体DOM荧光组分以陆源类腐殖质所占比例更大,雨季水体DOM荧光组分以富里酸贡献为主。(2)流域内陆源输入和内源产生对水体DOM丰度均有贡献,雨季较旱季水体DOM的陆源性更强,自生源特征较弱。(3)土地利用在雨季和子流域尺度下对水体DOM的影响更显著,其中,雨季子流域尺度下,土地利用指数对水体DOM参数的解释率为90.35%。(4)不同土地利用方式对水体DOM产生的影响...  相似文献   

20.
Wetlands represent one of the world's most biodiverse and threatened ecosystem types and were diminished globally by about two‐thirds in the 20th century. There is continuing decline in wetland quantity and function due to infilling and other human activities. In addition, with climate change, warmer temperatures and changes in precipitation and evapotranspiration are reducing wetland surface and groundwater supplies, further altering wetland hydrology and vegetation. There is a need to automate inventory and monitoring of wetlands, and as a study system, we investigated the Shepard Slough wetlands complex, which includes numerous wetlands in urban, suburban, and agricultural zones in the prairie pothole region of southern Alberta, Canada. Here, wetlands are generally confined to depressions in the undulating terrain, challenging wetlands inventory and monitoring. This study applied threshold and frequency analysis routines for high‐resolution, single‐polarization (HH) RADARSAT‐2, synthetic aperture radar mapping. This enabled a growing season surface water extent hyroperiod‐based wetland classification, which can support water and wetland resource monitoring. This 3‐year study demonstrated synthetic aperture radar‐derived multitemporal open‐water masks provided an effective index of wetland permanence class, with overall accuracies of 89% to 95% compared with optical validation data, and RMSE between 0.2 and 0.7 m between model and field validation data. This allowed for characterizing the distribution and dynamics of 4 marsh wetlands hydroperiod classes, temporary, seasonal, semipermanent, and permanent, and mapping of the sequential vegetation bands that included emergent, obligate wetland, facultative wetland, and upland plant communities. Hydroperiod variation and surface water extent were found to be influenced by short‐term rainfall events in both wet and dry years. Seasonal hydroperiods in wetlands were particularly variable if there was a decrease in the temporary or semipermanent hydroperiod classes. In years with extreme rain events, the temporary wetlands especially increased relative to longer lasting wetlands (84% in 2015 with significant rainfall events, compared with 42% otherwise).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号