首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The snow treatment becomes an important component of Soil and Water Assessment Tool (SWAT)’s hydrology when spring flows are dominated by snow melting. However, little is known about SWAT's snow hydrology performance because most studies using SWAT were conducted in rainfall‐driven catchments. To fill this gap, the present study aims to evaluate the ability of SWAT in simulating snow‐melting‐dominated streamflow in the Outardes Basin in Northern Quebec. SWAT performance in simulating snowmelt is evaluated against observed streamflow data and compared to simulations from the operationally used Streamflow Synthesis and Reservoir Regulation (SSARR) model over that catchment. The SWAT 5‐year calibration showed a satisfactory performance at the daily and seasonal time scales with low volume biases. The SWAT validation was conducted over two (17‐year and 15‐year) periods. Performances were similar to the calibration period in simulating the daily and seasonal streamflows again with low model biases. The spring‐snowmelt‐generated peak flow was accurately simulated by SWAT both in magnitude and timing. When SWAT's results are compared to SSARR, similar performances in simulating the daily discharges were observed. SSARR simulates more accurately streamflow generated at the snowmelt onset whereas SWAT better predicts streamflow in summer, fall and winter. SWAT provided reasonable streamflow simulations for our snow‐covered catchment, but refinement of the process‐driven baseflow during the snowmelt onset could improve spring performances. Therefore, SWAT becomes an attractive tool for evaluating water resources management in Nordic environments when a distributed model is preferred or when water quality information (e.g. temperature) is required. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The performance of watershed models in simulating stream discharge depends on the adequate representation of important watershed processes. In snow‐dominated systems, snow, surface and subsurface hydrologic processes comprise a complex network of nonlinear interactions that influence the magnitude and timing of discharge. This study aims to identify critical processes and interactions that control discharge hydrographs in five major mountainous snow‐dominated river basins in Colorado, USA. A comprehensive watershed model (Soil and Water Assessment Tool) and a variance‐based global sensitivity analysis technique (Fourier Amplitude Sensitivity Test) were used in conjunction to identify critical models parameters and processes that they represent. Average monthly streamflow and streamflow root mean square error over a period of 20 years were used as two separate objective functions in this analysis. Examination of the sensitivity of monthly streamflow revealed the influence of parameters on flow volume, whereas the sensitivity of streamflow root mean square error also exposed the influence of parameters on the timing of the hydrographs. A stability analysis was performed to investigate the computational requirements for a robust sensitivity analysis. Results show that streamflow volume is mostly influenced by shallow subsurface processes, whereas interactions between groundwater and snow processes were the key in the timing of streamflows. A large majority of important parameters were common among all study watersheds, which underlies the prospect for regionalization of process‐based hydrologic modelling in headwater river basins in Colorado. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Modelling the hydrology of North American Prairie watersheds is complicated because of the existence of numerous landscape depressions that vary in storage capacity. The Soil and Water Assessment Tool (SWAT) is a widely applied model for long‐term hydrological simulations in watersheds dominated by agricultural land uses. However, several studies show that the SWAT model has had limited success in handling prairie watersheds. In past works using SWAT, landscape depression storage heterogeneity has largely been neglected or lumped. In this study, a probability distributed model of depression storage is introduced into the SWAT model to better handle landscape storage heterogeneity. The work utilizes a probability density function to describe the spatial heterogeneity of the landscape depression storages that was developed from topographic characteristics. The integrated SWAT–PDLD model is tested using datasets for two prairie depression dominated watersheds in Canada: the Moose Jaw River watershed, Saskatchewan; and the Assiniboine River watershed, Saskatchewan. Simulation results were compared to observed streamflow using graphical and multiple statistical criterions. Representation of landscape depressions within SWAT using a probability distribution (SWAT–PDLD) provides improved estimations of streamflow for large prairie watersheds in comparison to results using a lumped, single storage approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Warming will affect snowline elevation, potentially altering the timing and magnitude of streamflow from mountain landscapes. Presently, the assessment of potential elevation‐dependent responses is difficult because many gauged watersheds integrate drainage areas that are both snow and rain dominated. To predict the impact of snowline rise on streamflow, we mapped the current snowline (1980 m) for the Salmon River watershed (Idaho, USA) and projected its elevation after 3 °C warming (2440 m). This increase results in a 40% reduction in snow‐covered area during winter months. We expand this analysis by collecting streamflow records from a new, elevation‐stratified gauging network of watersheds contained within high (2250–3800 m), mid (1500–2250 m) and low (300–1500 m) elevations that isolate snow, mixed and rain‐dominated precipitation regimes. Results indicate that lags between percentiles of precipitation and streamflow are much shorter in low elevations than in mid‐ and high‐elevation watersheds. Low elevation annual percentiles (Q25 and Q75) of streamflow occur 30–50 days earlier than in higher elevation watersheds. Extreme events in low elevations are dominated by low‐ and no‐flow events whereas mid‐ and high‐elevation extreme events are primarily large magnitude floods. Only mid‐ and high‐elevation watersheds are strongly cross correlated with catchment‐wide flow of the Salmon River, suggesting that changes in contributions from low‐elevation catchments may be poorly represented using mainstem gauges. As snowline rises, mid‐elevation watersheds will likely exhibit behaviours currently observed only at lower elevations. Streamflow monitoring networks designed for operational decision making or change detection may require modification to capture elevation‐dependent responses of streamflow to warming. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Remote sensing is an important source of snow‐cover extent for input into the Snowmelt Runoff Model (SRM) and other snowmelt models. Since February 2000, daily global snow‐cover maps have been produced from data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS). The usefulness of this snow‐cover product for streamflow prediction is assessed by comparing SRM simulated streamflow using the MODIS snow‐cover product with streamflow simulated using snow maps from the National Operational Hydrologic Remote Sensing Center (NOHRSC). Simulations were conducted for two tributary watersheds of the Upper Rio Grande basin during the 2001 snowmelt season using representative SRM parameter values. Snow depletion curves developed from MODIS and NOHRSC snow maps were generally comparable in both watersheds: satisfactory streamflow simulations were obtained using both snow‐cover products in larger watershed (volume difference: MODIS, 2·6%; NOHRSC, 14·0%) and less satisfactory streamflow simulations in smaller watershed (volume difference: MODIS, −33·1%; NOHRSC, −18·6%). The snow water equivalent (SWE) on 1 April in the third zone of each basin was computed using the modified depletion curve produced by the SRM and was compared with in situ SWE measured at Snowpack Telemetry sites located in the third zone of each basin. The SRM‐calculated SWEs using both snow products agree with the measured SWEs in both watersheds. Based on these results, the MODIS snow‐cover product appears to be of sufficient quality for streamflow prediction using the SRM in the snowmelt‐dominated basins. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Using a mass balance algorithm, this study develops an extension module that can be embedded in the commonly used Soil and Water Assessment Tool (SWAT). This module makes it possible to assess effects of riparian wetlands on runoff and sediment yields at a watershed scale, which is very important for aquatic ecosystem management but rarely documented in the literature. In addition to delineating boundaries of a watershed and its subwatersheds, the module groups riparian wetlands within a subwatershed into an equivalent wetland for modelling purposes. Further, the module has functions to compute upland drainage area and other parameters (e.g. maximum volume) for the equivalent wetland based on digital elevation model, stream network, land use, soil and wetland distribution GIS datasets. SWAT is used to estimate and route runoff and sediment generated from upland drainage area. The lateral exchange processes between riparian wetlands and their hydraulically connected streams are simulated by the extension module. The developed module is empirically applied to the 53 km2 Upper Canagagigue Creek watershed located in Southern Ontario of Canada. The simulation results indicate that the module can make SWAT more reasonably predict flow and sediment loads at the outlet of the watershed and better represent the hydrologic processes within it. The simulation is sensitive to errors of wetland parameters and channel geometry. The approach of embedding the module into SWAT enables simulation of hydrologic processes in riparian wetlands, evaluation of wetland effects on regulating stream flow and sediment loading and assessment of various wetland restoration scenarios. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Annual streamflows have decreased across mountain watersheds in the Pacific Northwest of the United States over the last ~70 years; however, in some watersheds, observed annual flows have increased. Physically based models are useful tools to reveal the combined effects of climate and vegetation on long‐term water balances by explicitly simulating the internal watershed hydrological fluxes that affect discharge. We used the physically based Simultaneous Heat and Water (SHAW) model to simulate the inter‐annual hydrological dynamics of a 4 km2 watershed in northern Idaho. The model simulates seasonal and annual water balance components including evaporation, transpiration, storage changes, deep drainage, and trends in streamflow. Independent measurements were used to parameterize the model, including forest transpiration, stomatal feedback to vapour pressure, forest properties (height, leaf area index, and biomass), soil properties, soil moisture, snow depth, and snow water equivalent. No calibrations were applied to fit the simulated streamflow to observations. The model reasonably simulated the annual runoff variations during the evaluation period from water year 2004 to 2009, which verified the ability of SHAW to simulate the water budget in this small watershed. The simulations indicated that inter‐annual variations in streamflow were driven by variations in precipitation and soil water storage. One key parameterization issue was leaf area index, which strongly influenced interception across the catchment. This approach appears promising to help elucidate the mechanisms responsible for hydrological trends and variations resulting from climate and vegetation changes on small watersheds in the region. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Bracketing the uncertainty of streamflow and agricultural runoff under climate change is critical for proper future water resource management in agricultural watersheds. This study used the Soil and Water Assessment Tool (SWAT) in conjunction with a Latin hypercube climate change sampling algorithm to construct a 95% confidence interval (95CI) around streamflow, sediment load, and nitrate load predictions under changes in climate for the Sacramento and San Joaquin River watersheds in California's Central Valley. The Latin hypercube algorithm sampled 2000 combinations of precipitation and temperature changes based on Intergovernmental Panel on Climate Change projections from multiple General Circulation Models. Average monthly percent changes of the upper and lower 95CI limits compared to the present‐day simulation and a statistic termed the “r‐factor” (average width of the 95CI band divided by the standard deviation of the 95CI bandwidth) were used to assess watershed sensitivities. 95CI results indicate that streamflow and sediment runoff in the Sacramento River watershed are more likely to decrease under climate change compared to present‐day conditions, whereas the increase and decrease for nitrate runoff were found to be equal. For the San Joaquin River watershed, streamflow slightly decreased under climate change, whereas sediment and nitrate runoff increased compared to present‐day climate. Comparisons of watershed sensitivities indicate that the San Joaquin River watershed is more sensitive to climate changes than the Sacramento River watershed, which is largely caused by the high density of agricultural land. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Climate models project warmer temperatures for the north‐west USA, which will result in reduced snowpacks and decreased summer streamflow. This paper examines how groundwater, snowmelt, and regional climate patterns control discharge at multiple time scales, using historical records from two watersheds with contrasting geological properties and drainage efficiencies. In the groundwater‐dominated watershed, aquifer storage and the associated slow summer recession are responsible for sustaining discharge even when the seasonal or annual water balance is negative, while in the runoff‐dominated watershed subsurface storage is exhausted every summer. There is a significant 1 year cross‐correlation between precipitation and discharge in the groundwater‐dominated watershed (r = 0·52), but climatic factors override geology in controlling the inter‐annual variability of streamflow. Warmer winters and earlier snowmelt over the past 60 years have shifted the hydrograph, resulting in summer recessions lasting 17 days longer, August discharges declining 15%, and autumn minimum discharges declining 11%. The slow recession of groundwater‐dominated streams makes them more sensitive than runoff‐dominated streams to changes in snowmelt amount and timing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Saturation‐excess runoff is the major runoff mechanism in humid well‐vegetated areas where infiltration rates often exceed rainfall intensity. Although the Soil and Water Assessment Tool (SWAT) is one of the most widely used models, it predicts runoff based mainly on soil and land use characteristics, and is implicitly an infiltration‐excess runoff type of model. Previous attempts to incorporate the saturation‐excess runoff mechanism in SWAT fell short due to the inability to distribute water from one hydrological response unit to another. This paper introduces a modified version of SWAT, referred to as SWAT‐Hillslope (SWAT‐HS). This modification improves the simulation of saturation‐excess runoff by redefining hydrological response units based on wetness classes and by introducing a surface aquifer with the ability to route interflow from “drier” to “wetter” wetness classes. Mathematically, the surface aquifer is a nonlinear reservoir that generates rapid subsurface stormflow as the water table in the surface aquifer rises. The SWAT‐HS model was tested in the Town Brook watershed in the upper reaches of the West Branch Delaware River in the Catskill region of New York, USA. SWAT‐HS predicted discharge well with a Nash‐Sutcliffe Efficiency of 0.68 and 0.87 for daily and monthly time steps. Compared to the original SWAT model, SWAT‐HS predicted less surface runoff and groundwater flow and more lateral flow. The saturated areas predicted by SWAT‐HS were concentrated in locations with a high topographic index and were in agreement with field observations. With the incorporation of topographic characteristics and the addition of the surface aquifer, SWAT‐HS improved streamflow simulation and gave a good representation of saturated areas on the dates that measurements were available. SWAT‐HS is expected to improve water quality model predictions where the location of the surface runoff matters.  相似文献   

11.
Integrated watershed models can be used to calculate streamflow generation in snow‐dominated mountainous catchments. Parameterization of water flow is often complicated by the lack of information on subsurface hydraulic properties. In this study, bulk density optimization was used to determine hydraulic parameters for the upper and lower regolith in the GEOtop model. The methodology was tested in two small catchments in the Dry Creek Watershed in Idaho and the Libby Creek Watershed in Wyoming. Modelling efficiencies for profile‐average soil–water content for the two catchments were between 0.52 and 0.64. Modelling efficiencies for stream discharge (cumulative stream discharge) were 0.45 (0.91) and 0.54 (0.94) for the Idaho and Wyoming catchments, respectively. The calculated hydraulic properties suggest that lateral flow across the upper–lower regolith interface is an important driver of streamflow in both the Idaho and Wyoming watersheds. The overall calibration procedure is computationally efficient because only two bulk density values are optimized. The two‐parameter calibration procedure was complicated by uncertainty in hydraulic conductivity anisotropy. Different upper regolith hydraulic conductivity anisotropy factors had to be tested in order to describe streamflow in both catchments.  相似文献   

12.
Water quality in lakes is influenced by a large number of watershed and lake characteristics. In this study, we examined the relative effects of watershed land use and lake morphology on the trophic state of 19 lakes in the Yunnan plateau and lower Yangtze floodplain, the two most eutrophic regions in China. Trophic state parameters consisted of total nitrogen, total phosphorus, chemical oxygen demand, chlorophyll‐a, Secchi depth, and trophic state index, while lake morphometric variables included area, maximum depth, mean depth, water residence time (WRT), volume, and length to width ratio. Percentages of forest, grassland, cropland, unused land, built‐up land, and water body in each lake's watershed were extracted from a land use map interpreted from Landsat TM images. A t‐test indicated that lower Yangtze floodplain lakes were shallower and had higher percentages of cropland and built‐up land in watersheds than Yunnan plateau lakes. Pearson's correlation analysis indicated that both watershed land use and lake morphometric variables were significantly related to most of the trophic state parameters. However, stepwise regression analyses demonstrated that the trophic state of the lower Yangtze floodplain lakes was mainly controlled by the percentages of cropland and built‐up land in watersheds, while that of Yunnan plateau lakes was mostly determined by the lake depth and WRT. These results suggest that the relative effects of watershed land use and lake morphology on lake trophic state are dependent on the lake's location. This study can provide some useful information in watershed land use management for controlling eutrophication in Chinese lakes.  相似文献   

13.
Although soil processes affect the timing and amount of streamflow generated from snowmelt, they are often overlooked in estimations of snowmelt‐generated streamflow in the western USA. The use of a soil water balance modelling approach to incorporate the effects of soil processes, in particular soil water storage, on the timing and amount of snowmelt generated streamflow, was investigated. The study was conducted in the Reynolds Mountain East (RME) watershed, a 38 ha, snowmelt‐dominated watershed in southwest Idaho. Snowmelt or rainfall inputs to the soil were determined using a well established snow accumulation and melt model (Isnobal). The soil water balance model was first evaluated at a point scale, using periodic soil water content measurements made over two years at 14 sites. In general, the simulated soil water profiles were in agreement with measurements (P < 0·05) as further indicated by high R2 values (mostly > 0·85), y‐intercept values near 0, slopes near 1 and low average differences between measured and modelled values. In addition, observed soil water dynamics were generally consistent with critical model assumptions. Spatially distributed simulations over the watershed for the same two years indicate that streamflow initiation and cessation are closely linked to the overall watershed soil water storage capacity, which acts as a threshold. When soil water storage was below the threshold, streamflow was insensitive to snowmelt inputs, but once the threshold was crossed, the streamflow response was very rapid. At these times there was a relatively high degree of spatial continuity of satiated soils within the watershed. Incorporation of soil water storage effects may improve estimation of the timing and amount of streamflow generated from mountainous watersheds dominated by snowmelt. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Most semi‐distributed watershed water quality models divide the watershed into hydrologic response units (HRU) with no flow among them. This is problematic when watersheds are delineated to include variable source areas (VSAs) because it is the lateral flows from upslope areas to downslope areas that generate VSAs. Although hydrologic modellers have often successfully calibrated these types of models, there can still be considerable uncertainty in model results. In this paper, a topographic‐index‐based method is described and tested to distribute effective soil water holding capacity among HRUs, which can be subsequently adjusted using the watershed baseflow coefficient. The method is tested using a version of the Soil and Water Assessment Tool (SWAT) model that simulates VSA runoff and is applied to two watersheds: a New York State (NYS) watershed, and one in the head waters of the Blue Nile Basin (BNB) in Ethiopia. Daily streamflow predicted using effective soil water storage capacities based only on the topographic index were reassuringly accurate in both the NYS watershed (daily Nash Sutcliffe (E) = 0·73) and in the BNB (E = 0·70). Using the baseflow coefficient to adjust the effective soil water storage capacity only slightly improved streamflow predictions in NYS (E = 0·75) but substantially improved the BNB predictions (E = 0·80). By comparison, the standard SWAT model, which uses the traditional look‐up tables to determine a runoff curve number, performed considerably less accurately in un‐calibrated form (E = 0·51 for NYS and E = 0·45 for BNB), but improved substantially when explicitly calibrated to streamflow measurements (E = 0·76 for NYS and E = 0·67 for the BNB). The calibration method presented here provides a parsimonious, systematic approach to using established models in VSA watersheds that reduces the ambiguity inherent in model calibration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Processes controlling streamflow generation were determined using geochemical tracers for water years 2004–2007 at eight headwater catchments at the Kings River Experimental Watersheds in southern Sierra Nevada. Four catchments are snow‐dominated, and four receive a mix of rain and snow. Results of diagnostic tools of mixing models indicate that Ca2+, Mg2+, K+ and Cl? behaved conservatively in the streamflow at all catchments, reflecting mixing of three endmembers. Using endmember mixing analysis, the endmembers were determined to be snowmelt runoff (including rain on snow), subsurface flow and fall storm runoff. In seven of the eight catchments, streamflow was dominated by subsurface flow, with an average relative contribution (% of streamflow discharge) greater than 60%. Snowmelt runoff contributed less than 40%, and fall storm runoff less than 7% on average. Streamflow peaked 2–4 weeks earlier at mixed rain–snow than snow‐dominated catchments, but relative endmember contributions were not significantly different between the two groups of catchments. Both soil water in the unsaturated zone and regional groundwater were not significant contributors to streamflow. The contributions of snowmelt runoff and subsurface flow, when expressed as discharge, were linearly correlated with streamflow discharge (R2 of 0.85–0.99). These results suggest that subsurface flow is generated from the soil–bedrock interface through preferential pathways and is not very sensitive to snow–rain proportions. Thus, a declining of the snow–rain ratio under a warming climate should not systematically affect the processes controlling the streamflow generation at these catchments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Watershed scale hydrological and biogeochemical models rely on the correct spatial‐temporal prediction of processes governing water and contaminant movement. The Soil and Water Assessment Tool (SWAT) model, one of the most commonly used watershed scale models, uses the popular curve number (CN) method to determine the respective amounts of infiltration and surface runoff. Although appropriate for flood forecasting in temperate climates, the CN method has been shown to be less than ideal in many situations (e.g. monsoonal climates and areas dominated by variable source area hydrology). The CN model is based on the assumption that there is a unique relationship between the average moisture content and the CN for all hydrologic response units (HRUs), and that the moisture content distribution is similar for each runoff event, which is not the case in many regions. Presented here is a physically based water balance that was coded in the SWAT model to replace the CN method of runoff generation. To compare this new water balance SWAT (SWAT‐WB) to the original CN‐based SWAT (SWAT‐CN), two watersheds were initialized; one in the headwaters of the Blue Nile in Ethiopia and one in the Catskill Mountains of New York. In the Ethiopian watershed, streamflow predictions were better using SWAT‐WB than SWAT‐CN [Nash–Sutcliffe efficiencies (NSE) of 0·79 and 0·67, respectively]. In the temperate Catskills, SWAT‐WB and SWAT‐CN predictions were approximately equivalent (NSE > 0·70). The spatial distribution of runoff‐generating areas differed greatly between the two models, with SWAT‐WB reflecting the topographical controls imposed on the model. Results show that a water balance provides results equal to or better than the CN, but with a more physically based approach. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
An understanding of surface and subsurface water contributions to streamflow is essential for accurate predictions of water supply from mountain watersheds that often serve as water towers for downstream communities. As such, this study used the end‐member mixing analysis technique to investigate source water contributions and hydrologic flow paths of the 264 km2 Boulder Creek Watershed, which drains the Colorado Front Range, USA. Four conservative hydrochemical tracers were used to describe this watershed as a 3 end‐member system, and tracer concentration reconstruction suggested that the application of end‐member mixing analysis was robust. On average from 2009 to 2011, snowmelt and rainwater from the subalpine zone and groundwater sampled from the upper montane zone contributed 54%, 22%, and 24% of the annual streamflow, respectively. These values demonstrate increased rainwater and decreased snow water contributions to streamflow relative to area‐weighted mean values derived from previous work at the headwater scale. Young water (2.3 ± 0.8 months) fractions of streamflow decreased from 18–22% in the alpine catchment to 8–10% in the lower elevation catchments and the watershed outlet with implications for subsurface storage and hydrological connectivity. These results contribute to a process‐based understanding of the seasonal source water composition of a mesoscale watershed that can be used to extrapolate headwater streamflow generation predictions to larger spatial scales.  相似文献   

18.
Global climate change will likely increase temperature and variation in precipitation in the Himalayas, modifying both supply of and demand for water. This study assesses combined impacts of land‐cover and climate changes on hydrological processes and a rainfall‐to‐streamflow buffer indicator of watershed function using the Soil Water Assessment Tool (SWAT) in Kejie watershed in the eastern Himalayas. The Hadley Centre Coupled Model Version 3 (HadCM3) was used for two Intergovernmental Panel on Climate Change (IPCC) emission scenarios (A2 and B2), for 2010–2099. Four land‐cover change scenarios increase forest, grassland, crops, or urban land use, respectively, reducing degraded land. The SWAT model predicted that downstream water resources will decrease in the short term but increase in the long term. Afforestation and expansion in cropland will probably increase actual evapotranspiration (ET) and reduce annual streamflow but will also, through increased infiltration, reduce the overland flow component of streamflow and increase groundwater release. An expansion in grassland will decrease actual ET, increase annual streamflow and groundwater release, while decreasing overland flow. Urbanization will result in increases in streamflow and overland flow and reductions in groundwater release and actual ET. Land‐cover change dominated over effects on streamflow of climate change in the short and middle terms. The predicted changes in buffer indicator for land‐use plus climate‐change scenarios reach up to 50% of the current (and future) range of inter‐annual variability. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The southwestern Adirondack region of New York receives among the highest rates of atmospheric nitrogen (N) deposition in the USA. Atmospheric N deposition to sensitive ecosystems, like the Adirondacks, may increase the acidification of soils through losses of exchangeable nutrient cations, and the acidification of surface waters associated with enhanced mobility of nitrate (NO3?). However, watershed attributes, including surficial terrestrial characteristics, in‐lake processing, and geological settings, have been found to complicate the relationships between atmospheric N deposition and N drainage losses. We studied two lake‐watersheds in the southwestern Adirondacks, Grass Pond and Constable Pond, which are located in close proximity (~26 km) and receive similarly high N deposition, but have contrasting watershed attributes (e.g. wetland area, geological settings). Since the difference in the influence of N deposition was minimal, we were able to examine both within‐ and between‐watershed influences of land cover, the contribution of glacial till groundwater inputs, and in‐lake processes on surface water chemistry with particular emphasis on N solutes and dissolved organic carbon (DOC). Monthly samples at seven inlets and one outlet of each lake were collected from May to October in 1999 and 2000. The concentrations of NO3? were high at the Grass Pond inlets, especially at two inlets, and NO3? was the major N solute at the Grass Pond inlets. The concentrations of likely weathering products (i.e. dissolved Si, Ca2+, Mg2+, Na+) as well as acid neutralizing capacity and pH values, were also particularly high at those two Grass Pond inlets, suggesting a large contribution of groundwater inputs. Dissolved organic N (DON) was the major N solute at the Constable Pond inlets. The higher concentrations of DON and DOC at the Constable Pond inlets were attributed to a large wetland area in the watershed. The DOC/DON ratios were also higher at the Constable Pond inlets, possibly due to a larger proportion of coniferous forest area. Although DON and DOC were strongly related, the stronger relationship of the proportion of wetland area with DOC suggests that additional factors regulate DON. The aggregated representation of watershed physical features (i.e. elevation, watershed area, mean topographic index, hypsometric‐analysis index) was not clearly related to the lake N and DOC chemistry. Despite distinctive differences in inlet N chemistry, NO3? and DON concentrations at the outlets of the two lakes were similar. The lower DOC/DON ratios at the lake outlets and at the inlets having upstream ponds suggest the importance of N processing and organic N sources within the lakes. Although an inverse relationship between NO3? and DOC/DON has been suggested to be indicative of a N deposition gradient, the existence of this relationship for sites that receive similar atmospheric N deposition suggest that the relationship between NO3? and the DOC/DON ratio is derived from environmental and physical factors. Our results suggest that, despite similar wet N deposition at the two watershed sites, N solutes entering lakes were strongly affected by hydrology associated with groundwater contribution and the presence of wetlands, whereas N solutes leaving lakes were strongly influenced by in‐lake processing. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Investigating the changes in streamflow regimes in response to various influencing factors contributes to our understanding of the mechanisms of hydrological processes in different watersheds and to water resource management strategies. This study examined streamflow regime changes by applying the indicators of hydrologic alteration method and eco-flow metrics to daily runoff data (1965–2016) from the Sandu, Hulu and Dali Rivers on the Chinese Loess Plateau, and then determined their responses to terracing, afforestation and damming. The Budyko water balance equation and the double mass curve method were used to separate the impacts of climate change and human activities on the mean discharge changes. The results showed that the terraced and dammed watersheds exhibited significant decreases in annual runoff. All hydrologic metrics indicated that the highest degree of hydrologic alteration was in the Sandu River watershed (terraced), where the monthly and extreme flows reduced significantly. In contrast, the annual eco-deficit increased significantly, indicating the highest reduction in streamflow among the three watersheds. The regulation of dams and reservoirs in the Dali River watershed has altered the flow regime, and obvious decreases in the maximum flow and slight increases in the minimum flow and baseflow indices were observed. In the Hulu River watershed (afforested), the monthly flow and extreme flows decreased slightly and were categorized as low-degree alteration, indicating that the long-term delayed effects of afforestation on hydrological processes. The magnitude of the eco-flow metrics varied with the alteration of annual precipitation. Climate change contributed 67.47% to the runoff reduction in the Hulu River watershed, while human activities played predominant roles in reducing runoff in the Sandu and Dali River watersheds. The findings revealed distinct patterns and causes of streamflow regime alteration due to different conservation measures, emphasizing the need to optimize the spatial allocation of measures to control soil erosion and utilize water resources on the Loess Plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号