首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
程红战  陈健  胡之锋  黄珏皓 《岩土力学》2018,39(8):3047-3054
采用传统研究方法对盾构开挖面稳定性的分析多基于土体是均质、各向同性材料的假设,显然与其本身的非均质性相违背。为此,开展了考虑土体抗剪强度参数的空间变异性对盾构开挖面稳定性的影响研究。在随机场理论的基础上,采用协方差矩阵分解法建立了描述砂土内摩擦角空间变异性的三维随机场模型,借助于数值分析软件平台研究了内摩擦角的变异系数、自相关距离对开挖面失稳模式、极限支护应力的影响规律,并采用概率分析法探讨了极限支护应力特征值的选取。结果表明:砂土内摩擦角的空间变异性对开挖面稳定性有重要的影响;随内摩擦角的变异系数的增大,极限支护应力的概率分布离散性越大;开挖面失稳模式与自相关距离的大小密切相关,当自相关距离与隧道直径比较接近时,开挖面可能出现局部失稳;提出了开挖面极限支护应力特征值的概念,并结合失稳概率给出了其初步确定方法。  相似文献   

2.
Face stability analysis of tunnels excavated under pressurized shields is a major issue in real tunnelling projects. Most of the failure mechanisms used for the stability analysis of tunnels in purely cohesive soils were derived from rigid block failure mechanisms that were developed for frictional soils, by imposing a null friction angle. For a purely cohesive soil, this kind of mechanism is quite far from the actual velocity field. This paper aims at proposing two new continuous velocity fields for both collapse and blowout of an air‐pressurized tunnel face. These velocity fields are much more consistent with the actual failures observed in undrained clays. They are based on the normality condition, which states that any plastic deformation in a purely cohesive soil develops without any volume change. The numerical results have shown that the proposed velocity fields significantly improve the best existing bounds for collapse pressures and that their results compare reasonably well with the collapse and blowout pressures provided by a commercial finite difference software, for a much smaller computational cost. A design chart is provided for practical use in geotechnical engineering. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Liu  Wei  Shi  Peixin  Chen  Lijuan  Tang  Qiang 《Acta Geotechnica》2020,15(3):781-794

This paper develops the 2D and 3D kinematically admissible mechanisms for analyzing the passive face stability during shield tunneling using upper-bound analysis. The mechanisms consider trapezoidal distribution of support pressure along tunnel face and partial failure originated at tunnel face above invert. For cohesionless soils, the support pressure is a function of soil effective frictional angle φ′ which determines the inclination of failure block and the normalized soil cover depth C/D (soil cover depth/tunnel diameter) which affects the origination of the passive failure. For cohesive soils, the support pressure is a function of φ′, C/D, and the effective cohesion c′. The cohesion c′ has a relatively smaller impact on the support pressure than φ′ and C/D have. The mechanisms are verified by comparing the current solutions with a previous upper-bound solution. The comparison shows that the current solutions are a general solution which is capable of predicting the passive face failure originated at any depth along tunnel face and the previous solution is a particular solution with the assumption that the face failure originated at tunnel invert. The mechanisms are validated through application to a practical project of shallowly buried, large diameter underwater tunnel. The validation shows that the mechanisms are capable of assessing the tunnel face passive instability rationally.

  相似文献   

4.
刘克奇  丁万涛  陈瑞  侯铭垒 《岩土力学》2020,41(7):2293-2303
为明确盾构施工掌子面滑移破坏机制并确定掌子面支护力的合理范围,基于滑移线理论和极限分析上限定理,利用空间离散技术提出了一种盾构施工掌子面三维滑移破裂模型。依据大主应力拱理论计算滑移区顶部竖向土压力值,并以此作为滑移破坏区上部的竖向荷载计算掌子面极限支护力。研究表明,土拱效应显著影响掌子面前方土体竖向应力的大小及分布规律;将本模型与已有研究方法进行比较,验证了本模型获取的掌子面极限支护力极限分析上限解在黏性土地层以及摩擦土地层中的适用性。同时本模型构建的掌子面破坏区域形态更加贴近离心试验结果与数值计算结果。  相似文献   

5.
This paper presents a numerical investigation of shear behavior and strain localization in cemented sands using the distinct element method (DEM), employing two different failure criteria for grain bonding. The first criterion is characterized by a Mohr–Coulomb failure line with two distinctive contributions, cohesive and frictional, which sum to give the total bond resistance; the second features a constant, pressure-independent strength at low compressive forces and purely frictional resistance at high forces, which is the standard bond model implemented in the Particle Flow Code (PFC2D). Dilatancy, material friction angle and cohesion, strain and stress fields, the distribution of bond breakages, the void ratio and the averaged pure rotation rate (APR) were examined to elucidate the relations between micromechanical variables and macromechanical responses in DEM specimens subjected to biaxial compression tests.  相似文献   

6.
Upper bound analysis of tunnel face stability in layered soils   总被引:3,自引:3,他引:0  
The working face of tunnel constructions has to be kept stable during tunneling to prevent large soil deformations or fatal failure. In layered soils with lower cohesion, failures happen more often and more abrupt than in cohesive soils. Therefore, the maintenance of a proper support pressure at the tunnel working face is of high importance. In this paper, an upper bound analysis is introduced to investigate the minimum support pressure for the face stability in layered soils. A three-dimensional kinematically admissible mechanism for the upper bound analysis is improved to model potential failure within different soil layers. An analytical solution for the support pressure assessment is achieved. The influence of the crossing and cover soil on the face stability is analyzed, respectively. This solution provides an analytical estimation of the minimum support pressure for the face stability. It may be used as a reference for projects under similar conditions.  相似文献   

7.
The first-order reliability method (FORM) is used to calculate the reliability index of a circular tunnel subjected to a hydrostatic stress field. The random variables are first assumed to follow the normal distribution. Comparison between analysis using negatively correlated and uncorrelated friction angle and cohesion indicates that the results of reliability analysis are conservative if negative correlation among strength parameters is not modeled. The reliability analysis involving correlated non-normal distributions is also investigated. The probability density functions are obtained from reliability indices and compared to those generated from Monte Carlo simulations. Reliability-based design of tunnel support pressure is also illustrated.  相似文献   

8.
A probabilistic model is presented to compute the probability density function (PDF) of the ultimate bearing capacity of a strip footing resting on a spatially varying soil. The soil cohesion and friction angle were considered as two anisotropic cross‐correlated non‐Gaussian random fields. The deterministic model was based on numerical simulations. An efficient uncertainty propagation methodology that makes use of a non‐intrusive approach to build up a sparse polynomial chaos expansion for the system response was employed. The probabilistic numerical results were presented in the case of a weightless soil. Sobol indices have shown that the variability of the ultimate bearing capacity is mainly due to the soil cohesion. An increase in the coefficient of variation of a soil parameter (c or φ) increases its Sobol index, this increase being more significant for the friction angle. The negative correlation between the soil shear strength parameters decreases the response variability. The variability of the ultimate bearing capacity increases with the increase in the coefficients of variation of the random fields, the increase being more significant for the cohesion parameter. The decrease in the autocorrelation distances may lead to a smaller variability of the ultimate bearing capacity. Finally, the probabilistic mean value of the ultimate bearing capacity presents a minimum. This minimum is obtained in the isotropic case when the autocorrelation distance is nearly equal to the footing breadth. However, for the anisotropic case, this minimum is obtained at a given value of the ratio between the horizontal and vertical autocorrelation distances. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The present study investigates the influence of spatial variability of soil properties on the lateral thrust and failure surface of a 6?m high frictionless rigid earth retaining wall in active condition. The drained friction angle of the soil is modelled as a log-normal anisotropic random field in two dimensions, using the Cholesky decomposition technique. The effect of horizontal and vertical scale of fluctuation is observed on the lateral thrust. The failure surface in the backfill is found to be more or less similar for different combinations of spatial variability in vertical and horizontal directions. Monte-Carlo simulation technique is used to compute the probability of failure and to obtain the worst-case spatial variability configuration.  相似文献   

10.
基质吸力对非饱和土抗剪强度的影响   总被引:22,自引:1,他引:22  
林鸿州  李广信  于玉贞  吕禾 《岩土力学》2007,28(9):1931-1938
在自然界和工程实践中遇到的土大多数是非饱和土,研究吸力对非饱和土抗剪强度的作用,对于工程实践具有重要的意义。通过压力板仪和直剪仪组合试验,探讨了击实土抗剪强度和基质吸力的关系。试验结果表明:凝聚力在饱和度为40%-60%时最大,而内摩擦角则随饱和度增加而有所减少。进一步对比土-水特征曲线与抗剪强度的关系,并整合前人研究成果,指出了非饱和土中吸力对其抗剪强度影响的规律。对于无黏性土,在边界效应区不产生假凝聚力,且内摩擦角不变;在过渡区与非饱和残余区,假凝聚力和基质吸力的关系存在峰值且变化较大,内摩擦角则随吸力增加而增加。对于黏性土,残余体积含水率所对应的最小吸力可能是影响抗剪强度的界限值,小于此吸力值,φb可近似为常数。但在非饱和残余区,凝聚力将随土状态路径的不同而变化。对于重塑土,凝聚力降低;而对于原状土,则凝聚力可能不变或增加。  相似文献   

11.
The measures required for driving a tunnel below the groundwater table depend on the permeability of the soil. In coarse-grained, highly permeable soils additional measures, for example compressed-air support combined with a reduction of the permeability of the soil, e.g. induced by grouting, are necessary. Compared to this, it is possible to do without such measures in fine-grained, cohesive soils because of the increased short-term stability of the tunnel face under undrained conditions. In this publication the results of 3-dimensional finite-element calculations are presented to show the influence of the permeability of the soil and also the rate of the tunnel driving on the deformations around the tunnel as well as on the ground surface. The calculated deformations can furthermore be considered as an indicator for the time dependent stability of the tunnel face due to a higher redistribution of stresses and by that an enlargement of the plasticized zone. Usually the stability of the tunnel face is reduced by the presence of water because of the flow of water towards the tunnel. In low permeable soils undrained conditions prevail immediately after an excavation step. In this case relatively high stability-ratios may occur. The stability of the tunnel face will be reduced with increasing time until reaching the lower boundary of possible values, possibly leading to failure. If calculations are done under the assumption of drained conditions, the real stability of the tunnel face during construction may substantially exceed that of the calculated one. On the other hand, if calculations are done for undrained conditions, the effective stability may lie on the unsafe side [10]. There is therefore a big demand to optimize the method of investigating deformations around the tunnel, so as to ensure a safe tunnel excavation on the one hand and to guarantee a cost-effective process on the other. In this paper the tunnelling process is modelled by a step-by-step excavation under atmospheric conditions. The soil is described by a material model which distinguishes between primary and unload-reload stress paths and also accounts for stress-dependent stiffness parameters. The failure criterion is described by the Mohr-Coulomb criterion that considers cohesion, friction angle and angle of dilatancy.  相似文献   

12.
Passive earth pressure calculations in geotechnical analysis are usually performed with the aid of the Rankine or Coulomb theories of earth pressure based on uniform soil properties. These traditional earth pressure theories assume that the soil is uniform. The fact that soils are spatially variable leads to two potential problems in design: do sampled soil properties adequately reflect the effective properties of the entire soil mass and does spatial variability in soil properties lead to passive earth pressures that are significantly different from those predicted using traditional theories? This paper combines non-linear finite element analysis with random field simulation to investigate these two questions. The specific case investigated is a two-dimensional frictionless passive wall with a cohesionless drained soil mass. The wall is designed against sliding using Rankine's earth pressure theory. The unit weight is assumed to be constant throughout the soil mass and the design friction angle is obtained by sampling the simulated random soil field. For a single sample, the friction angle is used as an effective soil property in the Rankine model. For two samples, an average of the sampled friction angles is used. Failure is defined as occurring when the Rankine predicted passive resistance acting on the wall, modified by a factor of safety, is greater than that computed by the random finite element method. Using Monte Carlo simulation, the probability of failure of the traditional design approach is assessed as a function of the factor of safety using and the spatial variability of the soil.  相似文献   

13.
梁桥  杨小礼  张佳华  周文权 《岩土力学》2016,37(9):2585-2592
基于对数螺旋破坏模式,考虑黏土的非均质特征,采用极限分析上限法推导了盾构隧道掌子面支护力计算公式,通过优化计算得到了不同条件下的最优上限解。采用该破坏模式与已有的模型试验、工程实例进行对比,验证了在非均质土中采用双对数螺旋极限分析上限法的适用性;同时详细分析了在土体不同参数条件下,隧道掌子面支护力、滑动面范围的变化趋势以及工程影响,结果显示在非均质土中,掌子面支护效率的主导因素是初始黏聚力与掌子面超前核心土,最后通过归一化处理得到了非均质土中极限支护力的设计推荐图,可为工程中初步确定盾构隧道掌子面支护压力提供理论依据。  相似文献   

14.
This paper discusses the formation of stable arches in frictional soils. A series of laboratory tests are performed to explore the formation of arches in granular materials, either cohesionless or with small apparent cohesion. By considering the stable soil arch as a stress‐free surface, the analysis in the framework of continuum mechanics reveals that such an arch can only form in cohesive frictional materials. The shape of the arch mainly depends on the material's friction angle, while the critical width of the arch is primarily dominated by cohesion. The formation of stable arches in cohesionless materials is interpreted by taking into account the discrete nature of the material, with the failure of the arch being considered as buckling of particle columns. It is shown that the width of stable arches in cohesionless materials is generally five to seven times of the particle size. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
衬垫中污染物的运移分析一般采用确定性方法。为了研究渗透系数变异性对污染物运移的影响,基于土层剖面随机场理论,将渗透系数模拟成服从对数正态分布的空间随机场,利用Monte-Carlo和数值积分两种方法进行分析。两种方法得到的结果有很好的一致性。衬垫渗透系数的空间变异性对污染物运移有重要影响。变异系数较大时,衬垫失效概率在前期较大而后期较小,但衬垫底部出现高浓度(相对浓度0.9~1.0)的几率也较高。衬垫的可靠性要综合考虑渗透系数的变异性和渗透系数数值范围的影响。   相似文献   

16.
考虑参数空间变异性的非饱和土坡可靠度分析   总被引:2,自引:0,他引:2  
在考虑多个土体参数空间变异性的基础上,提出了基于拉丁超立方抽样的非饱和土坡稳定可靠度分析的非侵入式随机有限元法。利用Hermite随机多项式展开拟合边坡安全系数与输入参数间的隐式函数关系,采用拉丁超立方抽样技术产生输入参数样本点,通过Karhunen-Loève展开方法离散土体渗透系数、有效黏聚力和内摩擦角随机场,并编写了计算程序NISFEM-KL-LHS。研究了该方法在稳定渗流条件下非饱和土坡可靠度分析中的应用。结果表明:非侵入式随机有限元法为考虑多个土体参数空间变异性的非饱和土坡可靠度问题提供了一种有效的分析工具。土体渗透系数空间变异性和坡面降雨强度对边坡地下水位和最危险滑动面位置均有明显的影响。当降雨强度与饱和渗透系数的比值大于0.01时,边坡失效概率急剧增加。当土体参数变异性或者参数间负相关性较大时,忽略土体参数空间变异性会明显高估边坡失效概率。  相似文献   

17.
基于粘结和摩擦特性的岩石变形与破坏的研究   总被引:7,自引:0,他引:7  
尤明庆 《地质力学学报》2005,11(3):286-292,258
就微观结构而言,矿物颗粒之间或相互粘结或相互分离,Coulomb准则的粘结力和内摩擦力在局部不能同时存在.粘结力是在变形作用下丧失的,材料丧失粘结力之后通过摩擦承载.若承载能力降低,屈服破坏仅在局部断面发生,具有脆性特征;反之将发生分布的屈服破坏,具有延性特征.围压增加可以使裂隙能够承载的摩擦力超过岩石材料的粘结力,那么当轴向应力增加到粘结力时,材料发生剪切屈服产生塑性变形,而摩擦力不会增加到其最大值,裂隙也不发生滑移.利用摩擦的概念可以理解不同岩石的变形、承载和破坏随围压变化的特征.   相似文献   

18.
Reliability analysis of bearing capacity of a strip footing at the crest of a simple slope with cohesive soil was carried out using the random finite element method (RFEM). Analyses showed that the coefficient of variation and the spatial correlation length of soil cohesion can have a large influence on footing bearing capacity, particularly for slopes with large height to footing width ratios. The paper demonstrates cases where a footing satisfies a deterministic design factor of safety of 3 but the probability of design failure is unacceptably high. Isotropic and anisotropic spatial variability of the soil strength was also considered.  相似文献   

19.
Rainfall infiltration poses a disastrous threat to the slope stability in many regions around the world. This paper proposes an extreme gradient boosting (XGBoost)-based stochastic analysis framework to estimate the rainfall-induced slope failure probability. An unsaturated slope under rainfall infiltration in spatially varying soils is selected in this study to investigate the influences of the spatial variability of soil properties (including effective cohesion c′, effective friction angle φ′ and saturated hydraulic conductivity ks), as well as rainfall intensity and rainfall pattern on the slope failure probability. Results show that the proposed framework in this study is capable of computing the failure probability with accuracy and high efficiency. The spatial variability of ks cannot be overlooked in the reliability analysis. Otherwise, the rainfall-induced slope failure probability will be underestimated. It is found that the rainfall intensity and rainfall pattern have significant effect on the probability of failure. Moreover, the failure probabilities under various rainfall intensities and patterns can be easily obtained with the aid of the proposed framework, which can provide timely guidance for the landslide emergency management departments.  相似文献   

20.
Probabilistic analysis of underground rock excavations is performed using response surface method and SORM, in which the quadratic polynomial with cross terms is used to approximate the implicit limit state surface at the design point. The response surface is found using an iterative algorithm and the probability of failure is evaluated using the first-order and the second-order reliability method (FORM/SORM). Independent standard normal variables in U-space are chosen as basic random variables and transformed into correlated non-normal variables in the original space of random variables for constructing the response surface. The proposed method is first illustrated for a circular tunnel with analytical solutions considering Mohr–Coulomb (M–C) and Hoek–Brown (H–B) yield criteria separately. The failure probability with respect to the plastic zone criterion and the tunnel convergence criterion are estimated from FORM/SORM and compared to those obtained from Monte Carlo Simulations. The results show that the support pressure has great influence on the failure probability of the two failure modes. For the M–C model, the hypothesis of uncorrelated friction angle and cohesion will generate higher non-performance probability in comparison to the case of negatively correlated shear strength parameters. Reliability analyses involving non-normal distributions are also investigated. Finally, an example of a horseshoe-shaped highway tunnel is presented to illustrate the feasibility and validity of the proposed method for practical applications where numerical procedures are needed to calculate the performance function values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号