首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Twenty-four years of AVHRR-derived sea surface temperature (SST) data (1985–2008) and 35 years of NOCS (V.2) in situ-based SST data (1973–2008) were used to investigate the decadal scale variability of this parameter in the Mediterranean Sea in relation to local air–sea interaction and large-scale atmospheric variability. Satellite and in situ-derived data indicate a strong eastward increasing sea surface warming trend from the early 1990s onwards. The satellite-derived mean annual warming rate is about 0.037°C year–1 for the whole basin, about 0.026°C year–1 for the western sub-basin and about 0.042°C year–1 for the eastern sub-basin over 1985–2008. NOCS-derived data indicate similar variability but with lower warming trends for both sub-basins over the same period. The long-term Mediterranean SST spatiotemporal variability is mainly associated with horizontal heat advection variations and an increasing warming of the Atlantic inflow. Analysis of SST and net heat flux inter-annual variations indicates a negative correlation, with the long-term SST increase, driving a net air–sea heat flux decrease in the Mediterranean Sea through a large increase in the latent heat loss. Empirical orthogonal function (EOF) analysis of the monthly average anomaly satellite-derived time series showed that the first EOF mode is associated with a long-term warming trend throughout the whole Mediterranean surface and it is highly correlated with both the Eastern Atlantic (EA) pattern and the Atlantic Multidecadal Oscillation (AMO) index. On the other hand, SST basin-average yearly anomaly and NAO variations show low and not statistically significant correlations of opposite sign for the eastern (negative correlation) and western (positive correlation) sub-basins. However, there seems to be a link between NAO and SST decadal-scale variations that is particularly evidenced in the second EOF mode of SST anomalies. NOCS SST time series show a significant SST rise in the western basin from 1973 to the late 1980s following a large warming of the inflowing surface Atlantic waters and a long-term increase of the NAO index, whereas SST slowly increased in the eastern basin. In the early 1990s, there is an abrupt change from a very high positive to a low NAO phase which coincides with a large change in the SST spatiotemporal variability pattern. This pronounced variability shift is followed by an acceleration of the warming rate in the Mediterranean Sea and a change in the direction (from westward to eastward) of its spatial increasing tendency.  相似文献   

2.
This study explores the effects of the Changjiang (also called the Yangtze River) river discharge (CRD) on the density stratifications and associated sea surface temperature (SST) changes using a global ocean general circulation model with regional focus on the Yellow and East China Seas (YECS). It is found that CRD increases the SST in summer through a barrier layer (BL) formation that tends to enhance stratification at the mixed layer base, and thus reduces both vertical mixing and entrainment. This process is effective, particularly in August, after the CRD reaches its maximum in July. The SST difference between the composites of flood and drought years confirms that the surface warming is related to surface freshening by the CRD. This result suggests that the BL induced by the CRD is an important contributor to the surface heat budget in the YECS.  相似文献   

3.
Based on Argo sea surface salinity(SSS) and the related precipitation(P), evaporation(E), and sea surface height data sets, the climatological annual mean and low-frequency variability in SSS in the global ocean and their relationship with ocean circulation and climate change were analyzed. Meanwhile, together with previous studies, a brief retrospect and prospect of seawater salinity were given in this work. Freshwater flux(E-P) dominated the mean pattern of SSS, while the dynamics of ocean circulation modulated the spatial structure and low-frequency variability in SSS in most regions. Under global warming, the trend in SSS indicated the intensification of the global hydrological cycle, and featured a decreasing trend at low and high latitudes and an increasing trend in subtropical regions. In the most recent two decades, global warming has slowed down, which is called the"global warming hiatus". The trend in SSS during this phase, which was different to that under global warming, mainly indicated the response of the ocean surface to the decadal and multi-decadal variability in the climate system, referring to the intensification of the Walker Circulation. The significant contrast of SSS trends between the western Pacific and the southeastern Indian Ocean suggested the importance of oceanic dynamics in the cross-basin interaction in recent decades. Ocean Rossby waves and the Indonesian Throughflow contributed to the freshening trend in SSS in the southeastern Indian Ocean, while the increasing trend in the southeastern Pacific and the decreasing trend in the northern Atlantic implied a long-term linear trend under global warming. In the future, higher resolution SSS data observed by satellites, together with Argo observations, will help to extend our knowledge on the dynamics of mesoscale eddies, regional oceanography, and climate change.  相似文献   

4.
We examine characteristics in the variability of sea surface temperature (SST) in the Yellow/East China Sea during the boreal winter (December–January–February) for the period 1950–2008 in observations. It is found that the mean SST in the Yellow Sea/East China Sea gradually increases during recent decades. A warming trend of a basin scale SST is significant in most of the regions in the Yellow/East Sea, which is well explained by the variability of the first empirical orthogonal function SST mode. We suggest one candidate mechanism that the North Pacific oscillation (NPO)-like sea level pressure play an important role to warm the Yellow/East China Sea. Anomalous anticyclonic circulation, which is the southern lobe of NPO-like sea level pressure over the North Pacific, causes a weakening of northerly mean winds over the Yellow/East China Sea during winter. This contributes to increase in the SST in the Yellow/East China Sea through the changes in the latent heat and sensible heat fluxes.  相似文献   

5.
We analyse the regional variability in observed sea surface height (SSH), sea surface temperature (SST) and ocean colour (OC) from the ESA Climate Change Initiative datasets over the period 1993–2011. The analysis focuses on the signature of the ocean large-scale climate fluctuations driven by the atmospheric forcing and do not address the mesoscale variability. We use the ECCO version 4 ocean reanalysis to unravel the role of ocean transport and surface buoyancy fluxes in the observed SSH, SST and OC variability. We show that the SSH regional variability is dominated by the steric effect (except at high latitude) and is mainly shaped by ocean heat transport divergences with some contributions from the surface heat fluxes forcing that can be significant regionally (confirming earlier results). This is in contrast with the SST regional variability, which is the result of the compensation of surface heat fluxes by ocean heat transport in the mixed layer and arises from small departures around this background balance. Bringing together the results of SSH and SST analyses, we show that SSH and SST bear some common variability. This is because both SSH and SST variability show significant contributions from the surface heat fluxes forcing. It is evidenced by the high correlation between SST and buoyancy-forced SSH almost everywhere in the ocean except at high latitude. OC, which is determined by phytoplankton biomass, is governed by the availability of light and nutrients that essentially depend on climate fluctuations. For this reason, OC shows significant correlation with SST and SSH. We show that the correlation with SST displays the same pattern as the correlation with SSH with a negative correlation in the tropics and subtropics and a positive correlation at high latitude. We discuss the reasons for this pattern.  相似文献   

6.
The suspended sediment flux field in the Yellow and East China Seas(YECS) displays its seasonal variability.A new method is introduced in this paper to obtain the flux field via retrieval of ocean color remote sensing data,statistical analysis of historical suspended sediment concentration data,and numerical simulation of three-dimensional(3D) flow velocity.The components of the sediment flux field include(i) surface suspended sediment concentration inverted from ocean color remote sensing data;(ii) vertical distribution of suspended sediment concentration obtained by statistical analysis of historical observation data;and(iii) 3D flow field modeled by a numerical simulation.With the improved method,the 3D suspended sediment flux field in the YECS has been illustrated.By comparison with the suspended sediment flux field solely based on the numerical simulation of a suspended sediment transport model,the suspended sediment flux field obtained by the improved method is found to be more reliable.The 3D suspended sediment flux field from ocean colour remote sensing and in situ observation are more closer to the reality.Furthermore,by quantitatively analyzing the newly obtained suspended sediment flux field,the quantity of sediment erosion and deposition within the different regions can be evaluated.The sediment exchange between the Yellow Sea and the East China Sea can be evident.The mechanism of suspended sediment transport in the YECS can be better understood.In particular,it is suggested that the long-term transport of suspended sediment is controlled mainly by the circulation pattern,especially the current in winter.  相似文献   

7.
This study was aimed at modeling, as realistically as possible, the dynamics and thermodynamics of the Iroise Sea by using the Model for Applications at Regional Scale (MARS), a regional ocean 3D model. The horizontal resolution of the configuration in use is 2 km with 30 vertical levels. The 3D model of the Iroise Sea is embedded in a larger model providing open boundary conditions. As regards the atmospheric forcing, the originality of this study is to force the regional ocean model with the high-resolution (6 km) regional meteorological model, Weather Research and Forecasting (WRF). In addition, as the air surface temperature is highly sensitive to the sea surface temperature (SST), this regional meteorological model is improved by taking into account a regional climatologic SST to compute meteorological parameters. By allowing a better coherence between the SST and the temperature of the atmospheric boundary layer while giving a more realistic representation of heat fluxes exchanged at the air/sea interface, this forcing constitutes a noticeable improvement of the Iroise Sea modeling. The different sensitivity tests discussed here pinpoint the importance of entering, in WRF, SST data of sufficiently high quality before the computation of meteorological forcing when the aim is a study of dynamics and thermodynamics far away from the coast. On the other hand, when the target is the reproduction of coastal small-scale features in Iroise Sea modeling, the resolution of the meteorological forcing and the quality of SST are both paramount. The simulation of reference was carried out throughout the Summer and Autumn of year 2005 to allow comparisons with a campaign of surface current measurements by high-frequency radars conducted at the same period.  相似文献   

8.
Active and break phases of the Indian summer monsoon are associated with sea surface temperature (SST) fluctuations at 30–90 days timescale in the Arabian Sea and Bay of Bengal. Mechanisms responsible for basin-scale intraseasonal SST variations have previously been discussed, but the maxima of SST variability are actually located in three specific offshore regions: the South-Eastern Arabian Sea (SEAS), the Southern Tip of India (STI) and the North-Western Bay of Bengal (NWBoB). In the present study, we use an eddy-permitting 0.25° regional ocean model to investigate mechanisms of this offshore intraseasonal SST variability. Modelled climatological mixed layer and upper thermocline depth are in very good agreement with estimates from three repeated expendable bathythermograph transects perpendicular to the Indian Coast. The model intraseasonal forcing and SST variability agree well with observed estimates, although modelled intraseasonal offshore SST amplitude is undere-stimated by 20–30 %. Our analysis reveals that surface heat flux variations drive a large part of the intraseasonal SST variations along the Indian coastline while oceanic processes have contrasted contributions depending of the region considered. In the SEAS, this contribution is very small because intraseasonal wind variations are essentially cross-shore, and thus not associated with significant upwelling intraseasonal fluctuations. In the STI, vertical advection associated with Ekman pumping contributes to ~30 % of the SST fluctuations. In the NWBoB, vertical mixing diminishes the SST variations driven by the atmospheric heat flux perturbations by 40 %. Simple slab ocean model integrations show that the amplitude of these intraseasonal SST signals is not very sensitive to the heat flux dataset used, but more sensitive to mixed layer depth.  相似文献   

9.
Long-term variability of heat content (HC) in the upper 1,000 m of the Arctic Ocean is investigated using surface and subsurface temperature and current data during 1958–2005 compiled by Simple Ocean Data Assimilation. Annual cycle of the Arctic Ocean HC is controlled primarily by the negative and positive excursions in net upper ocean heat flux, while the inter-annual variability is mainly associated with meridional thermal advection from the North Atlantic Ocean. Variability in HC is experienced as a basin-wide cooling/warming in association with the Arctic Oscillation on a decadal time scale. In the first three dominant modes of Empirical Orthogonal Function, the maximum amplitude of HC variability occurs in the Greenland–Norwegian Sea and Eurasian Basin. In general, HC showed increasing trend during 1958–2005 indicating continuous warming with regional variations in magnitude.  相似文献   

10.
清华大学地球系统科学研究中心在一个标准耦合模式(SC)的基础上建立了交互集合耦合模式系统(IE),该系统可以实现多个不同大气模式或者同一大气模式采取不同初值组成的多个分量集合之后与海、陆、冰模式进行耦合.本文利用同一大气模式七个不同初值分量与其它模式分量开展在线集合耦合试验,利用积分稳定之后100年的试验结果,分析了IE在减小海-气界面大气噪音的情况下,对北太平洋海表面温度(SST)变率和ENSO的模拟,并与SC模拟结果进行了对比.分析表明,IE减小了北太平洋中高纬度SST方差的85%以上,表明该区域SST变率主要受大气的影响,且主要是通过改变海表湍流热通量实现的.黑潮延伸体区和北太平洋中部副热带涡旋区域平均SST 8年左右的低频周期主要受来自大气内部动力过程的驱动.在集合耦合模拟中,无论是副热带涡旋区SST与ENSO的联系,还是ENSO与北太平洋中高纬度SST的联系都能模拟出来,而标准模式未能模拟出这些现象,意味着大气噪音过强将掩盖ENSO与太平洋热带外SST的联系.IE对与ENSO关联的“太平洋-北美”(PNA)遥相关型的合理模拟,并通过湍流热通量对海表温度的影响,是其能够更好模拟ENSO与北太平洋中高纬度SST关系的重要原因.本文通过分析验证了所建立的交互集合耦合模式系统的合理性,揭示了该系统在海-气相互作用研究领域方面具有一定应用前景.  相似文献   

11.
The ocean meridional overturning circulation (MOC) plays a central role for the climate in the Atlantic realm. Since scenarios for future climate change indicate a significant reduction of the MOC under global warming, an assessment of variations and trends of the real MOC is important. Using observations at ocean weather ship (OWS) stations and along oceanic sections, we examine the hydrographic information that can be used to determine MOC trends via its signature in water mass properties obtained from model simulations with the climate model ECHAM5/MPI-OM. We show that temperature trends at mid-latitudes provide useful indirect measure of large-scale changes of deep circulation: A mid-depth warming is related to MOC weakening and a cooling to MOC strengthening. Based on our model experiments, we argue that a continuation of measurements at key OWS sites may contribute to a timely detection of a possible future MOC slowdown and to separate the signal from interannual-to-multidecadal MOC variability. The simulations suggest that the subsurface hydrographic information related to MOC has a lower variability than the MOC trend measured directly. Based on our model and the available long-term hydrographic data, we estimate non-significant MOC trends for the last 80 years. For the twenty-first century, however, the model simulations predict a significant MOC decline and accompanied mid-depth warming trend.  相似文献   

12.
W. P. Budgell 《Ocean Dynamics》2005,55(3-4):370-387
A dynamic–thermodynamic sea ice model has been coupled to a three-dimensional ocean general circulation model for the purpose of conducting ocean climate dynamical downscaling experiments for the Barents Sea region. To assess model performance and suitability for such an application, the coupled model has been used to conduct a hindcast for the period 1990–2002. A comparison with available observations shows that the model successfully tracks seasonal and inter-annual variability in the ocean temperature field and that the simulated horizontal and vertical distribution of temperature are in good agreement with observations. The model results follow the seasonal and inter-annual variability in sea ice cover in the region, with the exception that the model results show too much ice melting in the northern Barents Sea during summer. The spatial distribution of the winter simulated sea ice cover is in close agreement with observations. Modelled temperatures and ice concentrations in the central Barents Sea are biased too high and too low, respectively. The probable cause is too high inflow of Atlantic Water into the Barents. The seasonal and inter-annual fluctuations in temperature and sea ice cover in the central Barents are, however, in excellent agreement with observations. Salt release during the freezing process in the numerical simulation exhibits considerable inter-annual variability and tends to vary in an opposite manner to the net inflow volume flux at the western entrance of the Barents Sea. Overall, the model produces realistic ice-ocean seasonal and inter-annual variability and should prove to be a useful tool for dynamical downscaling applications.  相似文献   

13.
Globally coupled climate models are generally capable of reproducing the observed trends in the globally averaged atmospheric temperature. However, the global models do not perform as well on regional scales. Here, we present results from four 100-year, high-resolution ocean model experiments (resolution less than 1 km) for the western Baltic Sea. The forcing is taken from a regional atmospheric model and a regional ocean model, imbedded into two global greenhouse gas emission scenarios, A1B and B1, for the period of 2000 to 2100 with each two realisations. Two control runs from 1960 to 2000 are used for validation. For both scenarios, the results show a warming with an increase of 0.5–2.5 K at the sea surface and 0.7–2.8 K below 40 m. The simulations further indicate a decrease in salinity by 1.5–2 practical salinity units. The increase in water temperature leads to a prolongation of heat waves based on present-day thresholds. This amounts to a doubling or even tripling of the heat wave duration. The simulations show a decrease in inflow events (barotropic/baroclinic), which will affect the deepwater generation and ventilation of the central Baltic Sea. The high spatial resolution allows us to diagnose the inflow events and the mechanism that will cause future changes. The reduction in barotropic inflow events correlates well with the increase in westerly winds. The changes in the baroclinic inflows can be consistently explained by the reduction of calm wind periods and thus a weakening of the necessary stratification in the western Baltic Sea and the Danish Straits.  相似文献   

14.
A global in situ analysis and a global ocean simulation are used jointly to study interannual to decadal variability of temperature in the Bay of Biscay, from 1965 to 2003. A strong cooling is obtained at all depths until the mid-1970's, followed by a sustained warming over ~30 years. Strong interannual fluctuations are superimposed on this slow evolution. The fluctuations are intensified at the surface and are weakest at ~500 m. A good agreement is found between the observed and simulated temperatures, in terms of mean values, interannual variability and time correlations. Only the decadal trend is significantly underestimated in the simulation. A comparison to satellite sea surface temperature (SST) data over the last 20 years is also presented. The first mode of interannual variability exhibits a quasi-uniform structure and is related to the inverse winter North Atlantic Oscillation (NAO) index. Regarding the vertical structure, most cool and warm anomalies are generated at the surface, with the strongest ones penetrating down to 700 m and lasting up to 5 years. The complete heat budget from 1965 to 2004 is presented, including the contributions of vertical transport, freshwater flux and surface elevation. Interannual anomalies are mainly generated by the surface heat flux, while oceanic transports may become more important at longer time scales.  相似文献   

15.
Typhoon Nuri formed on 18 August 2008 in the western North Pacific east of the Philippines and traversed northwestward over the Kuroshio in the Luzon Strait where it intensified to a category 3 typhoon. The storm weakened as it passed over South China Sea (SCS) and made landfall in Hong Kong as a category 1 typhoon on 22 August. Despite the storm’s modest strength, the change in typhoon Nuri’s intensity was unique in that it strongly depended on the upper ocean. This study examines the ocean response to typhoon Nuri using the Princeton Ocean Model. An ocean state accounting for the sea-surface temperature (SST) and mesoscale eddy field prior to Nuri was constructed by assimilating satellite SST and altimetry data 12 days before the storm. The simulation then continued without further data assimilation, so that the ocean response to the strong wind can be used to understand processes. It is found that the SST cooling was biased to the right of the storm’s track due to inertial currents that rotated in the same sense as the wind vector, as has previously been found in the literature. However, despite the comparable wind speeds while the storm was in western Pacific and SCS, the SST cooling was much more intense in SCS. The reason was because in SCS, the surface layer was thinner, the vorticity field of the Kuroshio was cyclonic, and moreover a combination of larger Coriolis frequency as the storm moved northward and the typhoon’s slower translational speed produced a stronger resonance between wind and current, resulting in strong shears and entrainment of cool subsurface waters in the upper ocean.  相似文献   

16.
Rising in the Andes, the Madeira River drains the southwestern part of the Amazon basin, which is characterized by high geographical, biological and climatic diversity. This study uses daily records to assess the spatio-temporal runoff variability in the Madeira sub-basins. Results show that inter-annual variability of both discharge and rainfall differs between Andean and lowland tributaries. High-flow discharge variability in the Andean tributaries and the Guaporé River is mostly related to sea surface temperature (SST) in the equatorial Pacific in austral summer, while tropical North Atlantic (TNA) SST modulates rainfall and discharge variability in the lowlands. There also is a downward trend in the low-flow discharge of the lowland tributaries which is not observed in the Andes. Because low-flow discharge values at most lowland stations are negatively related to the SST in the tropical North Atlantic, these trends could be explained by the warming of this ocean since the 1970s.
EDITOR A. Castellarin

ASSOCIATE EDITOR A. Viglione  相似文献   

17.
What dominates sea level at the coast: a case study for the Gulf of Guinea   总被引:1,自引:0,他引:1  
Sea level variations and extreme events are a major threat for coastal zones. This threat is expected to worsen with time because low-lying coastal areas are expected to become more vulnerable to flooding and land loss as sea level rises in response to climate change. Sea level variations in the coastal ocean result from a combination of different processes that act at different spatial and temporal scales. In this study, the relative importance of processes causing coastal sea level variability at different time-scales is evaluated. Contributions from the altimetry-derived sea-level (including the sea level rise due to the ocean warming and land ice loss in response to climate change), dynamical atmospheric forcing induced sea level (surges), wave-induced run-up and set-up, and astronomical tides are estimated from observational datasets and reanalyses. As these processes impact the coast differently, evaluating their importance is essential for assessment of the local coastline vulnerability. A case study is developed in the Gulf of Guinea over the 1993–2012 period. The leading contributors to sea level variability off Cotonou differ depending on the time-scales considered. The trend is largely dominated by processes included in altimetric data and to a lesser extent by swell-waves run-up. The latter dominates interannual variations. Swell-waves run-up and tides dominate subannual variability. Extreme events are due to the conjunction of high tides and large swell run-up, exhibiting a clear seasonal cycle with more events in boreal summer and a trend mostly related to the trend in altimetric-derived sea-level.  相似文献   

18.
Asian summer monsoon sets in over India after the Intertropical Convergence Zone moves across the equator to the northern hemisphere over the Indian Ocean. Sea surface temperature (SST) anomalies on either side of the equator in Indian and Pacific oceans are found related to the date of monsoon onset over Kerala (India). Droughts in the June to September monsoon rainfall of India are followed by warm SST anomalies over tropical Indian Ocean and cold SST anomalies over west Pacific Ocean. These anomalies persist till the following monsoon which gives normal or excess rainfall (tropospheric biennial oscillation). Thus, we do not get in India many successive drought years as in sub-Saharan Africa, thanks to the ocean. Monsoon rainfall of India has a decadal variability in the form of 30-year epochs of frequent (infrequent) drought monsoons occurring alternately. Decadal oscillations of monsoon rainfall and the well-known decadal oscillation in SST of the Atlantic Ocean (also of the Pacific Ocean) are found to run parallel with about the same period close to 60 years and the same phase. In the active–break cycle of the Asian summer monsoon, the ocean and the atmosphere are found to interact on the time scale of 30–60 days. Net heat flux at the ocean surface, monsoon low-level jetstream (LLJ) and the seasonally persisting shallow mixed layer of the ocean north of the LLJ axis play important roles in this interaction. In an El Niño year, the LLJ extends eastwards up to the date line creating an area of shallow ocean mixed layer there, which is hypothesised to lengthen the active–break (AB) cycle typically from 1 month in a La Niña to 2 months in an El Niño year. Indian monsoon droughts are known to be associated with El Niños, and long break monsoon spells are found to be a major cause of monsoon droughts. In the global warming scenario, the observed rapid warming of the equatorial Indian ocean SST has caused the weakening of both the monsoon Hadley circulation and the monsoon LLJ which has been related to the observed rapid decreasing trend in the seasonal number of monsoon depressions.  相似文献   

19.
As large-scale ocean circulation is a key regulator in the redistribution of oceanic energy, evaluating the multi-decadal trends in the western Pacific Ocean circulation under global warming is essential for not only understanding the basic physical processes but also predicting future climate change in the western Pacific. Employing the hydrological observations of World Ocean Atlas 2018(WOA18) from 1955 to 2017, this study calculated the geostrophic currents, volume transport and multidecadal trends for the North Equatorial Current(NEC), the North Equatorial Countercurrent(NECC), the Mindanao Current(MC), the Kuroshio Current(KC) in the origin and the New Guinea Coastal Undercurrent(NGCUC) within tropical western Pacific Ocean over multi-decades. Furthermore, this study examined the contributions of temperature and salinity variations. The results showed significant strengthening trends in NEC, MC and NGCUC over the past six decades, which is mainly contributed by temperature variations and consistent with the tendency in the dynamic height pattern. Zonal wind stress averaged over the western Pacific Ocean in the same latitude of each current represents the decadal variation and multi-decadal trends in corresponding ocean currents, indicating that the trade wind forcing plays an important role in the decadal trend in the tropical western Pacific circulation. Uncertainties in the observed hydrological data and trends in the currents over the tropical western Pacific are also discussed. Given that the WOA18 dataset covers most of the historical hydrological sampling data for the tropical western Pacific, this paper provides important observational information on the multi-decadal trend of the large-scale ocean circulation in the western Pacific.  相似文献   

20.
Variability of dense water formation in the Ross Sea   总被引:1,自引:0,他引:1  
This paper presents results from a model study of the interannual variability of high salinity shelf water (HSSW) properties in the Ross Sea. Salinity and potential temperature of HSSW formed in the western Ross Sea show oscillatory behaviour at periods of 5–6 and 9 years superimposed on long-term fluctuations. While the shorter oscillations are induced by wind variability, variability on the scale of decades appears to be related to air temperature fluctuations. At least part of the strong decrease of HSSW salinities deduced from observations for the period 1963–2000 is shown to be an aliasing artefact due to an undersampling of the periodic signal. While sea ice formation is responsible for the yearly salinity increase that triggers the formation of HSSW, interannual variability of net freezing rates hardly affects changes in the properties of the resulting water mass. Instead, results from model experiments indicate that the interannual variability of dense water characteristics is predominantly controlled by variations in the shelf inflow through a sub-surface salinity and a deep temperature signal. The origin of the variability of inflow characteristics to the Ross Sea continental shelf can be traced into the Amundsen and Bellingshausen Seas. The temperature anomalies are induced at the continental shelf break in the western Bellingshausen Sea by fluctuations of the meridional transport of circumpolar deep water with the eastern cell of the Ross Gyre. In the Amundsen Sea, upwelling due to a persistently cyclonic wind field carries the signal into the surface mixed layer, leading to fluctuations of the vertical heat flux, anomalies of brine release near the sea ice edge, and consequently to a sub-surface salinity anomaly. With the westward flowing coastal current, both the sub-surface salinity and deep temperature signals are advected onto the Ross Sea continental shelf. Convection carries the signal of salinity variability into the deep ocean, where it interacts with modified circumpolar deep water upwelled onto the continental shelf as the second source water mass of HSSW. Sea ice formation on the Ross Sea continental shelf thus drives the vertical propagation of the signal rather than determining the signal itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号