首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The mechanical efficiency of the biocementation process is directly related to the microstructural properties of the biocemented sand, such as the volume fraction of calcite, its distribution within the pore space (localized at the contact between grains, over the grain surfaces) and the contact properties: coordination number, contact surface area, contacts orientation and types of contact. In the present work, all these micromechanical properties are computed, for the first time, from 3D images obtained by X-ray tomography of intact biocemented sand samples. The evolution of all these properties with respect to the volume fraction of calcite is analyzed and compared between each other (from untreated sand to highly cemented sand). Whatever the volume fraction of calcite, it is shown that the precipitation of the calcite is localized at the contacts between grains. These results are confirmed by comparing our numerical results with analytical estimates assuming that the granular medium is made of periodic simple cubic arrangements of grains and by considering two extreme cases of precipitation: (1) The calcite is localized at the contact, and (2) the grains are covered by a uniform layer of calcite. In overall, the obtained results show that a small percentage of calcite is sufficient to get a large amount of cohesive contacts.

  相似文献   

2.
The mechanical efficiency of the biocementation process is directly related to the microstructural properties of the biocemented sand, such as the volume fraction of calcite, its distribution within the pore space, coordination number, contact surface area, and types of contact. In the present work, some of these microscopic properties are computed, from 3D images obtained by X-ray tomography of biocemented sand. These properties are then used as an input in current analytical models to estimate the elastic properties (Young and shear moduli) and the strength properties (Coulomb cohesion). For the elastic properties, the analytical estimates (contact cement theory model) are compared with classical bounds, self-consistent estimate and numerical results obtained by direct computation (FEM computation) on the same 3D images. Concerning the cohesion, an analytical model initially developed to estimate the cohesion due to suction in unsaturated soils is modified to evaluate the macroscopic cohesion of biocemented sands. Such analytical model is calibrated on experimental data obtained from triaxial tests performed on the same biocemented sand. In overall, the presented results point out the important role of some microstructural parameters, notably those related to the contact, on such effective parameters.  相似文献   

3.
The microstructural evolution of polymineralic contact metamorphic calcite marbles (Adamello contact aureole) with variable volume fractions of second-phase minerals were quantitatively analyzed in terms of changes in grain size and nearest neighbor relations, as well as the volume fractions, dispersion and occurrences of the second phases as a function of changing metamorphic conditions. In all samples, the calcite grain size is controlled by pinning of grain boundaries by second phases, which can be expressed by the Zener parameter (Z), i.e., the ratio between size and volume fraction of the second phases. With increasing peak metamorphic temperature, both the sizes of matrix grains and second phases increase in dependence on the second-phase volume fraction. Two distinct coarsening trends are revealed: trend I with coupled grain coarsening limited by the growth of the second phases is either characterized by large-sized or a large number of closely spaced-second phase particles, and results finally in a dramatic increase in the calcite grain size with Z. Trend II is manifest by matrix controlled grain growth, which is retarded by the presence of single second-phase particles that are located on calcite grain boundaries. It is supported by grain boundary pinning induced by triple junctions, and the calcite grain size increases moderately with Z. The two different grain coarsening trends manifest the transition between relatively pure polymineralic aggregates (trend II) and microstructures with considerable second-phase volume fractions of up to 0.5. The variations might be of general validity for any polymineralic rock, which undergoes grain coarsening during metamorphism. The new findings are important for a better understanding of the initiation of strain localization based on the activation of grain size dependent deformation mechanisms.  相似文献   

4.
周俊鹏 《江苏地质》2019,43(2):222-228
辽宁本溪地区为我国重要的鞍山式铁矿富集区,研究该地区含铁建造的显微构造变形机制,对系统研究区内含铁建造的沉积演化过程具有重要意义。研究表明,该处岩石经历了2期强烈韧性变形作用改造,依据重结晶作用类型和主要显微结构,变形作用发生在绿片岩岩相条件下。利用古差值应力大小测量,确定该地区含铁建造岩石变形古应力值为27.36~36.88 MPa;剪应变值在11.342~18.555 MPa之间,并具有左旋剪切性质。  相似文献   

5.
Attempts to use rock deformation experiments to examine the elastic and plastic behaviour of polymineralic rocks are hampered by the fact that usually only whole sample properties can be monitored as opposed to the separate contribution of each phase. To circumvent this difficulty, room-temperature, uniaxial compression experiments were performed in a neutron beam-line on a suite of calcite + halite samples with different phase volume proportions. By collecting diffraction data during loading, the elastic strain and hence stress in each phase was determined as a function of load to bulk strains of 1–2%. In all cases, the calcite behaved elastically while the halite underwent plastic yielding. During the fully elastic part of the deformation, the composite elastic properties and the within-phase stresses are well-described both by recent shear lag models and by analyses based on Eshelby's solution for the elastic field around an ellipsoidal inclusion in a homogeneous medium. After the onset of yielding, the halite in situ stress/total strain curve may be reconstructed using the rule of mixtures. At calcite contents of greater than 30%, the in situ halite response may be significantly weaker or stronger than that obtained at lesser calcite contents. The results highlight the potential that such techniques offer for developing an explicitly experimental approach for determining the influence of microstructural variables on the mechanical properties of polymineralic rocks.  相似文献   

6.
An integrated approach of improved pseudo color image enhancement (IPCE) method and three-dimensional (3D) reconstruction technology is proposed. The evolution characteristics of two-dimensional (2D) and 3D spatial cracks in X-ray computed tomography (CT) images of sandstones subjected to triaxial compression with confining pressure of 10, 20, and 30 MPa are investigated. The equations of crack width, length, and dip angle are established based on the proposed digital damage ratio. Based on the pseudo color images, point cloud maps with roughness and spatial images of cracks are investigated. The numerical results show that this proposed method is effective to study and understand the fracturing properties of rocks.  相似文献   

7.
A numerical scheme is developed in order to simulate fluid flow in three dimensional (3‐D) microstructures. The governing equations for steady incompressible flow are solved using the semi‐implicit method for pressure‐linked equations (SIMPLE) finite difference scheme within a non‐staggered grid system that represents the 3‐D microstructure. This system allows solving the governing equations using only one computational cell. The numerical scheme is verified through simulating fluid flow in idealized 3‐D microstructures with known closed form solutions for permeability. The numerical factors affecting the solution in terms of convergence and accuracy are also discussed. These factors include the resolution of the analysed microstructure and the truncation criterion. Fluid flow in 2‐D X‐ray computed tomography (CT) images of real porous media microstructure is also simulated using this numerical model. These real microstructures include field cores of asphalt mixes, laboratory linear kneading compactor (LKC) specimens, and laboratory Superpave gyratory compactor (SGC) specimens. The numerical results for the permeability of the real microstructures are compared with the results from closed form solutions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Microstructural analysis and microthermometry are useful methods for determining the deformation evolution. To address this issue, rheological behavior of quartz, feldspar and calcite in veins and host rocks during deformation, are presented in the mylonite zone of the dextral reverse Zamanabad Shear Zone (ZSZ), in northern part of Sistan Suture Zone (SSZ), in east of Iran. Microstructure evidences revealed two evolution stages of high and low temperature deformation. Quartz microstructures in the ZSZ show abundant evidences for early high-temperature plastic deformation (e.g. Bulging recrystallization (BLG)) which are as microstructures with SW directed ductile shearing in the central parts of the ZSZ. This shear zone shows progressively decreasing strain away from the central of shear zone toward the wall. High-temperature microstructures are overprinted partly or completely during shearing by the later low-temperature deformation (e.g. Pressure solution, fractures, veinlets). Microstructural observations of veins (quartz and calcite) confirms the results of microstructures in the host rock, as quartz veins occurred from peak metamorphic conditions (<400°C) and then in lower P–T conditions have been formed calcite veins (~250°C). According to microthermometric studies, two primary fluid groups are observed in quartz veins: (1) fluids trapped during peak deformation conditions, with higher-salinity, They were initially trapped at ~300–400°C, (2) smaller fluids by trapping of low-salinity inclusions at ~240–180°C that related to subsequent phases of shear zone exhumation in lower deep. Microthermometry results and microstructural analysis indicate deformation under lower greenschist facies conditions for the ZSZ, and then exhumation of the early of high-temperature rocks within regime of ductile-brittle transition to brittle.  相似文献   

9.
The understanding of the evolution of microstructures in a metamorphic rock requires insights into the nucleation and growth history of individual grains, as well as the coarsening processes of the entire aggregate. These two processes are compared in impure carbonates from the contact metamorphic aureole of the Adamello pluton (N‐Italy). As a function of increasing distance from the pluton contact, the investigated samples have peak metamorphic temperatures ranging from the stability field of diopside/tremolite down to diagenetic conditions. All samples consist of calcite as the dominant matrix phase, but additionally contain variable amounts of other minerals, the so‐called second phases. These second phases are mostly silicate minerals and can be described in a KCMASHC system (K2O, CaO, MgO, Al2O3, SiO2, H2O, CO2), but with variable K/Mg ratios. The modelled and observed metamorphic evolution of these samples are combined with the quantification of the microstructures, i.e. mean grain sizes and crystal size distributions. Growth of the matrix phase and second phases strongly depends on each other owing to coupled grain coarsening. The matrix phase is controlled by the interparticle distances between the second phases, while the second phases need the matrix grain boundary network for mass transfer processes during both grain coarsening and mineral reactions. Interestingly, similar final mean grain sizes of primary second phase and second phases newly formed by nucleation are observed, although the latter formed later but at higher temperatures. Moreover, different kinetic processes, attributed to different driving forces for growth of the newly nucleated grains in comparison with coarsening processes of the pre‐existing phases, must have been involved. Chemically induced driving forces of grain growth during reactions are orders of magnitudes larger compared to surface energy, allowing new reaction products subjected to fast growth rates to attain similar grain sizes as phases which underwent long‐term grain coarsening. In contrast, observed variations in grain size of the same mineral in samples with a similar T–t history indicate that transport properties depend not only on the growth and coarsening kinetics of the second phases but also on the microstructure of the dominant matrix phase during coupled grain coarsening. Resulting microstructural phenomena such as overgrowth and therefore preservation of former stable minerals by the matrix phase may provide new constraints on the temporal variation of microstructures and provide a unique source for the interpretation of the evolution of metamorphic microstructures.  相似文献   

10.
Microstructural modification processes like dynamic recrystallization and grain growth can have a major effect on the transient and (semi-)steady state flow behaviour of deforming materials. Work on metals and ceramics suggests that deformation-enhanced changes in grain topology and the corresponding increase in fraction of non-hexagonal grains, called cellular defect fraction, can promote grain growth during deformation. The present study tests this hypothesis, by investigating the evolution of the cellular defect fraction during deformation, accompanied by grain growth, of aggregates with distributed grain sizes. For this purpose, we made use of the ELLE 2D microstructural modeling package. We simulated and quantified microstructural evolution under conditions where both surface energy driven grain boundary migration (GBM) and homogeneous deformation or grain size sensitive (GSS) straining were allowed to occur. The simulations show that contemporaneous GBM and simple geometrical straining of grain aggregates with distributed grain size and coordination number lead to extra grain neighbor switching, an increase in defect fraction, and enhanced grain growth. An increase in defect fraction was also found in a selected set of natural calcite mylonites that, with increasing temperature, show an increase in grain size and contribution of GSS creep. Analysis of defect fraction thus appears to be a good microstructural tool to establish whether or not a material has experienced normal static (defect fraction  0.7) or dynamic grain growth (defect fraction  0.8).  相似文献   

11.
Samples of the calcite-rich Shelburne Marble collected at the Pfizer Quarry in Adams, Massachusetts, show an order of magnitude variation in grain size. Calcite grain size ranges from 94 to 1101  μm. Because these calcite marbles share the same pressure, temperature and strain histories, some other factor must be responsible for the grain size variation.
Grain size appears to be controlled by the concentration of impurity or second-phase particles. Large calcite grain size occurs where the volume fraction of second-phase particles is low and grain size decreases as second-phase volume fraction increases. The relationship between calcite grain size ( D ), second-phase grain size ( d ) and second-phase volume fraction (  f  ) can be described by the power law D / d =1.4/ f   0.36, a result that is consistent with models based upon short-term (hours or days) laboratory experiments with metals and ceramics and computer simulations of grain growth. Grain growth appears to be greatly restricted by as little as a few per cent of second-phase particles, with a transition from highly restricted to almost unrestricted grain growth occurring at ≈5% volume of second-phase particles. These results indicate that second-phase particles exercise an important control on grain size and can effectively inhibit grain growth in metamorphic rocks. The behaviour of second-phases in short-term laboratory experiments may closely approximate the behaviour of second-phases in grain growth lasting several orders of magnitude longer in the metamorphic environment.  相似文献   

12.
利用微生物诱导碳酸钙沉积(MICP)技术固化南海某岛礁的陆域吹填珊瑚砂,对珊瑚砂微生物固化体进行了三轴压缩试验,基于损伤力学理论建立了珊瑚砂微生物固化体的损伤本构模型。结果表明,利用MICP技术固化珊瑚砂效果好,强度高;固化体的三轴压缩应力–应变曲线可分为近似线弹性阶段、屈服阶段与延性流动阶段。将固化体划分为匀质微元进行损伤演化分析,根据连续介质损伤力学的有效应力理论与应变等效假说,定义了损伤变量,假定固化体强度服从双参数的Weibull分布及Druker-Prager准则,建立了损伤本构模型。模型参数包括固化体力学参数和Weibull分布参数,由三轴试验和线性回归法确定,并用试验资料初步验证了模型的合理性。  相似文献   

13.
This paper presents an upscaling concept of swelling/shrinking processes of a compacted bentonite/sand mixture, which also applies to swelling of porous media in general. A constitutive approach for highly compacted bentonite/sand mixture is developed accordingly. The concept is based on the diffuse double layer theory and connects microstructural properties of the bentonite as well as chemical properties of the pore fluid with swelling potential. Main factors influencing the swelling potential of bentonite, i.e. variation of water content, dry density, chemical composition of pore fluid, as well as the microstructures and the amount of swelling minerals are taken into account. According to the proposed model, porosity is divided into interparticle and interlayer porosity. Swelling is the potential of interlayer porosity increase, which reveals itself as volume change in the case of free expansion, or turns to be swelling pressure in the case of constrained swelling. The constitutive equations for swelling/shrinking are implemented in the software GeoSys/RockFlow as a new chemo‐hydro‐mechanical model, which is able to simulate isothermal multiphase flow in bentonite. Details of the mathematical and numerical multiphase flow formulations, as well as the code implementation are described. The proposed model is verified using experimental data of tests on a highly compacted bentonite/sand mixture. Comparison of the 1D modelling results with the experimental data evidences the capability of the proposed model to satisfactorily predict free swelling of the material under investigation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
张莉  舒志国  何生  陈绵琨  伍宁南  杨锐 《地球科学》2021,46(9):3139-3156
川东建南地区须家河组储层非均质性极强,致密化程度极高,为了查明储层差异演化过程,剖析储层差异演化控制因素,运用岩石学和岩石地球化学的多种实验方法,在详细刻画储层岩石学特征的基础上,划分了储层成岩相类型,查明了不同类型砂岩的物性特征和孔隙结构特征,分析了储层的差异性演化过程.研究区砂岩可以划分为4种成岩相类型,即强压实相、溶蚀相、硅质胶结相和强钙质胶结相.溶蚀相砂岩物性最好,强压实相砂岩次之,硅质胶结相和钙质胶结相砂岩物性最差.碎屑组分的差异是造成储层非均质性强和差异性演化的重要原因.塑性岩屑含量的差异,导致早成岩时期压实减孔程度的不同;长石含量的差异,影响了砂岩中溶蚀强度和方解石胶结程度;石英含量的差异,控制了砂岩中硅质胶结作用的强弱;最终,使得储层演化有先有后,空间分布非均质.   相似文献   

15.
The preservation potential of microstructures during static grain growth   总被引:2,自引:1,他引:2  
Grain growth simulations using the microstructure simulation system Elle have been performed in materials with a pre‐existing grain shape foliation. As might be expected, the foliation is destroyed by the end of the experiment, and grain areas have increased by a factor of seven. The area of material swept by the migrating grain boundaries was monitored, and it was found that at every stage, virtually all of the grains which survived the grain growth process contain one and only one core of ‘unswept’ material. Remarkably these remnant unswept cores preserve a useable record of the initial grain size and the orientation of the grain shape foliation. This work suggests that, even for samples where no equivalent protolith can be found, it may be possible to see past a grain growth episode to estimate the original grain shape and grain size of the rock, and perhaps even reconstruct the grain boundary kinematics. In addition the identification of unswept cores has the potential to help unravel the evolution of grain boundary chemistry in rocks during metamorphism. As an example of a natural system showing these microstructures, we describe a peridotite from Almklovdalen, Norway. This peridotite was infiltrated by aqueous fluids at several stages during late Caledonian exhumation and retrogressive metamorphism. Grain boundary migration associated with the last of these infiltration events swept off abundant intragranular fluid inclusions in the original chlorite‐peridotite. At the grain scale, microstructural mapping of the fluid inclusion rich areas shows that, as with the numerical simulations, many of the grains retain exactly one core of unswept material. Examples of other natural systems discussed include dislocation density distributions and trace element zoning.  相似文献   

16.
干燥失水现象是引起膨胀土裂隙萌生和扩展的关键性因素,裂隙的演化过程对土体结构完整性和地基的长期稳定与安全具有重要影响。为了研究膨胀土干缩裂隙的演化特点,对原状土试样开展显微CT扫描试验,结合图像分析技术获取了土体细观裂隙的二维/三维图像与特征参数,从定性和定量角度分析了干缩裂隙的演化规律。结果表明:三维重构后的数字模型还原了膨胀土在干燥过程中的体积收缩特征,与试样实测的体积有较好的一致性;从显微CT图像中可以提取细观裂隙的量化指标,如裂隙率、裂隙数量、裂隙体积与裂隙结构特征参数等;随着含水率从24.0%下降至12.0%,膨胀土的裂隙率、裂隙体积呈增大趋势,裂隙数量呈减小趋势;根据裂隙的体积和几何形态特征将其分为连通裂隙和独立裂隙,干燥过程中连通裂隙的体积占比显著提高,独立裂隙数量不断减少;球棒模型有效地模拟了膨胀土裂隙的几何形态特征,在干燥失水过程中等效孔隙半径、喉道半径、喉道长度与孔喉配位数均有增大趋势,裂隙连通性显著增强;SEM图像表明细观裂隙的连通与黏土颗粒排列形式、粒间孔隙发育程度等存在重要关联。  相似文献   

17.
A new approach to quantify microstructures of coarse-grained marbles is presented. This technique is based on the intensity of light reflectance in dependence of the crystallographic orientation of calcite grains. The technique setup consists of a high-resolution camera, a strong light source and the polished sample in reflection position. Microstructural data obtained with this method are comparable with those obtained by light microscopy or by secondary electron microscopy. However, the new approach reflects the grain size distribution even more accurately than in the case of other techniques, because it allows an easy quantification of larger sample surfaces. Therefore, in contrast to established techniques, microstructural analysis and statistics can also be performed for coarse-grained samples with grains that exceed diameters of 1 cm. With this new technique, coarse-grained mylonitic microstructures from Naxos were quantified, which in turn allowed relating different microfabrics to different strain localization episodes within a large-scale shear zone complex.  相似文献   

18.
成岩作用及物性演化的研究对致密砂岩储层和致密油开发具有重要意义.综合利用岩石铸体薄片鉴定、扫描电镜、X衍射分析、流体包裹体分析等测试手段,对研究区致密储层进行详细研究.研究表明:深水重力流砂体粒度细,孔喉组合以细孔-微喉型为主,物性差,是一套典型的特低渗透储层;目前正处于中成岩B期,其成岩演化序列为:机械压实作用/方解石胶结→凝灰物质水解蚀变/云母水化/伊利石胶结/绿泥石胶结/石英溶蚀→早期长石溶蚀/石英加大/碳酸盐灰泥重结晶/早期碳酸盐胶结物溶蚀→晚期长石溶蚀→铁方解石胶结,成岩环境主要经历了碱性→酸性→弱碱性的转换过程;距今约99~118 Ma的早白垩世,研究区储层发生了连续的2期油气充注;储层物性演化史表明早成岩期储层的成岩作用对储层物性影响大,使储层已经致密化,研究区具有先致密后成藏的特性.   相似文献   

19.
To learn more about the kinetics and mechanisms of coarsening and melt inclusion formation, we investigated the effects of melt content, viscosity, and topology on the microstructural evolution of partially molten and melt-free calcite aggregates. Synthetic marbles with eutectic melts were produced by annealing mixtures of calcite and either calcium hydroxide or lithium carbonate for up to 80 h at a confining pressure of 300 MPa and temperatures of 973-1,023 K. The melts produced in the two systems are expected to differ significantly in viscosity. Generally, coarsening rates decrease with increasing melt fraction, probably because the diffusion length across melt pockets increases. Analysis of grain shapes in the samples with about 40% melt indicated that coarsening was accommodated by agglomeration in the samples of the calcium/lithium carbonate system. In the calcium carbonate/hydroxide system, classical Ostwald ripening occurred. For melt contents about 10% and below, melt-filled pores are either dropped from or dragged along with migrating grain boundaries, depending on the pore size and the grain boundary curvature. These data can be used to constrain the conditions where fluid or melt inclusions form under natural conditions. Combining our results and previous studies illustrates a systematic relation between the grain boundary mobility in calcite aggregates and the diffusion kinetics associated with second phases residing on the grain boundaries. In particular, boundaries with no porosity are most mobile, those boundaries dragging melt-filled pores are slower, those with gas-filled pores are slower yet, and those containing solid phases are slowest or may even be motionless.  相似文献   

20.
This paper describes a microstructural sequence of quartz schists (metamorphosed chert) in the Asemi river region of the Sambagawa metamorphic terrain in central Shikoku, southwest Japan. The Asemi river region is divided into three areas on the basis of characteristics of microstructures of quartz schists observed under the optical microscope: areas I, II and III, in ascending order of metamorphic grade. Microstructures in area I consist of finer, equant, equidimensional and polygonal quartz grains free from internal deformation features. Microstructures in area II are characterized by oblate or elliptical grains with remarkable undulatory extinction surrounded by serrated grain boundaries. Microstructures in area III consist mainly of coarser and equant grains without distinct internal deformation features.The formation conditions of these microstructures are discussed in the light of recent experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号