首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
降雪含水比研究进展   总被引:3,自引:2,他引:1  
崔锦  周晓珊  阎琦  张爱忠  李得勤  杨阳 《气象》2017,43(6):735-744
降雪深度预报与定量降水预报(QPF)一样是冬季天气预报最重要的业务之一,而降雪含水比是降雪深度预报中所必须的重要参数,国外一般多将其称为snow-to-liquid ratio(SLR)。本文回顾了过去几十年来国内外在SLR的变化特征、影响因素等方面的主要研究进展,并对其预报技术和方法进行了总结和比较。研究表明:SLR具有明显的时间变化,并且存在季节和空间分布差异;大气温度和相对湿度是影响SLR的两个最重要气象因子,气压、垂直运动等气象因素,以及地表风、积雪自重、太阳辐射和积雪融化也会不同程度地影响SLR;随着预报技术的发展,SLR的预报方法可概括为气候学的、统计学的和基于物理基础的三类预报方法,气候学方法过于简单化,统计学方法的应用提高了SLR的预报能力,但仍无法摆脱统计方法自身的缺陷,比较而言,基于数值模式的瞬时预报更符合未来雪深预报业务的精细化发展趋势;目前,国内降雪深度观测资料较少、观测频率较低,有效开展地面降雪和探空加密观测,解决观测资料不足是今后SLR研究中亟待解决的问题;基于数值天气预报业务模式,探索气象因子对SLR的影响机理,建立适合我国冬季天气预报业务需求的降雪预报系统是未来的发展方向。  相似文献   

2.
降雪含水比(snow-to-liquid ratio,SLR)是指积雪深度与降雪融化后等量液体深度(降雪量)的比值,可用来计算积雪深度。山东有两种产生机制不同的降雪,冷流降雪主要分布在山东半岛北部沿海地区,其他类降雪在全省范围均可发生,二者的降雪含水比有明显差异。利用山东122个国家级气象观测站自建站以来至2018年12月的逐12 h降水量、日积雪深度、降水性质、日最高气温及1999—2018年的MICAPS高空、地面图资料,通过限定条件进行质量控制,统计分析了山东不同地区的降雪含水比气候特征,为积雪深度预报提供参考。结果表明:1)山东降雪含水比的变化范围为0.1~3.0 cm·mm-1,全省大部地区多年平均降雪含水比为0.9 cm·mm-1,主要集中在0.3~1.1 cm·mm-1之间;山东半岛北部沿海地区(强冷流降雪区域)的多年平均降雪含水比为1.3 cm·mm-1,主要集中在0.9~2.0 cm·mm-1之间。2)降雪含水比的大小与降雪量等级有关,且存在明显月变化。全省大部地区从中雪至暴雪随着降雪量等级的增大,降雪含水比依次减小;各等级的降雪含水比月最大值均出现在1月或12月,最小值出现在11月或2月;山东半岛北部沿海地区的降雪含水比表现出更为复杂的特征,在以冷流降雪为主的11月—次年1月,中雪、大雪和暴雪的降雪含水比基本相当;2月和3月冷流降雪不明显,降雪含水比表现出与其他地区降雪类似的特征。3)不同天气系统暴雪的降雪含水比有差异。江淮气旋暴雪过程平均降雪含水比为0.69 cm·mm-1,总体上呈现“北大南小,山区大沿海小”分布,中雪、大雪和暴雪的降雪含水比中位数分别为0.8、0.7和0.5 cm·mm-1;回流形势暴雪过程的全省平均降雪含水比为0.67 cm·mm-1,中雪的降雪含水比中位数为0.8 cm·mm-1,大雪和暴雪均为0.6 cm·mm-1;冷流暴雪的降雪含水比明显大于其他两类暴雪,中位数在1.1~1.6 cm·mm-1之间变化,中雪、大雪和暴雪的降雪含水比中位数分别为1.4、1.6和1.3 cm·mm-1。  相似文献   

3.
于波  李桑  郝翠  刘郁珏  杜佳  卢俐 《大气科学》2022,46(1):181-190
受特殊地理环境影响,北京地区冬季降雪常与边界层东风相伴,边界层东风所引起的水汽输送和动力辐合效应对降雪发生发展有重要意义.不同于已有边界层东风对平原地区降雪影响的研究,本文结合2022年冬奥会北京延庆赛区的地形特征,对比相似天气背景下不同温湿特性、不同发展高度的边界层东风对降雪的作用机制,研究表明:(1)途经渤海湾的路...  相似文献   

4.
2011年隆冬北京初雪成因分析   总被引:5,自引:2,他引:3  
董林  符娇兰  宗志平 《气象》2012,38(8):913-920
利用常规、加密观测自动站资料、雷达风廓线资料、L波段探空风、微波辐射计资料和NCEP1°×1°再分析资料,对2011年2月9—10日北京首场降雪天气过程进行了成因分析,结果表明:此次降雪过程是在高空短波槽、东风回流和地面倒槽的共同作用下产生的。东路冷空气经东北平原南下到渤海,而后向西移动形成回流。华北地区的东风回流具有西北方向浅薄、东南方向深厚的楔形结构,同时具有湿冷的特性。东风回流前沿有辐合上升气流和锋生,在近地面层形成冷垫和小幅度增湿,西南暖湿气流在冷垫上爬升造成降雪。500 hPa短波槽前的正涡度平流和850 hPa的温度平流促进了河套附近地面倒槽的发展和东移,倒槽的辐合上升区与东风前沿的辐合区叠加导致上升运动加强为北京降雪提供了动力条件。西南暖湿气流是降雪过程的主要水汽来源。  相似文献   

5.
北京冬夏降水系统中的云水量及其统计特征分析   总被引:3,自引:0,他引:3       下载免费PDF全文
根据地基双通道微波辐射计观测的降水天气下大气水汽、液水含量的变化,分析了北京1989年夏季1次降水过程和1990年冬季5次降雪过程的云水量资料,讨论了降水过程中汽态水和液态水含量的一些统计特征及其随时间的变化,并估算了夏季降水中凝结水向降水的转化率。结合极轨气象卫星的遥感云顶温度资料,以及冬季地面降雪强度的观测,对北京冬季降水系统中的液水含量与降水的相关进行了分析,探讨了北京地区降雪的潜力。  相似文献   

6.
利用1991—2020年11月至次年4月呼伦贝尔市16个国家气象站24 h(08—08时)累积降水量、24 h新增积雪深度、日平均地面温度、日平均地面风速等资料,通过对筛选出来的降雪事件分析全市降雪含水比的变化特征,并分析地面温度和地面风速对降雪含水比的影响,研究结果表明:(1)呼伦贝尔市24 h降雪含水比平均值为10.01,中位数为9.30,众数为11.50;变化范围跨度较大,主要集中在2.00~22.00,降雪含水比大于22.00的极端值出现频率较低。(2)呼伦贝尔市各地平均降雪含水比空间分布存在差异,不同台站的平均降雪含水比变化范围在8.69~11.72;11月至次年3月平均降雪含水比稳定在10.00附近,12月最大,4月最小,存在显著月变化特征。(3)不同量级降雪的平均降雪含水比不同,中雪约为10.00、大雪约为9.00、暴雪及以上为8.60,呈现出降雪量级越大其值越小的特征。(4)地面温度为-18.0~-3.0℃,平均降雪含水比稳定在10.00~11.00;当地面温度低于-18.0℃或高于-3.0℃时,平均降雪含水比不稳定,呈跳跃性,忽高忽低。地面风速> 4.5 m·s...  相似文献   

7.
青藏高原降雪的气候学分析   总被引:11,自引:0,他引:11  
邹进上  曹彩珠 《大气科学》1989,13(4):400-409
青藏高原上的自然天气季节和大气环流与我国东部平原极不相同,因此,高原上的降雪,无论是时空分布,或者是降雪天气系统都有很多特殊性。 本文根据1966—1975年青藏高原气象资料,阐述了高原上自然降雪的时空分布特点和形成的物理条件;归纳出有利于降雪的六种天气型式;分析了大气环流季节变化与高原降雪之间的联系。高原降雪主要集中发生在冬夏环流的转换季节。  相似文献   

8.
利用天津铁塔观测资料、加密自动站和常规观测资料,针对4次渤海西岸典型降雪过程,分析了偏东风在降雪发生前后的演变特征。结果表明:4次降雪过程均属于回流降雪,其水汽来源与西南气流的水汽输送和近地面层的东风水汽输送有关;地面东风出现在降雪开始之前8 h以上,风速一般在2 m·s-1左右,220 m高度可达12 m·s-1左右。从造成东风的系统看,由南部北上的低压系统造成的东风或东南风湿度比较大,而由东北南下的冷高压造成的东风或东北风都比较干。出现最大降雪的时段,塔层的东风显著加大,而地面的风速变化不明显。  相似文献   

9.
1960—2005年东北地区降雪变化特征研究   总被引:6,自引:1,他引:5       下载免费PDF全文
利用国家气象信息中心提供的逐日降水和逐日天气现象台站资料,在运用旋转经验正交函数(Rotated Empirical Orthogonal Function, REOF)和相关分析进行降雪分区的基础上,重点研究了46 a来东北地区降雪的时空分布、演变特征和长期气候趋势。结果表明:东北地区的山地是主要的降雪地区,而平原及平原南部是降雪较少的区域,降雪区域差异明显。在空间上,大兴安岭北部(长白山地区)是降雪增加(减少)最大的地区,小兴安岭地区(平原地区)是降雪增加(减少)较明显的地区。在时间上,东北北区降雪量呈增加趋势,且在20世纪90年代发生了突变,目前增加趋势显著,而东北南区降雪量是减少的。  相似文献   

10.
近50年云南省降雪的气候变化特征   总被引:2,自引:1,他引:1  
段长春  段旭  段苏芩  陶云  任菊章 《气象》2011,37(5):599-606
利用云南省1961-2008年120个测站逐日降雪资料,分析了云南省降雪频次和范围的时空特征和气候变化.结果表明:近50年云南省的年降雪频次和范围总体呈减少趋势,平均每年频次约减少4.5频次.各月的降雪频次和范围都呈负趋势.12月降雪频次减少趋势最显著,4月降雪范围减少趋势最显著.降雪频次长期趋势变化有明显的空间变化.对于年降雪频次西北部比东北部和东部减少得多,滇西北降雪频次每年约减少0.44频次.进一步对云南省年降雪量和积雪深度的长期趋势变化进行分析.云南省近50年,降雪范围逐步减少,年降雪量和平均最大积雪深度呈增加的趋势.说明近年来在云南气候趋于暖湿背景下,年降雪频次和范围呈逐渐减少趋势,但强降雪的频次却增加了.  相似文献   

11.
北京冬季降雪云系存在丰富的可开发利用的云水资源。出于人工增雪研究和充分开发云水资源的需要,文中对北京2019年11月29日发生的年度首场降雪进行了观测,对其资料做了分析和中尺度数值模拟,研究了降雪过程的宏观特征、水凝物输送及降雪的微物理机制。结果表明:影响本次北京降雪的是稳定性层状冷云云系,水凝物主要从北京区域的西边界和南边界输送到区域内,而从东边界和北边界流出,具有西向和南向分量的湿气流是降雪云系水物质的输送通道。降雪云中的水凝物基本全为冰晶和雪,有少量的云水,整层云系都含有非常丰富的水汽并且贯穿整个降雪时段。在冰面过饱和环境中,水汽凝华(Prds)是雪的主要增长过程;其次是云冰增长成雪(Prci)和云冰聚合成雪(Prai)的过程。  相似文献   

12.
利用常规观测资料和NCEP1°×1°再分析资料,对2010年12月23日凌晨至上午发生在河北的一次回流降雪过程进行了诊断分析,结果表明:地面蒙古冷高压外围的偏北风携带冷空气东移至东北平原后转向西南方向抵达河北中南部地区,边界层偏东气流将渤海水汽带向河北中南部;在降雪前期表现为“湿冷”,在降雪过程中表现为“干冷”;偏东风在太行山东麓地形作用下被迫抬升,其携带的水汽随之抬升,为降雪过程提供了弱的水汽条件;边界层内水汽通量散度主要表现为纬向水汽辐合,在降雪前主要由水汽平流引起,在降雪过程中主要由风场辐合造成。  相似文献   

13.
新疆阿勒泰地区积雪变化分析   总被引:2,自引:0,他引:2  
采用阿勒泰地区7个测站1961~2008年逐月最大积雪深度、积雪和降雪日数及其初终日以及冬季(11至次年3月)平均气温、平均最高、最低气温及降水量资料,运用线性趋势、Mann-Kendall突变检验及R/S分析法对阿勒泰地区积雪变化进行了分析研究。结果表明:该地区冬季平均气温呈明显的上升趋势,最低气温的上升更为显著;降水量呈显著增多趋势。该地区大部地方积雪、降雪最早出现在9、10月,最迟在次年4、5月。历年平均最大积雪深度和积雪日数的年变化呈单峰型,降雪日数分布则较复杂;在空间分布上,积雪深度最大值在阿勒泰站,最小值在福海站;积雪日数福海站最少,吉木乃站最多;降雪日数自西向东逐渐减小。最大积雪深度呈显著的增加趋势、积雪和降雪日数趋势变化不显著,但在空间分布上有差异;受积雪和降雪初日推后的影响,积雪期和降雪期均呈显著的减少趋势。突变检测表明,就全区平均来说最大积雪深度在1983年前后发生了显著的突变,与冬季降水量的变化一致;平均积雪和降雪日数则比较稳定,没有发生显著的突变,各区域变化与全区不完全同步。R/S分析表明,最大积雪深度、积雪和降雪日数在未来具有反持续性;平均降雪日数、福海站最大积雪深度、吉木乃站积雪日数、布尔津站降雪日数的反持续性相对最强。  相似文献   

14.
吴高任 《气象》1975,1(1):16-18
1973年1月22日至24日,华北在久旱之后,下了一场大雪,大雪中心位于承德,雪量为26毫米。北京平原地区普遍降雪达20毫米,其中靠近承德的平谷县最大,为22.4毫米,积雪20厘米。这是北京近半个世  相似文献   

15.
从降雪预警业务实际出发,设计了基于最优化法的雷达估测降雪方法,对2007年3月4日特大暴雪过程开展雷达降雪估测试验,并分析估测结果的误差。针对温度变化、雪花末速度、与雷达的距离和计算方法等方面的误差因素制定了3种改进方案。改进后的估测降雪量与实况降雪量的相关系数提高到0.66(超过99%信度检验),平均相对误差降低至48.74%,对于0.3 mm/h的较弱降雪和5 mm/h以上的强降雪均具有估测能力。其中距离雷达50~100 km的样本估测降雪量与实况降雪量的相关系数达到0.82。在3种改进方案中,考虑降雪末速度影响的改进效果不明显,这可能与本次暴雪过程的回波较均匀有关;按雷达与样本距离分类进行雷达降雪估测的效果最明显,不仅可以增加相似程度,还减小了雷达近距离高估和远距离低估的误差;而算法的改进进一步提高估测精度。本次雷达降雪估测对于1.6~2.5 mm/h的较强降雪和2.6 mm/h以上的强降雪平均相对误差较小,分别为31%和27%,但雷达降雪估测高估了1.5 mm/h以下的降雪而低估2.6 mm/h以上的强降雪。一方面说明雷达回波对于降雪强弱变化不是很敏感,另一方面在业务实际工作中有可能利用这种一致性的误差进行订正,以提高降雪估测精度。   相似文献   

16.
北京地区预报失误的两次降雪过程分析   总被引:2,自引:0,他引:2  
何娜  孙继松  王国荣  卢冰  柳克 《气象科技》2014,42(3):488-495
利用常规资料、NCEP1°×1°再分析资料及多种新型探测资料,对北京地区2011年深秋初冬季节预报接连失误的11月29日和12月2日两次降雪天气过程进行了分析。结果表明:①11月29日,在地面偏东风配合倒槽的有利形势下北京未出现降雪的重要原因之一是偏东风为干冷性质,且层次深厚,北京边界层湿度条件差。对流层低层冷空气快速南压填塞倒槽是预报出现失误的另一重要原因。②12月2日降雪过程,925hPa的切变线和地面锋面为边界层的水汽辐合抬升提供了动力条件,对流层中下层的水汽输送为降雪提供了水汽条件。③对比研究表明,北京地区冬季降雪预报要特别关注边界层湿度的变化,当边界层内水汽条件较差时,即使中高层有明显的天气系统也不易产生降雪。当边界层湿度条件好,并配合有边界层辐合系统时,即便对流层中层没有明显天气系统,也会产生降雪。  相似文献   

17.
辽宁省冬半年降雪初终日的气候变化特征   总被引:2,自引:1,他引:1       下载免费PDF全文
利用1961—2007年降雪初始日期、终止日期以及降雪初、终日间天数资料,详细地分析了降雪初始日期、终止日期以及降雪初、终日间天数的时空分布及变化情况、突变和周期性特征。辽宁省降雪的初始日期主要集中在10、11月,终止日期主要在3、4月。降雪初始日期在近47年有所推迟;降雪终止日期明显提前,平均每10年提前2.2天。降雪初、终日间天数明显缩短,平均每10年减少3天。降雪的初始日期、终止日期以及降雪初、终日间天数均存在突变现象。降雪的初始日期、终止日期以及降雪初、终日间天数均存在2~6年的周期。气温与降雪初始日期和终止日期存在着密切的联系。降雪的初始日期与同年10月和11月的平均最高气温相关关系最好,其次是10月和11月的平均气温。  相似文献   

18.
2020年1月5日07时至6日04时(北京时,下同)华北中部出现一次回流暴雪天气,过程最大降雪量15.5 mm。文中应用ERA5再分析和多种高分辨率观测资料分析了此次暴雪的大尺度天气背景和本地动、热力状况,探讨了暴雪落区、强度演变和降雪微物理特征及成因。结果表明,受河套地区地面倒槽和东北平原高压影响,900 hPa以下东北气流(被称为“回流”)自东北平原经渤海抵达华北平原,早于降雪7 h开始影响华北中部,受太行山阻挡在华北平原形成浅薄的近地面中尺度辐合线,对应暴雪落区;暴雪落区位于500 hPa高空槽前、700 hPa南北走向切变线东侧,850 hPa受西南低涡外围东南气流影响。降雪前1 h石家庄市观测到800 m以下转为东北风,1 km以下气温迅速下降至?5—?1℃,形成“冷垫”;暴雪区上空700 hPa附近低空急流较降雪早2 h出现,随后急流变厚、向下伸展至2 km高度,其下部暖湿空气沿“冷垫”爬升触发降雪,急流风速增至极值(19 m/s)和急流指数达峰值(约8)与大于1 mm/h强降雪时段重合,此时700 hPa上下为上升运动和水汽输送的大值中心。本次降雪粒子直径多为0.35—0.55 mm,降雪强度与粒子数浓度呈线性正相关;降雪云层位于1.3—5.5 km高度,大致以3 km (约?10℃)为分界线,下层为冰雪混合层,上层为冰雪层,冰雪层相对湿度与地面雪花粒子浓度及降雪强度呈正相关。基于雨滴谱仪探测资料反演的地面反射率因子与降雪强度拟合关系为Z=149.85R1.14。   相似文献   

19.
阿勒泰地区冬季降雪的集中度和集中期变化特征   总被引:1,自引:0,他引:1  
利用1961~2010年阿勒泰地区冬季台站降水资料,计算并分析了阿勒泰地区降雪集中度和集中期的时空变化特征。结果表明:降雪集中度(PCD)和集中期(PCP)能够定量表征降雪量在时空场上的非均一性。阿勒泰地区降雪平均集中度为0.27,平均集中期为第7.8候(12月上旬)。平均集中度和集中期空间分布不均匀,东部的降雪集中度和集中期较西部大。Morlet小波分析表明,阿勒泰地区降雪集中度和集中期存在各自的年际尺度周期变化。通过降雪量与集中度和集中期的合成分析表明,多雪年集中度较少雪年偏小,集中期较少雪年偏早。  相似文献   

20.
为深入了解呼和浩特地区降雨和降雪过程中降水粒子谱的分布特征,利用Parsivel观测数据并结合常规观测资料,对2017—2019年发生在呼和浩特地区的8次降雨过程和10次降雪过程的降水粒子谱进行分析.结果表明:雨滴谱和雪花谱都比较符合Gamma分布,平均降雪谱的峰值直径、峰值浓度以及最大直径均大于平均雨滴谱,降水强度相...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号