首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 343 毫秒
1.
利用OTT激光雨滴谱仪观测的南京地区2014—2016年共六场降雪粒子谱资料,按仪器记录的降水类型将资料分为雨夹雪、小雪、中雪,利用Gamma和M—P函数对粒子的尺度谱进行拟合,拟合参量由阶矩法求出。线性拟合得出降雪粒子末速度的V—D曲线,并与经验曲线进行对比分析;μ、λ关系由拟合所得二项式表示。结果表明:南京地区降雪尺度谱分布更接近于Gamma分布;小雪、中雪粒子的下落末速度同粒子直径变化无较大关联,降雪粒子以湿雪为主;雨夹雪很好地满足μ、λ二项式关系,小雪和中雪的μ、λ二项式关系相对更差,利用此关系简化Gamma函数进行遥感反演降水参量时,对于不同凝结状态的降雪需采取不同的μ、λ函数关系来表示。  相似文献   

2.
黄山雨滴下落过程滴谱变化特征   总被引:2,自引:2,他引:0       下载免费PDF全文
利用2011—2012年4—10月安徽省黄山山顶和山底两个站点同时采集的雨滴谱数据,共选取17个降水个例,将17个降水个例分为对流云降水和层云降水,对不同高度和不同云系降水雨滴谱特征分析得出以下结论:对于不同云系的降水,山顶平均雨滴数浓度大于山底,平均峰值直径和平均质量半数直径在下落过程中均增加,平均雨强和平均雷达反射率因子变化幅度较小。不同云系的雨滴在下落过程中,雨滴谱谱宽变化较小,但雨滴谱均从M-P (Marshall-Palmer) 分布转向了Gamma分布。降水粒子在下落过程中,大部分通道的数浓度均出现损失,最大损失超过50%,随着粒子尺度增加损失逐渐减少,大粒子数浓度在降落时有所增加,增加幅度为10%左右,降水粒子的碰并和蒸发过程很可能是造成降水粒子下落过程中滴谱变化的两个主要原因。  相似文献   

3.
黄钦  牛生杰  吕晶晶  周悦  张小鹏 《大气科学》2018,42(5):1023-1037
利用PARSIVEL激光雨滴谱仪和自动气象站观测资料及MICAPS数据,对2014年2月7~15日庐山地区积冰天气期间持续时间在5 h以上的2次冻雨过程[2月10日(个例1)和2月13日(个例2)]降水谱分布特征及下落末速度粒径分布进行研究。所观测到的两次个例均是以冻雨为主体的混合相态降水,下落末速度粒径分布偏离G-K曲线,与常规液态降水存在差异,低落速的冻雨滴随降水过程会逐渐向冰粒和干雪转化。结果表明:(1)个例1总降水粒子谱谱宽大于个例2,但峰值数密度比个例2小:个例1谱宽为10 mm,个例2谱宽为4.25 mm,两者峰值粒径均为0.5 mm;个例1降水粒子谱宽为干雪>冻雨>冰粒,个例2降水粒子谱宽为冻雨>干雪>冰粒。(2)Gamma分布更适合描述混合相态降水粒子谱以及冻雨滴谱,个例1中总降水粒子谱Gamma分布为:N(D)=20D-3.61exp(-0.08D),冻雨Gamma分布:N(D)=76D-2.18exp(-1.11D);个例2中总降水粒子谱Gamma分布为:N(D)=30D-4.68exp(-0.75D),冻雨Gamma分布:N(D)=30D-4.67exp(-0.75D)。(3)混合相态降水因混有干雪或冰粒而使得下落末速度粒径谱分布表现出不同程度地向大粒径小落速方向或小粒径大落速方向延展的趋势,这为今后依据下落末速度粒径谱区分同时期降水类型提供了新的思路。  相似文献   

4.
李遥  牛生杰  吕晶晶  王静  王天舒  黄钦  王元 《大气科学》2019,43(5):1095-1108
为深入研究南京降雪微物理特征及变化,利用第二代激光雨滴谱仪PARSIVEL2、自动气象站观测资料及MICAPS数据,对2018年冬季南京的四次罕见强降雪过程中雪花的微物理参量进行分析。结果表明:(1)雪花谱基本呈多峰分布,个例1降雪强度增大时有小雪花向大雪花的转化,而其余三次过程则有雪花数浓度的显著增大。温度的差异使个例1大雪花形成机制与其余个例不同,最终导致了降雪稳定阶段,雪强增大的机制不同。(2)使用Gamma分布和M-P分布分别对四次降雪的不同阶段进行了拟合,Gamma 分布在各阶段的拟合优度均高于M-P分布拟合,降雪终止阶段拟合优度低于起始阶段及降雪全过程的拟合。四次降雪过程降雪粒子谱的Gamma分布分别为N=107D-0.21exp(-0.54D)、N=136D-0.54exp(-0.60D)、N=256D0.38exp(-1.01D)、N=9.39×104D4exp(-7.81D),其中,N为降雪粒子数浓度、D为雪花直径。(3)个例1在3 mm左右速度谱存在两个峰值,分别贴近结霜曲线和未结霜曲线,说明该次降雪大雪花的形成存在结霜增长和结霜碰并两种机制。(4)综合个例1、2、3,给出南京地区稳定的层状云强降雪的Z-I关系为Z=1708I1.51。  相似文献   

5.
本文利用OTT Parsivel2激光雨滴谱仪和站点加密观测资料,对2019年11月29日张家口地区一次长时间降雪天气过程的滴谱演变特征进行了初步分析,本次降雪先后经历开始阶段、雪花阶段、稳定强降雪阶段、结束阶段。结果表明:(1)总体上,降雪天气过程中微物理参量(降雨强度R、数浓度Nt、雨水含量W、雷达反射率因子Z、质量加权平均直径Dm)演变趋势基本相同,其中开始阶段、稳定强降雪阶段、结束阶段的降水强度、雨水含量、雷达反射率因子受粒子数浓度影响较大,而雪花阶段降水强度、雨水含量、雷达反射率因子受粒子直径影响较大。(2)稳定强降雪阶段,粒子数浓度Nt量级为103至104,而Dm小于1 mm,这是由于大雪片在温度较低的情况下,下落过程中破碎形成大量小雪片。降雪过程中,雪滴下落速度小于2 m/s的粒子数占总粒子数的90%,强降雪阶段的雪滴下落速度集中于1~1.5 m/s。(3)分别使用二、三、四阶矩和最小二乘法对不同降雪阶段粒子谱进行Gamma分布拟合,在降雪过程中,最小二乘法拟合效果优于二、三、四阶矩方法。  相似文献   

6.
利用设在伊宁的激光雨滴谱仪获取的2013年4月的降水资料,对层状云和混合云降水粒子谱的微物理参量平均值和Gamma函数拟合结果以及Z-I关系进行对比分析。计算结果表明,伊宁地区春季降水的微物理参量普遍偏小,小滴对降水浓度的贡献达到92%以上,即降水主要以小滴为主。层状云降水的雨强、雨滴数浓度、雨滴的各类微物理特征参量的平均值均大于混合云降水。函数拟合结果表明,混合云降水的雨滴谱宽大于层状云降水的雨滴谱宽,层状云和混合云降水的雨滴谱都比较符合Gamma分布,在小滴段Gamma分布对实际谱都有一定的低估,在大于1 mm的粒径段,拟合结果有一定的偏差。还讨论了雨滴大小因子Λ和形状因子μ之间的关系以及Z-I关系,Λ-μ关系与粒子尺度有关,根据拟合的二项式得到层状云降水粒子的平均直径大于混合云降水的平均直径。  相似文献   

7.
刘彦  苏德斌  杨宁  王亮 《高原气象》2023,(3):748-757
布设在内蒙古自治区巴彦淖尔市五原县气象局的二维雨滴谱仪(2DVD)在2020年7月27日观测到一次含雹混合降水事件,基于粒子直径与本地下落末速度对2DVD数据质控后,分析了此次过程不同直径-速度和不同直径-轴比下的粒子数量分布以及粒子谱、中值体积直径、质量加权平均直径、粒子数浓度和降水强度等参数随时间的演变。结果表明:(1)直径0.1~0.5 mm的雨滴实测下落末速度偏大于经验公式计算的下落末速度,直径5~10.4 mm的冰雹粒子下落速度为5.5~11.6 m·s-1,直径小于6 mm的冰雹粒子下落速度分布较广。直径0.1~2 mm的小雨滴轴比为0.9~1.1,直径2~5 mm的大雨滴轴比为0.7~1.0,直径5~10.4 mm的冰雹粒子轴比为0.5~1。(2)本次降雹类型为先雨后雹,雹雨混降,雹后持续降雨,冰雹谱谱宽为10.4 mm。逐分钟降水粒子谱存在3个直径极大值,在降水和降雹之间存在短暂的无降水,谱宽和粒子数浓度随时间同时增大和减小,并在降雹阶段,各参数陡增至峰值。(3)冰雹谱分布呈单调递减型,通过M-P分布函数分段模拟了降雹时段的雨滴谱和冰雹谱,模拟的粒...  相似文献   

8.
黄山层状云和对流云降水不同高度的雨滴谱统计特征分析   总被引:2,自引:1,他引:1  
李慧  银燕  单云鹏  金祺 《大气科学》2018,42(2):268-280
根据2011年6~7月在黄山不同高度采用PARSIVEL雨滴谱仪测得的雨滴谱数据,对不同海拔高度上两类(层状云和对流云)降水粒子谱的微物理特征量、Gamma函数拟合以及雨滴的下落速度进行对比分析,结果表明:对流云降水的雨水含量和降水强度、雨滴的各类尺度参数和数浓度都比相同位置上层状云降水的大,同类降水中,山腰的雨滴尺度大于山顶和山底,这可能与各观测点和云底相对位置的不同有关;随降水强度增加,雨滴的质量加权平均直径Dm逐渐增大,广义截距参数(log10Nw)的标准差逐渐减小。拟合结果表明各高度的雨滴谱都比较符合Gamma分布,由拟合参数分析雨滴谱的演变,发现相对于对流云降水,层状云降水粒子谱随高度的变化较小,雨滴谱的演变较为稳定。此外,本文还对两类降水中雨滴的下落速度及影响落速的因素进行了分析。  相似文献   

9.
北京冬季降水粒子谱及其下落速度的分布特征   总被引:2,自引:0,他引:2  
为了深入探讨北京冬季云降水的微物理特征,提高雷达反演冬季固态降水的精度和冬季降水的预报水平,利用PARSIVEL(Particle Size and Velocity)降水粒子谱仪所观测的冬季降水粒子谱,结合地面显微镜粒子图像和云雷达数据,对比分析了北京海坨山地区冬季过冷雨滴、霰粒、雪花、混合态降水的粒子谱和下落速度特征,得到主要结论如下:(1)霰粒降水过程的云顶最高,整层的含水量最大,低层的退偏振比(LDR)最小,粒子更接近于球形;降雪过程的云顶最低,云中含水量最少,低层的退偏振比较大;混合态降水过程的雷达回波强度和高度特征介于两者之间,但低层的退偏振比最大;(2)在云中上升或下沉气流及湍流的影响下,过冷雨滴、霰粒和雪的下落速度均对称分布于各自理论下落末速度曲线的两侧。因此可根据粒子浓度相对于其直径和速度分布的中轴线位置,判断出该段降水过程中的主要粒子形态;(3)冬季雪花、霰粒和混合态降水粒子下落速度分布的散度较雨滴更大,其原因是由于冷云降水过程的粒子形态复杂,且固态粒子下落过程中更容易受破碎、聚并和凇附等微物理过程影响;(4)在4种降水类型中,雪的平均直径和离散度最大,雨滴最小;混合态降水粒子的总数浓度最大,雨滴的总数浓度最低,并且4种降水类型的粒子数浓度、平均直径和离散度均随降水强度的增大而增大。   相似文献   

10.
山西省不同地区雨滴谱的统计特征   总被引:4,自引:3,他引:1  
利用2010—2012年OTT Parsivel激光降水粒子谱仪在山西省6个地区观测的雨滴谱资料,调查了不同地区对流性和层状性降水滴谱特征。结果表明:对两类降水而言,山区降水强度大于平原地区,且山区降水广义截距参数N_w和质量加权平均直径Dm均大于平原地区。两种地形层状性和对流性降水的雨滴平均谱分布均呈明显单峰型,两种降水的峰值直径分别为0.56 mm和0.94 mm,对流性降水雨滴谱明显比层状谱宽。Gamma分布较好的拟合了平均谱,统计了对流性降水Gamma分布参数μ-λ关系。此外,对N_w-R、D_m-R以及Z-R关系也进行了研究。  相似文献   

11.
利用常规观测资料和NCEP 1°×1°再分析资料,通过对2008-2018年共11年间发生在江苏省的区域性中雪、区域性大雪、区域性暴雪天气过程的对比分析,发现影响江苏区域性降雪的主要天气系统是500 hPa西风槽、700 hPa西南急流和地面冷空气。决定降雪量级的因素主要是700 hPa西南急流强度和范围,降雪区上空水汽输送强度、水汽辐合强度、水汽辐合厚度也与降雪量级有一定的正相关关系。暴雪时700 hPa水汽通量≥14 g·cm-1·hPa-1·s-1,且水汽来源更为丰富,均来自于孟加拉湾和南海;大雪和中雪时,700 hPa水汽通量分别≥12 g·cm-1·hPa-1·s-1和10 g·cm-1·hPa-1·s-1。暴雪期间,水汽辐合区内水汽通量散度都≤-1×10-7g·s-1·hPa-1·cm-2,水汽辐合厚度达200~400 hPa,明显强于大雪和中雪。有利于江苏发生区域降雪过程的温度垂直分布条件为:地面≤2℃、t925≤-1℃、t850≤-2℃、t700≤-1℃、t500≤-14℃。随着降雪量级的增大,中低层温度阈值呈降低趋势。中低层逆温是产生区域性大雪及暴雪的必要条件,而中雪发生时不一定都有逆温层结,只要近地层温度条件合适,就能产生降雪。随着降雪量级的增大,逆温层强度明显增强、厚度明显增厚。暴雪、大雪和中雪时逆温强度阈值分别为3~8℃、2~8℃和1~3℃,其逆温层厚度分别为150~200 hPa、100~200 hPa和50~100 hPa。降雪过程中上升运动强中心位于600400 hPa。暴雪时,上升运动区相对大雪和中雪时的更为深厚,基本整层都为上升运动区,垂直运动发展旺盛。暴雪和大雪时上升运动中心值均≤-0.7 Pa·s-1,中雪时中心值≤-0.3 Pa·s-1。  相似文献   

12.
利用激光雨滴谱仪对2015年5月6日四川盆地东南部与云贵高原交界处的重庆万盛地区一次由地形强迫抬升形成的短时强降水过程进行观测,分析了雨滴谱相关特征值变化情况。结果表明:雨滴谱能够较好的反映本次过程雨量的细节,谱型能够较好地反映对流的生消过程;雨滴的数浓度并不是影响雨强的决定性因素,粒子大小对雨强的贡献同样很重要;大粒子虽然很少,但对雨强的贡献远大于小粒子(如大于3mm的粒子在雷达反射率因子中起主要贡献,达到97%);强烈的对流使大粒子在下落过程中破碎形成小粒子;三参数Gamma分布能够较好的拟合本次降水过程雨滴谱分布;小粒子的速度谱大于实验典型值,与大粒子在下落过程中破碎形成小粒子有关。  相似文献   

13.
利用2019年5~10月布设于三江源地区隆宝高寒湿地的激光雨滴谱仪观测资料,分析高原山区夏秋季层状云降水和对流云降水雨滴微物理特征、平均雨滴谱分布、下落速度及Z-R关系.结果表明:三江源隆宝地区夏秋季对流云降水和层状云降水的雨滴微物理特征具有一定程度的相似性,对流云降水雨滴微物理参量略大于层状云降水;层状云降水和对流云...  相似文献   

14.
利用激光雨滴谱仪资料、地面观测资料、合肥双偏振雷达资料和欧洲中心ERA5再分析资料,对2022年1月26日发生在江淮之间一次短时强降雪天气过程中滴谱变化和雷达回波特征进行分析,并探讨雨雪相态变化的成因,结果表明:(1)本次江淮之间突发的强降雪过程中,雨雪转换迅速,降水相态变化时间提前于地面温度变化,合肥地区温度变化明显强于周边地区。(2)此次短时强降雪发生在锋生强迫过程形成的高架雷暴中,强烈的上升运动、降水粒子的融化和蒸发引起温度负变化,导致降温过程自上而下产生,表现为地面温度下降落后于雨雪相态的变化。(3)降雪过程先后出现降雨、雨夹雪、纯雪3个阶段,雨(雪)滴谱的时间演变特征变化明显;转雪后降水粒子的下落末速度降低、粒径增大、滴谱明显变宽。(4)雷达观测显示此次降雪回波顶高度较高,超过6.5km,低空1km有强度超过50dBZ强反射率因子带并延伸到地面。反射率因子、相关系数(CC)和降水粒子产品(HCL)在降雪过程的发展中有明显特征。  相似文献   

15.
安徽大别山一次强雨雪天气过程降水粒子特征分析   总被引:8,自引:0,他引:8  
蒋年冲  胡雯  邵洋  周述学 《气象》2010,36(6):79-84
通过对降水粒子特征研究,以便探讨云、降水的形成机制。利用一台安装在安徽大别山区潜山县气象局楼顶无障碍平台上,德国OTT公司生产的Parsivel激光降水粒子测量系统所获取的2008年1月26—28日强雨雪天气过程的2540份资料,对不同降水类型的粒子数浓度及其谱分布、下落速度及其谱分布进行了特征分析。结果表明:(1)这次强雨雪天气过程中不同降水类型降水粒子中雨夹雪平均数浓度最大,每分钟可达589个;雨最小,为每分钟255个。(2)雪与冻雨的数浓度是双峰型,其他降水的数浓度都是单峰型。(3)不同类型降水粒子尺度谱主要出现在直径为0.125~1.00 mm之间。谱最宽的是雪,最窄的是毛毛雨。整个过程的平均谱分布都是单峰型,但峰值却有所不同。(4)整个过程不同降水类型降水粒子的最大下落速度主要集中在1.0~4.8 m·s~(-1)段。在此段中毛毛雨、毛毛雨与雨、雨、雨夹雪、冻雨和雪的粒子数分别占各自粒子总数的98.68%、98.46%、97.72%、94.79%、93.69%,和85.83%。(5)不同类型降水粒子平均速度谱中雨和雨夹雪的谱最宽,最大落速可达9.6 m·s~(-1),毛毛雨最窄,最大落速只有5.6 m·s~(-1);其他大体相当。在整个过程中不同类型降水粒子平均速度谱都是单峰型,但峰值所处的位置却有较大差异。  相似文献   

16.
李遥  牛生杰  吕晶晶 《大气科学》2020,44(4):808-815
为了获得更加准确的冬季降水数据,针对PARSIVEL2(Particle Size and Velocity)测量降雪时近地面水平风的影响进行了订正及误差计算。订正结果表明:一定风速下,不考虑风的影响会造成小粒子直径的明显低估,而对于同一粒径段的粒子,风速越大,计算过程中对于粒子直径的低估越明显。风速不超过2 m s?1时,其降雪粒子下落末速度计算误差在3%左右,直径计算误差在7%以内(水平偏转角度45°)。在对2018年1月4日南京一次降雪过程中获取的真实雪花谱的分析中可以看出,忽略风的影响会导致雪花谱峰值的偏移和谱的缩窄,这会造成小粒子数浓度的高估和大粒子数浓度的低估,进而影响微物理量的计算。具体表现在雷达反射率因子Z和降雪强度I的低估,及Z–I关系拟合系数a值的实际数值会大于计算值,b值则偏小。但当风速较大时,近地面流场比较复杂,垂直向湍流运动不可忽略,此种订正方法很可能不再适用。建议在以后的业务观测中增设防风圈或在后续的数据处理中增加针对风的订正,以排除风对降雪测量的影响。  相似文献   

17.
庐山地区层状云和对流云降水特征对比分析   总被引:4,自引:0,他引:4  
根据Parsivel激光雨滴谱仪在庐山高海拔观测场获取的2011年降水资料,结合宏观特征量、雨滴谱资料和雷达图像资料,将降水划分为对流云降水和层状云降水,选取了12次典型降水过程。对两类云降水的6种特征直径、各档雨滴对降水参量的贡献、降水微物理参量的演变等进行了分析,并利用M-P分布和Gamma分布对两类云降水雨滴谱进行拟合,对拟合参数以及拟合效果进行了分析。结果表明:两类云降水微物理特征有着本质的区别,层状云降水谱宽相对较窄,参量随时间变化比较平缓,直径不超过1 mm的小滴对降水贡献最大;对流云降水谱宽相对较宽,出现了直径接近10 mm的大滴,参量起伏较大,对数密度贡献很小的大滴对雨强、含水量贡献却比较大。从拟合效果检验来看,层状云降水拟合时的M-P曲线在大部分区段比Gamma曲线更接近实测雨滴谱曲线;对流云降水拟合时的Gamma分布曲线与实际雨滴谱分布曲线整体吻合程度较高。M-P分布和Gamma分布两种拟合方法都适用于层状云降水,对流云降水雨滴谱拟合时Gamma拟合效果优于M-P拟合效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号