首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 237 毫秒
1.
基于黄、东海Lagrange环流数值模型 ,对黄、东海Lagrange斜压环流进行了诊断计算。采用流速分解法将La grange流速分解为梯度流、风海流、潮致余流、热盐环流、零阶环流耦合流 5种分量 ,实现三维计算的准二维化。计算结果较成功地模拟了冬夏两季黄、东海Lagrange环流 ,表明密度环流在冬、夏季均是东海环流的重要分量 ,可显著增强了东海黑潮、东海黑潮、台湾暖流和对马暖流 ;在夏季还是黄海环流的主要分量。  相似文献   

2.
依据黄、东海环流的的动力学模型 ,运用“流速分解法”对黄、东海正压环流进行了数值模拟。计算结果表明冬季黄海正压环流主要受风应力影响 ,基本形态为黄海暖流由济州岛西南进入南黄海中部 ,其东西两侧分别为两支向南流动的沿岸流 ;夏季主要受到潮致体力的影响 ,为一逆时针涡旋。东海环流主要是边界力作用驱动的结果 ,东海黑潮、台湾暖流和对马暖流较稳定。冬季风应力对东海环流表层流场有消弱作用 ,在夏季则有一定增强作用。  相似文献   

3.
将长江口、杭州湾及其邻近海域作为研究整体,建立该海区的三维Lagrange正压环流的分阶数值模式,综合考虑径流、东中国海背景环流、风应力和M2,S2,O1,K1 4大天文分潮的综合作用,运用"流速分解法"将环流分为正压梯度流、风生流、潮致余流及零阶环流的非线性耦合流等4个分量,模拟了冬夏两季长江口、杭州湾及其邻近海区的Lagrange正压环流结构.结果表明,零阶环流受东中国海背景环流控制;潮致余流是该海区一个重要分量;杭州湾内正压环流主要由风生流和潮致余流控制.  相似文献   

4.
依据自适应数值模型,模拟了东中国海冬、夏季三维斜压Lagrange环流。模拟发现:台湾暖流的上层水来自台湾海峡入流和台湾东北黑潮的表层水;50m以下的深底层水主要由台湾东北黑潮的次表层水入侵陆架生成。冬季对马暖流外海一侧主要由黑潮水构成,而其近陆一侧由台湾暖流和陆架混合水构成,西朝鲜沿岸流在济州海峡汇入对马暖流;夏季它还包含转向后的长江冲淡水。冬季黄海暖流并非对马暖流的直接分支,黄海暖流水是对马暖流水和陆架水混合而成,这与传统观点相悖,而与中韩黄海水循环动力学合作调查结果一致。黄海暖流东西两侧分别为2支向南流动的滑岸流。夏季黄海环流构成基本封闭的逆时针环流。冬季渤海环流主要有一逆时针大环流,但辽东湾的环流是顺时针向的。渤海环流冬强夏弱,水流在渤海海峡北进南出。  相似文献   

5.
渤、黄、东海夏季环流的三维斜压模型   总被引:10,自引:0,他引:10  
基于拉格朗日时均观点描述环流,建立起潮流与准定常流共同占优势系统中的陆浅海环流模型,并诊断计算了夏季渤、黄、东海的三维环流图。模拟结果较好地再现了渤、黄、东海主要流系的特征。对照冬季结果,对渤、黄、东海环流的季节变化做了阐述。从环流垂向分量的分布图上,可发现渐闽近海、长江口外存在较明显的上升流区。另外,对夏季渤、黄、东海的热盐环流和潮致余流分别进行了模拟,发现它们均能在黄海构成一逆时针向的五流系统,这对形成和维持夏季黄海冷水团的存在有重要作用。热盐环流的模拟结果表明,黄海冷水团环流含有“热成流”的成分;通过Lagrange余流的计算发现环绕黄河冷水团的环流还含有“潮成流”的成分。  相似文献   

6.
东中国海环流及其季节变化的数值模拟   总被引:1,自引:0,他引:1  
关于东中国海环流的研究,国内外学者已做了大量的工作。早期科学家们主要依赖于对温盐资料和少数测流资料的分析研究对渤、黄、东海的环流结构有了较系统和深入的认识。东中国海环流是由一个气旋式的“流涡”组成,东侧主要是北上的黑潮-对马暖流-黄海暖流及其延伸部分;西侧为南下的沿岸流系。黑潮对东中国海环流的影响是如此之大,以致于除了某些局部区域外,上述海域主要流系的冬、夏季分布形式比较相似而无本质上的差异(胡敦欣等,1993)。但本文所研究海域正处于世界上最显著的季风区,冬、夏季盛行风向基本相反,过渡季节(春、秋季)风向多变,风力减弱;海洋热盐结构季节变化明显(如冬季混合强,而夏季层化明显等),这些因素都使得东中国海环流存在着较明显的季节变化。 自20世纪80年代以来,东中国海环流的数值模拟工作逐步展开,并已成为研究环流结构及其形成机制的强有力工具。但由于数值模式本身以及计算方案的缺陷(如有些学者用固定的风场、温盐场对东中国海环流进行诊断模拟等)和观测资料的不足,数值模拟的结果难以得到验证,渤、黄、东海的环流研究中仍有大量的问题存在争议,以待澄清。例如,台湾暖流的来源、流径;对马暖流的来源;夏季黄海暖流的流径以及黄海冷水团环流等均有不同的论述。对黄、东海环流季节变化的数值模拟工作也较少,多用冬、夏典型月份的风场强迫积分至稳定态,给出冬、夏季环流,这种做法值得商榷。三维环流模式很难在1个月内达到稳定态,尤其是夏季层化明显、风力减弱的情况下,非常定风场的影响更应引起人们的重视。 本文采用比较符合实际的计算方案,用年循环风场和海面热通量场为外强迫,对渤、黄、东海的环流及其季节变化进行了模拟,并对一些争议问题进行了探讨。  相似文献   

7.
渤海三维风生-热盐-潮致Lagrange余流数值计算   总被引:9,自引:4,他引:9       下载免费PDF全文
笔者基于一种三维斜压浅海Lagrange余流的弱非线性理论,湍粘性系数的处理引进了Richardson数,利用流速分解法,把作为强迫力的潮汐、风和热盐统一在一个模型中,考虑了黄海暖流余脉和黄河径流的影响,诊断计算并获得了渤海三维风生-热盐-潮致Lagrange余环流.同时,给出了潮致Lagrange余环流、风生环流和热盐环流,并且做了比较和分析.对渤海Lagrange余环流的三个主要涡旋形成机制进行了初步的探讨.最后,用实测资料对计算结果进行了检验,显示了结果的合理性.  相似文献   

8.
东中国海由渤、黄、东海三部分组成,为典型的陆架边缘海。对这一海域环流的认识,过去多依赖于温盐资料分析和有限的测流数据。近年来随着计算机技术的迅猛发展,数值模拟已成为研究环流的结构、起源和动力机制的重要手段。国内、外学者在这一领域进行了大量的工作,袁耀初等(1982)使用单层模型对东中国海风生-热盐环流进行诊断计算;王卫等(1987)使用一个正压模式计算了黄、东海黑潮流系和涡旋现象;袁耀初等(1987a,b,1989)采用诊断数值计算方法求解涡度方程,得出其所测海区的三维夏、冬季海流流场;袁耀初等(1990)采用一种预报模式研究东中国海的冬季环流;Chao(1991)用三维有限差分模式探讨了黑潮、季风及长江流量等因子对东中国海环流的影响;袁耀初(1993)针对东海东部的流动建立了一个三维预报模式;朱耀华等(1994)建立了一个三维正压模式研究了渤、黄、东海冬、夏季的环流情况;梁湘三等( Liang et al.,1994)用二层模式模拟了黑潮在台湾东北入侵陆架的现象;王凯于1998年在冯士筰提出的浅海Lagrange余流理论上建立了一种三维斜压陆架环流模式,对渤、黄、东海冬、夏季环流进行了诊断数值模拟;王辉(1996)基于一种三维斜压浅海Lagrange余流的弱非线性理论,模拟计算了南黄海和东海夏季三维Lagrange余流;朱建荣等(1998)建立了一个σ坐标系下三维非线性斜压陆架模式,对东中国海冬、夏季环流进行模拟计算,并数值实验了长江径流量、台湾暖流、黄海冷水团、风场等因素对长江冲淡水扩展的作用。以上这些工作对了解东中国海环流的结构、起源和动力机制都具有重要意义。但是这些工作由于当时计算机速度和容量的限制,其数值模式不够完普,有的使用了二维(单层)或诊断模式,有的网格较粗,多数未考虑实际的海岸线和海面热交换对温度场的影响等,从计算结果来看,没有一个模式能全面地模拟出发生在东中国海的环流现象。 本文作者试图采用Blumberg等(1983,1987)建立的σ坐标系下三维斜压预报模式,考虑了东海主要水道间的流量交换、长江径流、海面风应力、海面热通量等诸多因素的影响,对东中国海夏季的环流进行了数值模拟,结果较全面地模拟了东中国海的环流现象,为今后进一步开展此项工作提供科学依据。  相似文献   

9.
海洋环流是海洋科学研究的1个焦点.本文首次建立了东中国海环流自适应数值模型.由于所设计的自适应网格既与边界适应,又在水深变化急剧的东海陆坡处得以加密,从而使坐标变换下的三维斜压模式克服了跨越陆坡计算这一难题,并以期获得更为精确的数值研究成果.该模型基于Lagrange时均观点,而非Euler观点.它可计算海域三维斜压流场,从而得到其风生-热盐-潮致Lagrange环流.模拟结果与实测及现有的数值研究结果比较,合理可信.其中黄海暖流的起源问题,计算结果与传统观点相悖,而与近期实测结果一致.本文为系列报道之首篇.  相似文献   

10.
台湾以北陆架环流动力学初步研究   总被引:10,自引:6,他引:10  
根据国家海洋局于1984—1985年在东海所获得的温、盐、流资料,分析了台湾以北海域的环流状况,夏季流况复杂而冬季则相对简单,无论冬、夏在东海陆架上都有明显的弯曲流动,最后归向坡折附近,可称为台湾暖流的外侧分支,沿闽浙近岸北上的台湾暖流内侧分支冬、夏都存在,其水体至少在上层可能源自台湾海峡,通过简单模式我们探讨了研究海域环流的动力机制,发现黑潮进入东海后失去台湾岸线对水位梯度的“支撑”,是产生研究海域环流特征的主要原因之一。但是,具体形成冬、夏环流的动力,似有根本不同。  相似文献   

11.
Variability of Sea Surface Circulation in the Japan Sea   总被引:3,自引:0,他引:3  
Composite sea surface dynamic heights (CSSDH) are calculated from both sea surface dynamic heights that are derived from altimetric data of ERS-2 and mean sea surface that is calculated by a numerical model. The CSSDH are consistent with sea surface temperature obtained by satellite and observed water temperature. Assuming the geostrophic balance, sea surface current velocities are calculated. It is found that temporal and spatial variations of sea surface circulation are considerably strong. In order to examine the characteristics of temporal and spatial variation of current pattern, EOF analysis is carried out with use of the CSSDH for 3.5 years. The spatial and temporal variations of mode 1 indicate the strength or weakness of sea surface circulation over the entire Japan Sea associated with seasonal variation of volume transport through the Tsushima Strait. The spatial and temporal variations of mode 2 mostly indicate the temporal variation of the second branch of the Tsushima Warm Current and the East Korean Warm Current. It is suggested that this variation is possibly associated with the seasonal variation of volume transport through the west channel of the Tsushima Strait. Variations of mode 3 indicate the interannual variability in the Yamato Basin.  相似文献   

12.
黄、东海环流的数值研究Ⅰ. 黄、东海环流的数值模型   总被引:1,自引:1,他引:0  
首先依据拉格朗日环流理论与黄、东海的环流物理和几何特征建立一个黄、东海环流的动力学统一模型 ,并按其无因次方程的量阶分析获得其零阶和一阶模型方程。最后依此模型方程的数学、物理特征确立了流速分解方案 ,从而形成完整的黄、东海拉格朗日环流数值模型。该课题组已完成较系统地对黄、东海环流的数值研究。该篇论文为系列报道之首篇。  相似文献   

13.
Circulation on the north central Chukchi Sea shelf   总被引:8,自引:0,他引:8  
Mooring and shipboard data collected between 1992 and 1995 delineate the circulation over the north central Chukchi shelf. Previous studies indicated that Pacific waters crossed the Chukchi shelf through Herald Valley (in the west) and Barrow Canyon (in the east). We find a third branch (through the Central Channel) onto the outer shelf. The Central Channel transport varies seasonally in phase with Bering Strait transport, and is 0.2 Sv on average, although some of this might include water entrained from the outflow through Herald Valley. A portion of the Central Channel outflow moves eastward and converges with the Alaskan Coastal Current at the head of Barrow Canyon. The remainder appears to continue northeastward over the central outer shelf toward the shelfbreak, joined by outflow from Herald Valley. The mean flow opposes the prevailing winds and is primarily forced by the sea-level slope between the Pacific and Arctic oceans. Current variations are mainly wind forced, but baroclinic forcing, associated with upstream dense-water formation in coastal polynyas might occasionally be important.Winter water-mass modification depends crucially on the fall and winter winds, which control seasonal ice development. An extensive fall ice cover delays cooling, limits new ice formation, and results in little salinization. In such years, Bering shelf waters cross the Chukchi shelf with little modification. In contrast, extensive open water in fall leads to early and rapid cooling, and if accompanied by vigorous ice production within coastal polynyas, results in the production of high-salinity (>33) shelf waters. Such interannual variability likely affects slope processes and the transport of Pacific waters into the Arctic Ocean interior.  相似文献   

14.
日本海环流研究综述   总被引:6,自引:0,他引:6  
日本海作为东北亚地区最大的边缘海,是西北太平洋上的重要海区。由于特殊的地理位置和复杂的地形,使得日本海的环流结构呈现独有特征,如日本海内的亚极地锋现象,复杂多变的涡旋,北部形成的深水团等。概述了日本海环流状况,着重介绍了对马海峡、郁陵海盆环流情形和日本海特征水团;总结了目前仍存在的争议问题,如对马暖流源头、对马暖流空间结构等;指出了目前日本海尚待解决的科学问题,如对马暖流流量的长期变化及其原因、东韩暖流消失现象及其机制、日本海特征水的传播路径及其影响因素、日本海的某些变化产生原因及其与全球变化的响应等。  相似文献   

15.
The circulation of intermediate and deep waters in the Philippine Sea west of the Izu-Ogasawara-Mariana-Yap Ridge is estimated with use of an inverse model applied to the World Ocean Circulation Experiment (WOCE) Hydrographic Program data set. Above 1500 m depth, the subtropical gyre is dominant, but the circulation is split in small cells below the thermocline, causing multiple zonal inflows of intermediate waters toward the western boundary. The inflows along 20°N and 26°N carry the North Pacific Intermediate Water (NPIW) of 11 × 109 kg s−1 in total, at the density range of 26.5σθ–36.7σ2 (approximately 500–1500 m depths), 8 × 109 kg s−1 of the NPIW circulate within the subtropical gyre, whereas the rest is conveyed to the tropics and the South China Sea. The inflow south of 15°N carries the Tropical Salinity Minimum water of 35 × 109 kg s−1, nearly half of which return to the east through a narrow undercurrent at 15–17°N, and the rest is transported into the lower part of the North Equatorial Countercurrent. Below 1500 m depth, the deep circulation regime is anti-cyclonic. At the density range of 36.7σ2, – 45.845σ4 (approximately 1500–3500 m depths), deep waters of 17 × 109 kg s−1 flow northward, and three quarters of them return to the east at 16–24°N. The remainder flows further north of 24°N, then turns eastward out of the Philippine Sea, together with a small amount of subarctic-origin North Pacific Deep Water (NPDW) which enters the Philippine Sea through the gap between the Izu Ridge and Ogasawara Ridge. The full-depth structure and transportation of the Kuroshio in total and net are also examined. It is suggested that low potential vorticity of the Subtropical Mode Water is useful for distinguishing the net Kuroshio flow from recirculation flows. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Circulation of the East China Sea,a numerical study   总被引:4,自引:0,他引:4  
A three-dimensional, primitive-equation model is developed to study how the Kuroshio, the monsoon, the Yangtze River outflow and the buoyancy forcing from the South China Sea affect the circulation of the East China Sea. It is found that the Kuroshio water usually intrudes into the East China Sea from both sides of Taiwan Island. Winter winds enhance the Kuroshio intrusion from northeast of Taiwan, but weaken it from the Taiwan Strait. Summer winds act in the opposite way. The increased presence of the Kuroshio water in the East China Sea in winter can be largely attributed to the shoreward surface Ekman drift associated with the northerly wind. In summer, the-shaped plume emanating from the Taiwan Strait is, to a large extent, produced by the buoyancy forcing from the South China Sea.In summer, the bimodal distribution of the Yangtze River outflow is initially produced by the upwelling-favorable wind. Away from the Yangtze River, the far-field dispersal of the fresher water depends on the strength of the Kuroshio. A stronger Kuroshio enhances the seaward dispersal of the northern branch of the Yangtze outflow north of Taiwan, but reduces the southward penetration of the southern branch. In winter, downwelling-favorable winds confine the Yangtze River outflow to a narrow band forming nearshore coastal jet penetrating southward. The northern tip of Taiwan acts as a conduit, channeling the seaward dispersal of the fresher water. The model results interpret the observed circulation patterns.  相似文献   

17.
在POM的基础上,建立一个σ坐标系下三维斜压预报模式,利用经过资料同化处理的周平均卫星遥感海面温度资料,考虑海底地形、外海出入流、海面风应力等因素的影响,较好的模拟了冬季渤、黄、东海环流的情况。  相似文献   

18.
Numerical Study of the Upper-Layer Circulation in the South China Sea   总被引:7,自引:0,他引:7  
Upper-layer circulation in the South China Sea has been investigated using a three-dimensional primitive equation eddy-resolving model. The model domain covers the region from 99° to 122°E and from 3° to 23°N. The model is forced by the monthly averaged European Centre for Medium-Range Weather Forecasts (ECMWF) model winds and the climatological monthly sea surface temperature data from National Oceanographic Data Center (NODC). Inflow and outflow through the Taiwan Strait and the Sunda shelf are prescribed monthly from the Wyrtki estimates. Inflow of the Kuroshio branch current in the Luzon Strait is assumed to have a constant volume transport of 12 Sv (1 Sv = 106 m3/s), and the outflow from the open boundary to the east of Taiwan is adjusted to ensure the net volume transport through all open boundaries is zero at any instant. The model reveals that a cyclonic circulation exists all year round in the northern South China Sea. During the winter time this cyclonic eddy is located off the northwest of Luzon, coinciding with the region of positive wind stress curl in this season. This cyclonic eddy moves northward in spring due to the weakening of the northeast winds. The cyclonic circulation becomes weak and stays in the continental slope region in the northern South China Sea in the summer period. The southwest wind can raise the water level along the west coast of Luzon, but there is no anticyclonic circulation in the northern South China Sea. After the onset of the northeast monsoon winds in fall, the cyclonic eddy moves back to the region off the west coast of Luzon. In the southern South China Sea and off the Vietnam coast, the model predicts a similar flow structure as in the previous related studies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号