首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
对流层延迟是影响高精度定位与导航的主要误差之一,也是全球导航卫星系统(global navigation satellite system,GNSS)水汽探测的关键参数。美国航空航天局发布了最新一代的大气再分析资料(MERRA-2资料),其可用于计算高时空分辨率的对流层延迟产品,但是目前尚无文献对利用MERRA-2资料计算天顶对流层延迟(zenith tropospheric delay,ZTD)和天顶湿延迟(zenith wet delay,ZWD)的精度进行分析。因此,联合2015年中国陆态网214个GNSS站ZTD产品和分布于中国区域的87个探空站资料,对利用MERRA-2资料在中国区域计算ZTD/ZWD的精度进行评估。结果表明:(1)以陆态网ZTD为参考值,利用MERRA-2资料积分计算ZTD的年均偏差和均方根误差(root mean square error,RMSE)分别为0.32 cm和1.21 cm,且偏差和RMSE均表现出一定的季节变化,总体上呈现为夏季精度低、冬季精度高;在空间分布上,偏差随纬度和高程的变化趋势并不明显,但RMSE随纬度和高程的增加总体上呈现递减的趋...  相似文献   

2.
利用GPS观测反演三峡地区对流层湿延迟的分布及变化   总被引:12,自引:3,他引:12  
利用三峡地区 8个监测点连续三天的监测数据 ,联合 3个IGS站在此期间的观测 ,反演了各监测点对流层上空的天顶总延迟ZTD ,利用外推的地表气压资料由模型分离出其中的静力学延迟ZHD ,得到天顶湿延迟ZWD含量 ,并对湿延迟变化趋势线进行了分析。通过对该区域短时间内每间隔两小时湿延迟分布图的分析 ,探讨了利用地基GPS气象原理在短时间内观测大气水汽分布及其变化的可行性  相似文献   

3.
We present comparisons of 10-year-long time series of the atmospheric zenith wet delay (ZWD), estimated using the global positioning system (GPS), geodetic very long baseline interferometry (VLBI), a water vapour radiometer (WVR), radiosonde (RS) observations, and the reanalysis product of the European Centre for Medium-Range Weather Forecasts (ECMWF). To compare the data sets with each other, a Gaussian filter is applied. The results from 10 GPS–RS comparisons using sites in Sweden and Finland show that the full width at half maximum at which the standard deviation (SD) is a minimum increases with the distance between each pair. Comparisons between three co-located techniques (GPS, VLBI, and WVR) result in mean values of the ZWD differences at a level of a few millimetres and SD of less than 7?mm. The best agreement is seen in the GPS–VLBI comparison with a mean difference of ?3.4?mm and an SD of 5.1?mm over the 10-year period. With respect to the ZWD derived from other techniques, a positive bias of up to ~7?mm is obtained for the ECMWF reanalysis product. Performing the comparisons on a monthly basis, we find that the SD including RS or ECMWF varies with the season, between 3 and 15?mm. The monthly SD between GPS and WVR does not have a seasonal signature and varies from 3 to 7?mm.  相似文献   

4.
黄官永 《地理空间信息》2010,8(3):53-55,105
利用GPS网的观测资料,通过GAMIT软件求得5个测站对流层天顶总延迟,进而求出各测站对流层湿延迟;利用湿延迟与大气可降水量之间的转换关系得到各测站的大气可降水量。将所得GPS-PWV值与同时段探空资料所得的大气可降水量以及地表实际降水量进行对比分析,结果表明:GPS-PWV值与探空资料所得的PWV值比较相符;在降水前后,GPS-PWV有比较明显的变化,降水一般出现在GPS-PWV值迅速增加的4-6h内;实际降水量峰值与GPS-PWV增量大小也有较强的相关性。  相似文献   

5.
Climatology of column-integrated atmospheric water vapor over Spain has been carried out by means of three techniques: soundings, sun photometers and GPS receivers. Comparing data from stations equipped with more than one of these instruments, we found that a large discontinuity occurred on November 6, 2006, in the differences between the data series from GPS receivers and those from the other two techniques. Prior to that date, the GPS data indicate a wet bias of 2–3 mm for all stations when compared with sounding or photometer data, whereas after that date this bias practically reduces to zero. The root mean square error also decreases about half of its value. On November 6, 2006, the International GNSS Service adopted an absolute calibration model for the antennas of the GPS satellites and receivers instead of the relative one. This change is expected to be an improvement, increasing the accuracy of station position determination and consequently benefiting post-processing products such as zenith total delay from which the atmospheric water vapor content is calculated.  相似文献   

6.
无气象要素的GPS对流层延迟推算可降水量的研究   总被引:2,自引:0,他引:2  
本文针对武汉地区GPS气象网资料,进行了GPS对流层延迟直接推算可降水量的研究。在武汉东湖站GPS对流层延迟与无线电探空可降水量的比较中,两者具有很好的相关性,相关系数达到了0.93;推导了对流层延迟直接推算可降水量的模型,对模型结果进行了检验,在武汉东湖站的对流层延迟转换的可降水量与无线电探空可降水量的比较中,均方根为7.8mm,相关性为0.91,这说明了在没有气象数据的地区对流层延迟直接推算的可降水量可以作为气象短期预报的参考。  相似文献   

7.
GPS气象学中垂直干分量延时的精确确定   总被引:12,自引:2,他引:10  
刘焱雄  H B IZ  陈永奇 《测绘学报》2000,29(2):172-180
确定大气中可降水分的含量是GPS气象学的目的之一。可降水分含量对应于GPS信号中湿分量延时。现有高精度GPS软件包只能提供天顶方向的对流层延时,但是,对流层延时由干分量和湿分量延时组成。因此,精确确定干分量延时,是分离湿分量延时的关键,也是GPS气象学中必不可少的工作。现有3种经验模型计算垂直干分量延时,即萨氏(Saastamoinen)模型,霍氏(Hopfield)模型和布兰克(Black)模型  相似文献   

8.
Three permanent GPS tracking stations in the trans Antarctic mountain deformation (TAMDEF) network were used to estimate precipitable water vapor (PWV) using measurement series covering the period of 2002–2005. TAMDEF is a National Science Foundation funded joint project between The Ohio State University and the United States Geological Survey. The TAMDEF sites with the longest GPS data spans considered in this research are Franklin Island East (FIE0), the International GNSS Service site McMurdo (MCM4), and Cape Roberts (ROB1). For the experiment, PWV was extracted from the ionosphere-free double-difference carrier phase observations, processed using the adjustment of GPS ephemerides (PAGES) software. The GPS data were processed with a 30 s sampling rate, 15-degree cutoff angle, and precise GPS orbits disseminated by IGS. The time-varying part of the zenith wet delay is estimated using the Marini mapping function, while the constant part is evaluated using the corresponding Marini tropospheric model. Previous studies using TAMDEF data for PWV estimation show that the Marini mapping function performs the best among the models offered by PAGES. The data reduction to compute the zenith wet delay follows the step piecewise linear strategy, which is subsequently transformed to PWV. The resulting GPS-based PWV is compared to the radiosonde observations and to values obtained from the Antarctic mesoscale prediction system (AMPS). This comparison revealed a consistent bias of 1.7 mm between the GPS solution and the radiosonde and AMPS reference values.  相似文献   

9.
GPS气象的可靠性检核研究   总被引:1,自引:2,他引:1  
本文通过对GPS湿延迟和水汽辐射计、GPS可降水量与无线电探空资料的比较,进行了GPS气象可靠性检核研究。得出如下结论:GPS可降水量序列与无线电探空的相关性可达0.94;差值均值为-0.24mm;均方根4.0mm。文中对用精密星历及快速预报星历计算所得的GPS湿延迟和水汽辐射计数据进行了比较,在发展趋势上水汽辐射计观测数据与快速预报/精密星历解算出的对流层湿延迟相近,且经过精密星历与快速预报星历反演所得出的的对流层延迟与水汽辐射计数据的差值的均方根分别为1.51cm、1.52cm。  相似文献   

10.
The estimates of total zenith delay are derived using Bernese GPS Software V4. 2 based on GPS data every 30 s from the first measurement experiment of a ground-based GPS network in Chengdu Plain of Southwest China during the period from July to September 2004. Then the estimates of 0.5 hourly precipitable water vapor (PWV) derived from global positioning system (GPS) are obtained using meteorological data from automatic weather stations (AWS). The comparison of PWV derived from GPS and those from radiosonde observations is given for the Chengdu station, with RMS (root mean square) differences of 3.09m. The consis- tency of precipitable water vapor derived from GPS to those from radiosonde is good. It is concluded that Bevis’ empirical formula for estimating the weighted atmospheric mean temperature can be applicable in Chengdu area because the relationship of GPS PWV with Bevis’ formula and GPS PWV with radiosonde method shows a high correlation. The result of this GPS measurement experiment is helpful both for accumu- lating the study of precipitable water vapor derived from GPS in Chengdu areas located at the eastern side of the Tibetan Plateau and for studying spatial-temporal variations of regional atmospheric water vapor through many disciplines cooperatively.  相似文献   

11.
In radio signal-based observing systems, such as Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR), the water vapor in the atmosphere will cause delays during the signal transmission. Such delays vary significantly with terrain elevation. In the case when atmospheric delays are to be eliminated from the measured raw signals, spatial interpolators may be needed. By taking advantage of available terrain elevation information during spatial interpolation process, the accuracy of the atmospheric delay mapping can be considerably improved. This paper first reviews three elevation-dependent water vapor interpolation models, i.e., the Best Linear Unbiased Estimator in combination with the water vapor Height Scaling Model (BLUE + HSM), the Best Linear Unbiased Estimator coupled with the Elevation-dependent Covariance Model (BLUE + ECM), and the Simple Kriging with varying local means based on the Baby semi-empirical model (SKlm + Baby for short). A revision to the SKlm + Baby model is then presented, where the Onn water vapor delay model is adopted to substitute the inaccurate Baby semi-empirical model (SKlm + Onn for short). Experiments with the zenith wet delays obtained through the GPS observations from the Southern California Integrated GPS Network (SCIGN) demonstrate that the SKlm + Onn model outperforms the other three. The RMS of SKlm + Onn is only 0.55 cm, while those of BLUE + HSM, BLUE + ECM and SKlm + Baby amount to 1.11, 1.49 and 0.77 cm, respectively. The proposed SKlm + Onn model therefore represents an improvement of 29–63% over the other known models.  相似文献   

12.
成都地区地基GPS观测网遥感大气可降水量的初步试验   总被引:7,自引:0,他引:7  
利用首个成都地区地基GPS观测网2004年7~9月30s间隔的测量数据,通过Bernese GPS SoftwareV4.2解算出30min间隔的天顶总延迟量,结合自动气象站获得的气象资料计算出30min间隔的GPS遥感的大气可降水量。与根据气象探空站探测资料算出的可降水量进行统计对比,确定出本次GPS遥感可降水量试验的精度为3.09mm,两种可降水量时间序列呈现高度的一致性。同时验证了计算对流层加权平均温度的Bevis经验公式在成都地区的适用性。  相似文献   

13.
利用地面气象观测资料确定对流层加权平均温度   总被引:2,自引:0,他引:2  
地基GPS气象学的核心思想是通过垂直方向上GPS信号的湿分量延时确定出可降水分 ,而这两个物理量之间的转换必须使用对流层加权平均温度。本文首先讨论了上述转换估计中加权平均温度的几种逼近方式及其容许误差 ,然后利用香港地区的地面和高空气象资料 ,采用逐步回归分析方法 ,建立了适合香港地区的对流层加权平均温度计算公式 ,通过数据分析表明 ,这个公式有效地消除了在香港地区使用Bevis经验公式引起的系统误差 ,较好地满足了地基GPS气象应用中实时性和高精度的要求。本研究也充分表明 ,在地基GPS气象研究中 ,应该利用本地区的气象资料来确定适合本地区的估计对流层加权平均温度的经验公式。  相似文献   

14.
1 IntroductionIn ground_basedGPSMeteorology ,the precip itablewatervaporisconvertedfromthewetzenithdelayoftheGPSsignal.Qualitatively ,thePrecip itableWaterVapor (PWV)canberelatedtotheWetZenithDelay (WZD)byPWV =F·WZDF =1 0 6ρv·Rv· k3Tm +k2( 1 )wherethemappingscalefact…  相似文献   

15.
Permanently operating Global Positioning System (GPS) receivers are used today, for example, in precise positioning and determination of atmospheric water vapour content. The GPS signals are delayed by various gases when traversing the atmosphere. The delay due to water vapour, the wet delay, is difficult to model using ground surface data and is thus often estimated from the GPS data. In order to obtain the most accurate results from the GPS processing, a modelling of the horizontal distribution of the wet delay may be necessary. Through simulations, three such models are evaluated, one of which is developed in this paper. In the first model the water vapour is assumed to be horizontally stratified, thus the wet delay can be described by only one zenith parameter. The second model gives the wet delay with one zenith and two horizontal gradient parameters. The third model uses the correlation between the wet-delay values in different directions. It is found that for large gradients and strong turbulence the two latter models yield lower errors in the estimated vertical coordinate and wet-delay parameters. For large gradients this improvement is up to 7 mm in the zenith wet-delay parameter, from 9 mm down to 2 and 4 mm for the second and third models, respectively. Received: 7 May 1998 / Accepted: 1 March 1999  相似文献   

16.
GPS数据解算对流层天顶总延迟探讨   总被引:1,自引:0,他引:1  
运用GAMIT/GLOBK软件,对南极长城站与周边的各IGS跟踪站的GPS观测数据进行组网解算。在解算各站上空总天顶延迟的过程中,利用不同的星历进行解算,并对其解算结果进行了分析和探讨得出:实时预报。星历与精密星历在解算结果上差别不大,最小差值是0mm,最大差值仅为0.5mm。所以在计算各GPS站上空大气水汽含量时,可直接采用实时预报星历,对今后实时探测水汽及实时天气预报具有一定的实用意义。  相似文献   

17.
Remote sensing of water vapor content using ground-based GPS data   总被引:1,自引:0,他引:1  
Spatial and temporal resolution of water vapor content is useful in improving the accuracy of short-term weather prediction.Dense and continuously tracking regional GPS arrays will play an important role in remote sensing atmospheric water vapor content.In this study,a piecewise linear solution method was proposed to estimate the precipitable water vapor (PWV) content from ground-based GPS observations in Hong Kong.To evaluate the solution accuracy of the water vapor content sensed by GPS,the upper air sounding data (radiosonde) that are collected locally was used to calculate the precipitable water vapor during the same period.One-month results of PWV from both ground-based GPS sensing technique and radiosonde method are in agreement within 1~2 mm.This encouraging result will motivate the GPS meteorology application based on the establishment of a dense GPS array in Hong Kong.  相似文献   

18.
The weighted mean tropospheric temperature is a critical parameter in the conversion of wet zenith delay to precipitable water vapor in GPS Meteorology. This parameter can not be calculated from the radiosonde data in real time through the conventional methods. In this study, we first discuss the admissible error of weighted mean temperature to enable the accuracy of the conversion better than 1 mm, then summarize the performance of some of the existing methods. An empirical formula is established that satisfies the real-time requirement in GPS meteorology using Sequential Regression Analysis method. It is shown that this real-time formula as compared with other empirical methods is more accurate for local applications.  相似文献   

19.
The revitalized Russian GLONASS system provides new potential for real-time retrieval of zenith tropospheric delays (ZTD) and precipitable water vapor (PWV) in order to support time-critical meteorological applications such as nowcasting or severe weather event monitoring. In this study, we develop a method of real-time ZTD/PWV retrieval based on GLONASS and/or GPS observations. The performance of ZTD and PWV derived from GLONASS data using real-time precise point positioning (PPP) technique is carefully investigated and evaluated. The potential of combining GLONASS and GPS data for ZTD/PWV retrieving is assessed as well. The GLONASS and GPS observations of about half a year for 80 globally distributed stations from the IGS (International GNSS Service) network are processed. The results show that the real-time GLONASS ZTD series agree quite well with the GPS ZTD series in general: the RMS of ZTD differences is about 8 mm (about 1.2 mm in PWV). Furthermore, for an inter-technique validation, the real-time ZTD estimated from GLONASS-only, GPS-only, and the GPS/GLONASS combined solutions are compared with those derived from very long baseline interferometry (VLBI) at colocated GNSS/VLBI stations. The comparison shows that GLONASS can contribute to real-time meteorological applications, with almost the same accuracy as GPS. More accurate and reliable water vapor values, about 1.5–2.3 mm in PWV, can be achieved when GLONASS observations are combined with the GPS ones in the real-time PPP data processing. The comparison with radiosonde data further confirms the performance of GLONASS-derived real-time PWV and the benefit of adding GLONASS to stand-alone GPS processing.  相似文献   

20.
将GPS信号的斜路径湿延迟当作层析的观测量能够有效获取对流层的三维水汽场。由于射线分布的不均匀和观测网地形的扁平,观测方程是不适定的,因此需要添加一些约束条件来确定唯一解。由于水汽在垂直方向变化很快,合理的垂直约束在获取准确的水汽场上起着重要作用。研究了香港地区湿折射率的垂直分布特征,发现高斯函数能很好地表达湿折射率与高度的关系,利用高斯函数建立约束方程获得的层析解能很好地与探空数据和欧洲中尺度天气预报中心(ECMWF)数据吻合。相对于指数约束所得结果,层析湿折射率的标准差在整个对流层减小了3.8 mm/km,在低对流层减小了4.7 mm/km。实验也表明,利用其他气象数据,如无线电探空数据,作为湿折射率的先验信息,也可以得到较好的层析解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号