首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
ABSTRACT

We test the paradigm that in a future warmer ocean, shallower winter mixing will lead to less net primary production (NPP), by investigating whether warming between 2002 and 2018 led to changes in NPP in the Tasman Sea/New Zealand region. The 2002–18 trend in sea surface temperature (SST) was positive over most of the region, and was driven by increasingly warmer summers and marine heat waves (MHWs) rather than year-round warming. In contrast, the trends in sea surface chlorophyll (SSC) and NPP were generally positive over the Subtropical Front (STF) and in a subtropical band north-east of New Zealand, but negative elsewhere. Regressions between SSC and SST, and between spring SSC and the coldest SST during the preceding winter, show similar spatial patterns to the SSC trend. We suggest these findings reflect different ecosystem functioning in the subtropical and subantarctic biomes that are separated by the STF. We conclude that any future warming is likely to lead to less production in the Tasman Sea, but more production over the STF. Three recent MHWs had different impacts on production, but generally led to less surface biomass north of the STF and more biomass south of the front.  相似文献   

2.
Using a multi-level numerical model, it is shown that the Subtropical Front and the Subtropical Countercurrent can be reproduced realistically in a highly idealized model, as a consequence of the coupling effect of wind driven gyre circulation and differential heating. In the model, the North Pacific Ocean is idealized as a rectangular flat-bottomed model ocean, and is driven by wind stress, which features the Westerlies and the Trades, and by heat flux through the sea surface formulated after Haney (1971).In the model ocean, a shallow front and an eastward current associated with the front are formed around the central latitude of the Subtropical Gyre, which show close similarities to the Subtropical Front and the Subtropical Countercurrent in the real ocean.Although the detailed mechanism of formation of the Subtropical Front and the Subtropical Countercurrent is not clarified in the present study, two factors are found inessential for the formation of the Subtropical Front and the Subtropical Countercurrent. First, the results of the model indicate that a small trough of wind stress curl in the lower latitudes of the Subtropical Gyre, which Yoshida and Kidokoro (1967a, b) attributed to the Subtropical Countercurrent, is not necessary for the formation of the Subtropical Front and the Subtropical Countercurrent, since they are reproduced well in the model without the trough. Second, using a model driven by meridional wind stress, it is shown that the meridional Ekman convergence, which many authors related to the Subtropical Front, is not essential for the formation of the Subtropical Front and the Subtropical Countercurrent.  相似文献   

3.
齐庆华  蔡榕硕 《海洋学报》2017,39(11):37-48
气候变暖背景下,全球平均海洋变暖和海平面上升显著,为人类社会的可持续发展带来巨大挑战。上层海洋热力状况是海平面变化的主导因子之一。本文围绕"21世纪海上丝绸之路"途经海区(文中简称为丝路海区)上层海洋热含量异常的区域性时空特征,分析探讨了丝路海区热比容海平面异常的时空变化、演变特征及可能影响,以期为"21世纪海上丝绸之路"海洋环境安全保障提供服务支撑。结果表明,自20世纪70年代中后期,丝路海区上层(0~700 m)海洋已明显变暖,尤其20世纪90年代中后期增暖幅度显著加大。近60年来,在丝路海区热带海洋中,西太平洋的北赤道流区及以北海域、东海黑潮流域以及南海北部和南部海区、阿拉伯海西北部海域、马来西亚西北部海域及南印度洋部分海域具有长期增暖趋势。热带西太平洋暖池区整体增暖不明显,主要与印度洋中部海域呈反位相变化,且明显受到季节和年际变化的调制。长江口附近沿岸、南海北部沿岸、中南半岛南部沿岸以及阿拉伯海西北部沿岸的近岸海域长期增暖明显,自20世纪90年代中后期,中南半岛东部和西部沿海、澳大利亚西部沿海以及我国东南沿海热比容海平面上升明显。近岸热比容海平面的季节演变对沿海地区社会和经济发展会造成一定影响。此外,东亚夏季风与东海、黄海和渤海热比容海平面的上升显著相关,同时,ENSO、太平洋年代际振荡和印度洋偶极子的发生也均与我国东南沿海和印度洋西部沿海热比容海平面上升明显关联。特别是,气候变暖情形下,各种区域性致灾因子和气候变率的协同影响会对丝路海区海岸带和沿海地区的防灾减灾与社会经济发展带来较大挑战,开展海岸带和沿海地区全球变化综合风险研究成为当前首要任务。  相似文献   

4.
5.
The future status of the surface ocean around New Zealand was projected using two Earth System Models and four emission scenarios. By 2100 mean changes are largest under Representative Concentration Pathway 8.5 (RCP8.5), with a +2.5°C increase in sea surface temperature, and decreases in surface mixed layer depth (15%), macronutrients (7.5–20%), primary production (4.5%) and particle flux (12%). Largest macronutrient declines occur in the eastern Chatham Rise and subantarctic waters to the south, whereas dissolved iron increases in subtropical waters. Surface pH projections, validated against subantarctic time-series data, indicate a 0.335 decline to ~7.77 by 2100. However, projected pH is sensitive to future CO2 emissions, remaining within the current range under RCP2.6, but decreasing below it by 2040 with all other scenarios. Sub-regions vulnerable to climate change include the Chatham Rise, polar waters south of 50°S, and subtropical waters north of New Zealand, whereas the central Tasman Sea is least affected.  相似文献   

6.
The Meteorological Research Institute's ocean general circulation model (MRI-OGCM) has been used to investigate the temperature variability of the North Pacific Subtropical Mode Water (NPSTMW) over a time series longer than 5 years via the spin-up of the subtropical gyre. Besides an interannual variation, the wintertime sea surface temperature in the area where the NPSTMW is formed, and the temperature of the NPSTMW itself, both change remarkably in a >5-year time scale. An analysis of heat budgets showed that the long-term changes in NPSTMW temperature are due mainly to a leading advection of heat by the Kuroshio Extension and compensating surface heat flux. As a result of a dynamical adjustment to the wind stress fields, the transports of the Kuroshio and the Kuroshio Extension increased in the mid 1970s with a lag of 3 years after the wind stress curl in the central North Pacific. The increased heat advection by the Kuroshio Extension induces a warming in the mixed layer in the NPSTMW formation area, followed by a warming of the NPSTMW itself. Both these warming actions increase the heat release to the atmosphere. These results imply that the surface heat flux over the Kuroshio Extension area varies in response to the change in the ocean circulation through the spin-up of the subtropical gyre. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Ocean temperature changes between 1991 and 2005 in the eastern Tasman Sea were analysed. This area was chosen because of a combination of data availability, low mesoscale variability and because of its importance in determining the climate of the downwind New Zealand landmass. A large warming extending to the full depth of the water column (c. 800 m) was found to have occurred between 1996 and 2002. This warming was seen in measurements by expendable bathythermographs and also in satellite sea surface temperature and sea surface height products, and has a clear impact on New Zealand's terrestrial temperature. The nature of the warming is discussed, together with likely forcing mechanisms. No local forcing mechanisms are consistent with the observed warming, leading to the conclusion that the signal seen in the Tasman Sea is part of a larger South Pacific‐wide phenomenon.  相似文献   

8.
9.
Few basins in the world exhibit such a wide range of water properties as those of the Nordic Seas with cold freshwaters from the Arctic in the western basins and warm saline waters from the Atlantic in the eastern basins. In this study we present a 50-year hydrographic climatology of the Nordic Seas in terms of depth and temperature patterns on four upper ocean specific volume anomaly surfaces. This approach allows us to better distinguish between change due to variations along such surfaces and change due to depth variations of the stratified water column. Depth variations indicate changes in the mass field while property variations along isopycnals give insight into isopycnal advection and mixing, as well as diapycnal processes. We find that the warmest waters on each surface are found in the north, close to where the isopycnal outcrops, a clear indication of downward mixing of the warmer, more saline waters on shallower isopycnals due to convective cooling at the surface. These saline waters come from the Norwegian Atlantic Slope Current by means of a very high level of eddy activity in the Lofoten Basin.The isopycnal analyses further show that the principal water mass boundary between the waters of Arctic origin in the west and Atlantic waters in the east aligns quite tightly with the Jan Mayen, Mohn, Knipovich Ridge system suggesting little cross-ridge exchange. Instead, the main routes of exchange between the eastern and western basins appear to be limited to the northern and southern ends of ridge system: Atlantic waters into the Greenland Sea in the Fram St and Artic waters into the southern Norwegian Sea just north of the Iceland-Faroe Ridge.Analysis of a representative isopycnal in the main pycnocline shows it to be stable over time with only small variations with season (except where it outcrops in winter in the Greenland and Iceland Seas). However, two very cold winters, 1968–1969, led to greater than average heat losses across the entire Lofoten Basin that eroded away much of the Lofoten eddy and induced the greatest temperature anomaly in the entire 50-year record. Interannual variations in isopycnal layer temperature correlate with the NAO index such that waters in the Iceland Sea become warmer than average with warming air temperatures and conversely in the Lofoten Basin.  相似文献   

10.
北太平洋副热带东部模态水现在和未来的模拟分析   总被引:2,自引:1,他引:1  
The present climate simulation and future projection of the Eastern Subtropical Mode Water(ESTMW) in the North Pacific are investigated based on the Geophysical Fluid Dynamics Laboratory Earth System Model(GFDL-ESM2M). Spatial patterns of the mixed layer depth(MLD) in the eastern subtropical North Pacific and the ESTMW are well simulated using this model. Compared with historical simulation, the ESTMW is produced at lighter isopycnal surfaces and its total volume is decreased in the RCP8.5 runs, because the subduction rate of the ESTMW decreases by 0.82×10-6 m/s during February–March. In addition, it is found that the lateral induction decreasing is approximately four times more than the Ekman pumping, and thus it plays a dominant role in the decreased subduction rate associated with global warming. Moreover, the MLD during February–March is banded shoaling in response to global warming, extending northeastward from the east of the Hawaii Islands(20°N, 155°W) to the west coast of North America(30°N, 125°W), with a maximum shoaling of 50 m, and then leads to the lateral induction reduction. Meanwhile, the increased northeastward surface warm current to the east of Hawaii helps strengthen of the local upper ocean stratification and induces the banded shoaling MLD under warmer climate. This new finding indicates that the ocean surface currents play an important role in the response of the MLD and the ESTMW to global warming.  相似文献   

11.
Analysis of sediment traps located either side of the Subtropical Front east of New Zealand reveals a strong association between water masses and foraminiferal assemblages. The composition and timing of foraminiferal productivity is distinct between waters north and south of the front, and these differences are also reflected in the assemblages of nearby core-tops. The sediment trap data indicate highly seasonal flux patterns in this region, so sedimentary records may represent flux during a particular season, rather than throughout the annual cycle. This pronounced seasonality has implications for our estimates of the annual temperature range based on faunal assemblages. This study shows that despite strong flux seasonality the annual sea-surface temperature (SST) range is reliably estimated from the sediment trap foraminiferal assemblages by the modern analog technique. The successful estimation of the annual SST range also indicates that the annual flux obtained from these sediment traps is representative of the longer term flux preserved in surface sediments. Core-top assemblages from this region can therefore be directly related to modern sea-surface conditions, providing an analogue for interpreting past environmental change from fossil assemblages.  相似文献   

12.
Four drift bottles, cast adrift south of the Subtropical Convergence at 48°S, 156°E in November 1980, landed within 123 days of release at a short stretch of coast north of Banks Peninsula. A high degree of coherence in the responsible drift pattern is indicated. The contemporary surface circulation inferred from satellite‐derived sea‐surface temperature distributions indicates that the bottles were entrained in a meridionally‐converging flow after drifting across the southern Tasman Sea without crossing the Convergence. They were prevented from further eastward drifting because of a marked southward flexing of the Convergence east of the Southland Current during February 1981. Because of local weather and tide effects, the bottles finally beached in Pegasus Bay.  相似文献   

13.
Records of four species of Delphinidae, Delphinus delphis, Lissodelphis peroni, Lagenorhynchus obscurus, and Lagenorhynchus cruciger in waters to the east and south‐east of New Zealand are discussed in relation to surface temperatures.

In this region D. delphis appears to be largely confined north of the Subtropical Convergence and a minimum surface temperature of about 14°c, and near New Zealand from Hawke Bay southward in the warm water of the East Cape Current; L. peroni to the Subtropical Convergence and the subantarctic water to the south of it, between surface temperatures of 9°c and 16°c; L. obscurus to the immediate vicinity of the Subtropical Convergence and surface temperatures in summer of about 14° to 15°c, and L. cruciger across the Antarctic Convergence region, in a surface temperature range of 2° to 9°c.  相似文献   

14.
Temporal variations (1960–2005) of the Eastern Subtropical Front (ESTF) in the North Pacific are investigated using historical-run output data of the eddy-resolving Meteorological Research Institute Community Ocean Model, forced by atmospheric reanalysis dataset. Simulated ESTF is distributed in a region of zonal band of 24°N–30°N east of the International Date Line, and is located at the southern boundary of the central mode water (CMW) north of the front. The ESTF intensity clearly shows an interdecadal variation with a timescale of about 20?years. This variation is associated with that in the potential vorticity of CMW, which originates in the CMW formation region farther north about 3?years earlier due to changes in the surface wind forcing.  相似文献   

15.
2009/2010年El Ni(n)o事件变化特征及其机理   总被引:3,自引:2,他引:1  
应用TAO (Tropical Atmosphere Ocean project)热带太平洋实测海温和风场资料,分析研究了发生在2009/2010年的El Ni(n)o事件的变化特征,讨论了此次El Ni(n)o事件发生过程中,赤道东、西太平洋次表层异常海温的变化特征及其传播过程,特别是对赤道太平洋次表层异常海温变化的...  相似文献   

16.
太平洋是海表温度年际变化和年代际变化发生的主要区域,但对太平洋海洋热含量变化的研究相对较少。为此, 本文分析了1980—2020年太平洋上层(0~300 m)热含量的时空变化特征。基于IAP数据,本文首先利用集合经验模态分解法(EEMD)提取不同时间尺度的海洋热含量信号,并利用正交经验分解法(EOF)对不同时间尺度的海洋热含量进行时空特征分析,得到了太平洋0~300 m海洋热含量的年际变化、年代际变化以及长期变暖的时空特征。结果表明,除了年际变化之外,热带西北太平洋上层热含量还存在明显的年代际变化和长期变暖趋势。在东太平洋和高纬度西太平洋,热含量的年代际变化特征并不突出。热带西北太平洋热含量的年代际变化在1980—1988年和1999—2013年较高,而在1989—1998年和2014—2020年期间较低。此外,针对热带西北太平洋热含量的经向、纬向和垂向特征分析,发现这种年代际变化主要发生在5°N—20°N,120°E—180°E,次表层50~200 m范围内。热带西北太平洋热含量的年代际变化对全球海表温度的年代际变化有着重要作用。  相似文献   

17.
A survey was made of the Southwest Indian Ocean frontal region between 30 and 50°E containing the Agulhas Return, Subtropical and Subantarctic Fronts. From CTD, SeaSoar and extracted samples the distribution of nitrate, silicate and chlorophyll a is shown to be strongly linked to the front and water mass structure, varying zonally and meridionally. Surface chlorophyll a concentrations were low to the north and south leaving a band of elevated chlorophyll between the Subtropical and Subantarctic Fronts. The low concentration of chlorophyll a to the north, in Subtropical Water, was clearly due to nitrate limitation. Between the Subtropical and Subantarctic Fronts, where the chlorophyll a concentrations were highest, the surface layer showed silicate depletion limiting diatom growth. South of the Subantarctic Front there were deep extending, low concentrations of chlorophyll a, but despite plentiful supplies of macro-nutrients and a well-stratified surface layer, high concentrations of chlorophyll a were absent. Changes from west to east were associated with the meandering of the Southern Ocean Fronts, especially the Subtropical Front, and their strength and proximity to each other. Concentrations of chlorophyll a peaked where the Agulhas Return, Subtropical and Subantarctic Fronts were in close proximity. Combined frontal structures appear to have particularly pronounced vertical stability and are associated with enhanced upwelling of nutrients and leakage of nutrients across the front. Light levels are high within the shallow stable layer. Such conditions are clearly favourable for biological growth and support the development of larger-celled phytoplankton communities.  相似文献   

18.
A Subtropical Countercurrent (STCC) is a narrow eastward jet on the equator side of a subtropical gyre, flowing against the broad westward Sverdrup flow. Together with theories, recent enhanced observations and model simulations have revealed the importance of mode waters in the formation and variability of North Pacific STCCs. There are three distinct STCCs in the North Pacific, maintained by low potential vorticity (PV) that mode waters carry from the north. Model simulations show that changes in mode water ventilation result in interannual to interdecadal variations and long-term changes of STCCs. STCCs affect the atmosphere through their surface thermal effects, inducing anomalous cyclonic wind curl and precipitation along them. Thus, mode waters are not merely passive water masses but have dynamical and climatic effects. For temporal variability, atmospheric forcings are also suggested to be important in addition to the variability of mode waters. STCCs exist in other oceans and they are also flanked by mode waters on their poleward sides, suggesting that they are maintained by similar dynamics.  相似文献   

19.
Primary production in the eastern tropical Pacific: A review   总被引:2,自引:12,他引:2  
The eastern tropical Pacific includes 28 million km2 of ocean between 23.5°N and S and Central/South America and 140°W, and contains the eastern and equatorial branches of the north and South Pacific subtropical gyres plus two equatorial and two coastal countercurrents. Spatial patterns of primary production are in general determined by supply of macronutrients (nitrate, phosphate) from below the thermocline. Where the thermocline is shallow and intersects the lighted euphotic zone, biological production is enhanced. In the eastern tropical Pacific thermocline depth is controlled by three interrelated processes: a basin-scale east/west thermocline tilt, a basin-scale thermocline shoaling at the gyre margins, and local wind-driven upwelling. These processes regulate supply of nutrient-rich subsurface waters to the euphotic zone, and on their basis we have divided the eastern tropical Pacific into seven main regions. Primary production and its physical and chemical controls are described for each.Enhanced rates of macronutrient supply maintains levels of primary production in the eastern tropical Pacific above those of the oligotrophic subtropical gyres to the north and south. On the other hand lack of the micronutrient iron limits phytoplankton growth (and nitrogen fixation) over large portions of the open-ocean eastern tropical Pacific, depressing rates of primary production and resulting in the so-called high nitrate-low chlorophyll condition. Very high rates of primary production can occur in those coastal areas where both macronutrients and iron are supplied in abundance to surface waters. In these eutrophic coastal areas large phytoplankton cells dominate; conversely, in the open-ocean small cells are dominant. In a ‘shadow zone’ between the subtropical gyres with limited subsurface ventilation, enough production sinks and decays to produce anoxic and denitrified waters which spread beneath very large parts of the eastern tropical Pacific.Seasonal cycles are weak over much of the open-ocean eastern tropical Pacific, although several eutrophic coastal areas do exhibit substantial seasonality. The ENSO fluctuation, however, is an exceedingly important source of interannual variability in this region. El Niño in general results in a depressed thermocline and thus reduced rates of macronutrient supply and primary production. The multi-decadal PDO is likely also an important source of variability, with the ‘El Viejo’ phase of the PDO resulting in warmer and lower nutrient and productivity conditions similar to El Niño.On average the eastern tropical Pacific is moderately productive and, relative to Pacific and global means, its productivity and area are roughly equivalent. For example, it occupies about 18% of the Pacific Ocean by area and accounts for 22–23% of its productivity. Similarly, it occupies about 9% of the global ocean and accounts for 10% of its productivity. While representative, these average values obscure very substantial spatial and temporal variability that characterizes the dynamics of this tropical ocean.  相似文献   

20.
Circulation in Tasman Bay   总被引:4,自引:4,他引:0  
Direct current measurements at four locations in Tasman Bay and numerical model results are used to analyse the mean flow in Tasman Bay. The mean circulation conforms to that previously found from drift card experiments: a clockwise circulation in Golden Bay, and an anti‐clockwise flow in Tasman Bay, with a return south‐westerly flow on the coast near Nelson. Typical mean speeds are 0.02–0.05 m.s‐1. The circular flow appears asymmetrical in both bays, with a stronger outflow along Farewell Spit in Golden Bay and near D'Urville Island in Tasman Bay.

An analytical tidal solution is used to exhibit the influence of Cook Strait in producing smaller tidal amplitudes in eastern Tasman Bay. Tidal speeds of 0.15–0.30 nus‐1 are typical, with tidal ellipses having degenerated into north‐east, south‐west lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号