首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
多年冻土区河流中溶解性有机碳(DOC)的输出对全球碳循环有着重要贡献,是全球气候变化研究的热点。当前研究主要集中在2个方面:多年冻土区河流DOC输出的时空特征及其影响因素;多年冻土区河流DOC输出对气候变暖和冻土退化的响应。研究表明,河流中DOC的浓度、通量、化学组分等主要受流域内水的流动路径、滞留时间及路径上潜在DOC源的特征控制,而多年冻土的分布及其季节性融冻循环对上述因素有显著影响,进而控制多年冻土区河流DOC的输出规律。气候变暖可从3个方面对多年冻土区河流DOC输出产生影响:(1)造成多年冻土退化,使地下水的流动路径变深和滞留时间增长,导致河流的DOC输出量降低;(2)使多年冻土中储存的老有机碳释放,导致河流的DOC输出量增高;(3)改善深部土壤的通气和温度条件,促进土壤微生物活性,进而影响河流DOC的输出量和化学特征。今后,有3个方面的研究需要加强:(1)中、低纬度高海拔冻土区河流DOC的输出规律及其与流域水文过程的关系;(2)小型源头河流DOC输出的对比与控制性试验;(3)冻土区地下水流过程的精细刻画和潜在有机碳源的直接探测。  相似文献   

2.
长江源区径流量变化分析   总被引:3,自引:0,他引:3  
利用1960~2012年长江源区直门达以上流域水文观测数据,采用Mann-Kendall法对径流量数据进行突变检验,并结合径流过程线共同判断突变年份,最终确定2008年为径流量变化的突变年份。以径流突变年份分割时间序列为1960~2008年和2009~2012年,得到累积径流量、累积降水量与年份线性关系式。沱沱河以上降水和非降水因素对径流量增大的贡献率分别为22.89%和77.11%;直门达以上分别为67.85%和32.15%。研究结果显示长江源区近年来径流量呈增加趋势。  相似文献   

3.
青藏高原多年冻土区冻融循环过程对地表能量及其分配的影响研究相对较少,青藏高原唐古拉站多年冻土的实测资料,依据10 cm土壤温度划分浅层土壤冻融循环的各个阶段并结合能量闭合率、地表能量各通量等数据探讨浅层土壤冻融循环过程与地气间水热交换过程之间的影响。结果表明:浅层土壤冻融循环过程各阶段均受气候变化的影响,其融化过程起始时间提前同时冻结过程起始时间推后,完全融化阶段持续时间增加,且逐渐接近完全冻结阶段持续时间;在浅层土壤不同冻融状态下,能量闭合率差值较大,其中完全融化阶段能量闭合状况普遍好于完全冻结阶段;净辐射值在完全融化阶段高于完全冻结阶段,净辐射在完全冻结阶段主要转化为感热通量,在完全融化阶段主要转化为潜热通量,地表土壤热通量在完全融化阶段为正值,在完全冻结阶段为负值。  相似文献   

4.
气候变化背景下长江源区径流变化特征及其成因分析   总被引:6,自引:5,他引:1  
利用1960-2011年历年逐月长江上游通天河流域直门达水文站观测的流量资料、 长江源区气象台站观测资料以及NCEP/NCAR逐月再分析资料, 研究分析了长江源区径流变化特征及其气候归因. 结果表明: 2005年之前, 长江源区年及夏、 秋、 冬季的平均流量呈持续下降趋势, 2005年以后, 长江源区年及四季的平均流量均呈显著增加趋势. 其中, 以夏季平均流量的增幅最为明显, 年平均流量有4 a左右及12 a左右的变化周期. 高原夏季风、 长江源区夏季7、 8月地面感热、 流域降水量、 蒸发量、 气温及冰川和积雪融水均对长江源区流量变化有明显影响. 2005年以后, 长江源区年及四季的降水量呈明显的增加趋势, 而蒸发量呈明显的减少趋势. 同时, 温度急剧上升导致的冰川和积雪融水增多, 是2005年以来长江源区流量急剧增加的重要原因.  相似文献   

5.
由于多年冻土区流域土壤冻融过程对水循环影响的复杂性,水循环物理过程观测存在困难和不足,而利用稳定同位素方法可以有效地解决该问题。因此,基于2009年长江源风火山流域夏季定点降水和河水δD和δ18O,对研究区降水河水稳定同位素特征进行分析。结果表明,研究区夏季降水δD和δ18O受到降水量和温度的双重影响,即受海洋性和大陆局地气团的交替影响。河水氢氧同位素的季节变化和空间差异与壤中流、地下水补给河流的季节差异和植被覆盖的空间差异有关。随着地温升高和土壤冻融锋面的迁移,河水补给来源和同位素特征发生改变,表明土壤冻融变化对多年冻土流域径流过程起到重要作用。此外,蒸发分馏作用是研究区河水同位素的重要影响因素。  相似文献   

6.
长江源多年冻土区典型小流域水文过程特征研究   总被引:7,自引:3,他引:4  
基于长江源风火山多年冻土区典型小流域2004-2007年的观测资料,运用回归和统计分析方法,探讨了气温、地温、降水、土壤水分与径流的响应关系.结果表明:5-9月为研究流域的水文过程活跃期,该时段的径流量占全年总径流量的85%;径流过程中存在春汛和夏汛,夏汛洪峰值明显高于春汛.径流过程中不同时段具有不同的影响主导因子,春汛期主要是65 cm以上的土壤温度和水分起主导作用;夏季枯水期40 cm以上土壤水分与径流是负相关,深层地温和土壤水分起主导作用;夏汛期气温、降水起主导作用;秋季枯水期的影响因子依次为土壤温度、水分及气温.多年冻土区降水大部分冻结在土壤中或者用来补充土壤水分的亏缺,不能直接产流,只有在春汛和夏汛期间与径流保持一定的相关关系.  相似文献   

7.
坡向和坡位是影响坡面活动层土壤水分入渗的重要因素,然而当前对多年冻土区活动层土壤冻融循环影响下不同坡向、坡位土壤水分入渗特征的研究甚少。本文设置了不同时空条件的野外试验点,更加系统地分析了青藏高原多年冻土区活动层土壤水分入渗过程的时空差异性。选取青藏高原腹地风火山流域高寒草甸坡面活动层土壤为试验地,分别在不同的坡向(阳坡、阴坡)和坡位(坡顶、坡中)设置观测点,分析活动层土壤在完全融化期(7—8月)和开始冻结期(9—10月)坡面水分的入渗特征及其时空差异性,评估不同入渗模型在研究区的适用性。结果表明,多年冻土区坡面活动层土壤水分入渗特征具有较强的时空差异性。土壤水分入渗过程可以分为入渗瞬变阶段(0~30 min)、入渗渐变阶段(30~100 min)、入渗稳定阶段(>100 min)三个阶段,入渗速率的大小整体表现为阳坡>阴坡,坡顶>坡中,完全融化期>开始冻结期,瞬变阶段>渐变阶段>稳定阶段。五种模型对入渗过程的模拟结果显示,Horton模型对青藏高原多年冻土区土壤水分入渗过程的模拟效果最佳,而通用经验模型和蒋定生公式对入渗的拟合曲线和统计参数几乎完全...  相似文献   

8.
长江源区径流年内分配时程变化规律分析   总被引:25,自引:0,他引:25  
在气候变化和人类活动的影响下,河川径流的年内分配特征也发生变化,直接影响人类开发利用和生态环境建设.根据长江源区1956-2000年河流月径流资料,分析了年内分配不均匀系数、完全调节系数、集中度、集中期、变化幅度等特性.结果表明:长江源径流年内分配特征在1960年前后与1988年前后径流年内分配较为相近,1970—1976年与1993年以后径流年内分配较为相近.沱沱河站径流年内分配的不均匀性、集中度以及相对变化幅度都高于直门达站.  相似文献   

9.
长江源区高寒生态与气候变化对河流径流过程的影响分析   总被引:24,自引:5,他引:19  
近40 a来长江源区气候变化剧烈,是青藏高原增温最为显著的地区之一,高寒生态系统与冻土环境不断退化.采用多因素逐次甄别方法与半经验理论方法相结合,基于多年冻土的不同植被覆盖降水-径流观测场观测试验结果,分析了长江源区气候-植被-冻土耦合系统中各要素变化对河川径流的不同影响.结果表明:近40 a来长江源区河川径流呈持续递减趋势,年均径流量减少了15.2%,频率>20%的径流量均显著减少,而>550 m3·s-1的稀遇洪水流量发生频率增加;气候变化与高寒草甸覆盖变化对源区径流变化的影响较大,分别占5.8%和5.5%;气候与植被覆盖变化对径流的显著影响是与冻土耦合作用的结果,但冻土环境与冰川变化对径流的贡献尚不能准确评价.高寒沼泽湿地和高寒草甸生态系统对于源区河川径流的形成与稳定起到关键作用,这两类生态系统的显著退化是驱动河川径流过程中变差增大、降水-径流系数减少以及洪水频率增加的主要原因.保护源区高寒草甸与独特的高寒湿地生态,对于维护源区水涵养功能和流域水安全意义重大.  相似文献   

10.
研究青藏高原多年冻土区高寒草甸土壤CO2通量有助于准确估算该区域的土壤CO2排放, 对认识高原土壤碳循环及其对全球气候变化的响应具有重要意义. 利用静态箱-气相色谱法和LI-8100土壤CO2通量自动测量系统对疏勒河上游多年冻土区高寒草甸土壤CO2通量进行了定期观测, 结合气象和土壤环境因子进行了分析. 结果表明: 整个观测期高寒草甸土壤表现为CO2的源, 土壤CO2通量的日变化范围为2.52~532.81 mg·m-2·h-1. 土壤CO2年排放总量为1 429.88 g·m-2, 年均通量为163.23 mg·m-2·h-1; 其中, CO2通量与空气温度和相对湿度、活动层表层2 cm、10 cm、20 cm、30 cm 土壤温度、含水量和盐分均显著相关. 2 cm土壤温度、空气温度和总辐射、空气温度、2 cm土壤盐分分别是影响活动层表层2 cm土壤完全融化期、冻结过程期、完全冻结期、融化过程期土壤CO2通量的最重要因子. 在完全融化期、冻结过程期和整个观测期, 拟合最佳的温度因子变化分别能够解释土壤CO2通量变化的72.0%、82.0%和38.0%, 对应的Q10值分别为1.93、6.62和2.09. 冻融期(含融化过程期和冻结过程期)和完全冻结期的土壤CO2排放量分别占年排放总量的15.35%和11.04%, 在年排放总量估算中不容忽视.  相似文献   

11.
位于青藏高原腹地的多年冻土地带,其冻融过程中的土壤含水量和土壤冻结深度的变化对气候强烈响应并产生显著的陆面能—水平衡变化,进而又对全球气候产生较大的反馈作用。为了能准确模拟这种变化,选取青藏高原多年冻土分布区的风火山左冒孔流域(长江源)进行了相关的野外数据采集和试验,以考虑土壤冻融影响的水—热耦合陆面过程模型——SHAW为动力学约束框架,验证集合卡尔曼滤波算法在改进模型对土壤冻融过程中土壤水分和冻土深度的计算效果。基于试验点的数据同化计算结果表明:数据同化方法可以融合观测信息显著提高水—热耦合模型对土壤冻融过程中状态变量(土壤水分和冻深)的模拟,并进而改善模型对其它相关能量—水分变量的计算,为在高寒冻土地区利用多源信息进行融合监测提供了理论依据。  相似文献   

12.
长江源区Cd地球化学省与主要水系的Cd输出通量   总被引:2,自引:1,他引:1  
中国正在进行的多目标区域地球化学调查成果显示,长江流域存在贯穿全流域的Cd地球化学异常,因此研究该异常的成因及查明长江主要支流Cd的输出通量已成为科学研究的焦点。长江源区水系包括通天河干流及沱沱河、楚玛尔河、尕尔曲、布曲、当曲、口前曲、聂恰曲支流。采用1样/km2的密度采集水系沉积物样品对长江源区进行地球化学填图,在沱沱河—尕尔曲和扎曲—聂恰曲流域分别圈出规模巨大的Cd、Pb、As地球化学省,其他地区Cd、As、Pb均为正常的地球化学背景区。研究发现沱沱河—尕尔曲Cd、Pb、As地球化学省内岩石中Cd、Pb、As含量明显高于土壤和水系沉积物,表明岩石在风化形成土壤和水系沉积物过程中已向水体释放了大量的Cd、Pb、As。通天河干流原水中Cd、Pb、As的平均质量浓度分别为0.144、17.62、2.59μg/L,沱沱河原水中Cd、Pb、As的质量浓度为0.187、19.89、2.33μg/L,聂恰曲原水中Cd、Pb、As的质量浓度为0.144、6.37、2.33μg/L,较其他支流中的含量高近1个数量级,表明源区原水中Cd、Pb、As含量主要受地质背景控制。年输出通量计算显示,由沱沱河输入到通天河中的Cd、Pb、As年通量分别为0.155、16.47和1.93t/a,楚玛尔河输入到通天河中的Cd、Pb、As年通量分别为0.015、0.77、0.35t/a,尕尔曲—布曲输入到通天河中的Cd、Pb、As年通量分别为0.095、10.31、2.72t/a;由通天河输入到金沙江的Cd、Pb、As年通量分别为2.48、290.7、42.3t/a,表明长江源区Cd地球化学省是长江沿江Cd地球化学异常带形成的重要物质来源。对原水和清水(过0.45μm滤膜)中Cd、As、Pb分析显示,长江源区水体中Cd、Pb主要以悬浮物形式迁移,As则以可溶态形式迁移。  相似文献   

13.
在现有的OTC内碳通量观测仪器设备基础上, 设计开发出一套以AT89S51单片机为控制核心, 通过L293D控制电机正反转控制箱盖定时开关, 实现了多年冻土区OTC内碳通量自动观测. 观测主体箱用透明采光性良好的玻璃纤维材料制成, 电机传动采用齿轮传动, 箱口和箱盖接触地方用橡胶密封圈包裹, 防止箱盖密闭时漏气. OTC内碳通量自动观测仪最大可能性的减小了当前模拟增温条件下碳通量观测受自然条件和人为因素的影响, 极大的降低观测费用, 提高了数据的连续性, 基本上实现了多年冻土区模拟增温条件下碳通量较为精确地自动、连续观测. 试验表明: 在气象条件相对较好的2013年5月15日, OTC内碳通量自动观测仪观测结果和传统OTC内利用LI-COR6400观测结果规律性都较强, 野点较少, 二者相关性显著(R2=0.96); 而在气象条件相对较差的2013年9月1日, OTC内碳通量自动观测仪观测结果受外界干扰小, 观测结果规律性强, 野点较少; 而传统OTC内利用LI-COR6400 观测结果规律性较差, 野点较多, 数据可信度不高, 二者观测结果相关性不显著(R2=0.67).  相似文献   

14.
高寒冻土地区草甸草地生态系统的能量-水分平衡分析   总被引:9,自引:5,他引:4  
为了揭示青藏高原高寒地区土壤冻融过程对地表植被大气三者之间能量水分循环的影响, 在青藏高原风火山左冒孔流域(长江源)开展了不同植被盖度条件下冻土活动层水热状态的野外观测(在30%、 60%、 90%的草甸盖度下观测分层土壤水分及温度)和相关试验. 选取考虑了积雪、植被覆盖及枯枝落叶层对土壤冻融影响的水热盐分耦合模型SHAW为动力学约束模型, 进行参数率定及其模拟计算. 结果表明: 青藏高原地气间的能量交换主要受冻土、植被生长和地表土壤含水量的影响, 并且呈明显的季节性变化;未退化高寒草甸草地对青藏高原冻土具有明显的隔热保温作用, 可以降低冻土对气候变化的响应. 在土壤活动层冻结过程期间, 土壤水分具有向表层和深层两向分流汇聚的特征, 植被覆盖变化对水分运移通量有明显影响.  相似文献   

15.
青藏高原冻土区活动层厚度分布模拟   总被引:16,自引:10,他引:6  
活动层夏季融化、冬季冻结的近地表土(岩)层,是冻土地区热力动态最活跃的岩层,在冻土研究中有着重要意义.根据青藏高原地区80个气象观测台站1991-2000年的地面温度观测资料结合数字高程模型,计算出青藏高原冻土区的地面冻结指数和地面融化指数,然后应用斯蒂芬公式分别得到多年冻土区的季节融化深度和季节冻土区的季节冻结深度.  相似文献   

16.
天山南坡的萨雷扎兹-库玛拉克河流域在中国阿克苏河协合拉水文站以上面积为12816km2,发育有冰川3195.41km2,冰川覆盖率25%.根据1957—2006年流域站点观测的降水、气温及其径流资料,通过最大熵方法计算了流域冰川物质平衡的逐年变化.结果表明:流域冰川径流深约为895mm,全流域河川径流深为381.3mm,冰川融水占协合拉站控制流量的58.65%,冰川融水变化对流域水资源量的影响非常明显.1957—2006年平均年径流量为48.64×108m3,径流在1993年后急剧增加,1994—2006年的平均年径流量比1957—1993年的增加了10.56×108m3,即增加了23%.由于负物质平衡消耗了大量过去积累的冰川冰,冰川融化对河流额外补给.初步计算,在过去50a由于气温升高引起的冰川净消融额外补给河流的径流量达309.47×108m3,相当于每年径流增加达6.19×108m3,约为年径流量的13%.1957—1993年流域冰川消融对河流的额外净补给量为5.3×108m3,占河流总径流量的11%;1994—2006年流域冰川消融对河流的额外净补给量为8.8×108m3,占河流总径流量的18%.随着...  相似文献   

17.
1976—2010年青藏铁路沿线多年冻土区降水变化特征   总被引:8,自引:5,他引:3  
针对青藏铁路穿越的多年冻土区段,利用沿线多年冻土区的五道梁、风火山、沱沱河、安多气象站1976—2010年35a的降水量观测资料,并结合同时期地面温度和气温资料,对多年冻土区区域气候变化进行分析,揭示了多年冻土区近35a来降水、地面温度、气温都在波动中上升的变化特征.结果表明:近10a多年冻土区处在丰水期,多年冻土区气...  相似文献   

18.
木扎提河、卡普斯浪河及克孜尔河3条河流1980—2010年31年多年平均悬移质输沙量之和为883×104t,3条河流的年径流量之和占到渭干河部分流域年径流量86%以上,3条河流的悬移质输沙总量可以代表全流域的多年平均悬移质输沙总量。根据流域泥沙的观测资料情况,对新疆渭干河部分流域河流含沙量的分布及输沙量、悬移质输沙量、河流输沙量的年内分配及年际变化等进行了分析。  相似文献   

19.
气候变暖对长江源径流变化的影响分析   总被引:4,自引:4,他引:0  
在气候变暖背景下, 20世纪60年代以来, 长江源区气温年和四季增温显著, 蒸发量、 径流量总体呈增加趋势; 进入21世纪后, 源区降水量呈增加趋势。沱沱河作为长江源区的主要径流, 以此为代表研究长江源区气候变暖对径流的影响具有重要的现实意义。利用1981 - 2015年沱沱河水文站径流量资料、 沱沱河同期气象站降水量、 气温、 蒸发量的实测资料, 分析了长江源区沱沱河降水、 气温、 蒸发量变化对径流量的影响。结果显示: 在全球变暖背景下, 近35 a来沱沱河流域年及四季平均气温、 平均最高气温、 最低气温均呈显著增加趋势; 年及春、 夏、 秋季降水量增加而冬季降水量减少; 春、 冬季蒸发量呈增加趋势, 年及夏、 秋季蒸发量呈减少趋势。沱沱河流域降水量是影响径流量大小的最主要的气候因子, 夏季降水量的增多与夏季径流量的增多关系密切, 年平均最低气温升高导致的冰川和积雪融水对径流量的影响次之, 蒸发量对径流量的影响明显低于前两者。  相似文献   

20.
杜陈军  张梦瑶  高永恒 《水文》2018,38(2):46-52
以青藏高原长江源区典型高寒草地小流域为研究对象,基于2012年小流域气象监测数据和小流域径流水样分析,探讨了小流域水体碳氮输出特征,分析了气象因子和土壤水热对小流域水体碳氮输出的影响。结果表明,径流水体碳氮质量浓度均较低,其中可溶性有机碳(DOC)、可溶性有机氮(DON)、铵态氮(NH4+-N)和硝态氮(NO3--N)含量分别在2.95~6.96mg.L-1、0.45~1.15mg.L-1、0.02~0.88mg.L-1和0.16~0.36mg.L-1之间;DOC、DON、NO3--N在8~10月份之间随时间逐渐升高,9月中旬达到峰值后波动下降,NH4+-N无显著的季节变化特征,溶解氮中DONNO3--NNH4+-N;DOC和DON的输出量与降水、不同土层(20、40、60、90、120cm)地温和不同深度(10、20、40、60cm)土壤水分、水温呈极显著正相关(P0.001),与90、120cm土壤水分呈极显著负相关(P0.001);NH4+-N的输出量与降水、气温、水温呈显著正相关(P0.05);NO3--N与降水呈极显著正相关(P0.001)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号